JPH0324058B2 - - Google Patents
Info
- Publication number
- JPH0324058B2 JPH0324058B2 JP56154591A JP15459181A JPH0324058B2 JP H0324058 B2 JPH0324058 B2 JP H0324058B2 JP 56154591 A JP56154591 A JP 56154591A JP 15459181 A JP15459181 A JP 15459181A JP H0324058 B2 JPH0324058 B2 JP H0324058B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- interstitial oxygen
- wafer
- semiconductor device
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 62
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 60
- 229910052760 oxygen Inorganic materials 0.000 claims description 60
- 239000001301 oxygen Substances 0.000 claims description 60
- 230000007547 defect Effects 0.000 claims description 49
- 239000013078 crystal Substances 0.000 claims description 40
- 239000004065 semiconductor Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 44
- 230000000694 effects Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005247 gettering Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
本発明はイントリンシツクゲツタリング
(Intrinsic Gettering)作用を有する半導体装置
の製造方法に関す。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device having an intrinsic gettering effect.
半導体装置の特性不良の大きい要因にプロセス
誘起欠陥や有害不純物がある。素子動作領域にお
けるこれらの要因を排除するために、ウエハ内部
に故意に結晶欠陥を発生させ、又、素子動作に係
るウエハ表面近傍には欠陥のないデヌーデイドゾ
ーン(Denuded Zone;以下DZと略称する)と
呼ばれる領域を形成して、DZに混入する有害不
純物等を内部結晶欠陥にゲツタリングせしめるこ
とにより素子動作領域を清浄化するIG法が半導
体装置に取り入られている。 Process-induced defects and harmful impurities are major causes of defective characteristics of semiconductor devices. In order to eliminate these factors in the device operation region, crystal defects are intentionally generated inside the wafer, and a defect-free denuded zone (hereinafter abbreviated as DZ) is created near the wafer surface related to device operation. The IG method has been adopted in semiconductor devices to clean the device operating region by forming a region called a "DZ" and causing harmful impurities mixed in the DZ to getter into internal crystal defects.
前記のDZ及び内部結晶欠陥を形成する方法と
しては、一般に半導体装置製造工程に先立つて、
シリコンウエハに前熱処理を施すことが行われて
いる。この熱処理の一例を本出願人による特許出
願、特願昭56−035023(特開昭57−167636)及び
特願昭56−035024(特開昭57−167637)に依つて
説明する。 As a method for forming the above-mentioned DZ and internal crystal defects, generally, prior to the semiconductor device manufacturing process,
Silicon wafers are often subjected to pre-heat treatment. An example of this heat treatment will be described with reference to patent applications filed by the present applicant, Japanese Patent Application No. 56-035023 (Japanese Patent Application Laid-open No. 57-167636) and Japanese Patent Application No. 56-035024 (Japanese Patent Application No. 57-167637).
本熱処理方法は以下に述べる方法〔A〕+〔B〕
により構成される。 This heat treatment method is the method described below [A] + [B]
Consisted of.
〔A〕 シリコンウエハに温度950℃以上の熱処
理を10分間以上施す。[A] Heat treatment is performed on the silicon wafer at a temperature of 950°C or higher for 10 minutes or more.
〔B〕 前記〔A〕の熱処理後、14℃/min以下
の昇温速度で一回以上の熱処理を施す。なお、
特に薄いDZを得るためには、少くともその第
1回目の昇温速度を5℃/min以下とすること
が望ましい。[B] After the heat treatment in [A] above, heat treatment is performed at least once at a temperature increase rate of 14° C./min or less. In addition,
In order to obtain a particularly thin DZ, it is desirable that at least the first heating rate is 5° C./min or less.
前記熱処理方法の第一の定温熱処理〔A〕は、
ウエハ表面近傍の結晶欠陥核の消滅及び欠陥該格
子間酸素のアウトデイフユージヨンを行うもので
ある。 The first constant temperature heat treatment [A] of the heat treatment method is:
This eliminates crystal defect nuclei near the wafer surface and out-diffuses interstitial oxygen in the defects.
また、第二の昇温熱処理〔B〕は、内部結晶欠
陥形成を第一の目的とするもので、その状況を第
1図a乃至cを参照して説明する。 The second temperature-raising heat treatment [B] has the primary purpose of forming internal crystal defects, and its situation will be explained with reference to FIGS. 1a to 1c.
第1図a乃至cは本熱処理方法による内部結晶
欠陥乃至欠陥核のサイズ対密度分布の変化を示す
図である。図において、縦軸は内部結晶欠陥乃至
欠陥核のサイズを示し、破線は昇温熱処理開始
温度で消滅してしまう臨界サイズ、破線は後の
半導体装置製造工程で使用する最高温度での内部
結晶欠陥消滅臨界サイズを示す。また横軸は内部
結晶欠陥乃至欠陥核の密度を示す。 FIGS. 1a to 1c are diagrams showing changes in the size versus density distribution of internal crystal defects or defect nuclei due to the present heat treatment method. In the figure, the vertical axis shows the size of internal crystal defects or defect nuclei, the broken line shows the critical size that disappears at the temperature at which the temperature-raising heat treatment starts, and the broken line shows the internal crystal defects at the highest temperature used in the subsequent semiconductor device manufacturing process. Indicates the extinction critical size. Further, the horizontal axis indicates the density of internal crystal defects or defect nuclei.
第1図aは本熱処理開始前の、即ちウエハ形成
状態を示す。この状態においてはウエハ内部に各
種の大きさの内部結晶欠陥乃至欠陥核が存在する
が、格子間酸素が多いほどそのサイズ及び密度が
大きい方に分布する。しかし通常のCZ法
(Czochralski method)によるシリコンウエハで
は、全ての結晶欠陥が破線以下のサイズであ
る。 FIG. 1a shows the wafer formation state before the start of the main heat treatment. In this state, internal crystal defects or defect nuclei of various sizes exist inside the wafer, and the larger the amount of interstitial oxygen, the larger the size and density of the defects are distributed. However, in silicon wafers produced by the usual CZ method (Czochralski method), all crystal defects are smaller than the broken line in size.
第1図bは昇温熱処理〔B〕を一回実施後の状
態を示す。この状態においては、大部分の結晶欠
陥核は結晶欠陥に成長し、結晶欠陥サイズの分布
は図中上方へと移動して、一部は破線に示す臨
界サイズをも起える。他方、第1図aに示すウエ
ハ形成状態において存在した、破線に示す昇温
開始温度に対する臨界サイズより小さい一部の結
晶欠陥核は消滅もしくは固溶する。 FIG. 1b shows the state after the temperature-raising heat treatment [B] has been performed once. In this state, most of the crystal defect nuclei grow into crystal defects, the distribution of crystal defect sizes moves upward in the figure, and some of them even reach the critical size shown by the broken line. On the other hand, some crystal defect nuclei smaller than the critical size for the heating start temperature shown by the broken line, which existed in the wafer formation state shown in FIG. 1a, disappear or dissolve into solid solution.
本昇温熱処理により形成される内部結晶欠陥の
格子間酸素濃度及び昇温速度により支配される。
即ち格子間酸素濃度が高く或いは昇温速度が低い
とき内部結晶欠陥の密度が高くなる。 It is controlled by the interstitial oxygen concentration of internal crystal defects formed by this heating heat treatment and the heating rate.
That is, when the interstitial oxygen concentration is high or the temperature increase rate is low, the density of internal crystal defects becomes high.
他方、DZの幅については、昇温速度が低く、
或いは昇温最高温度が低いときにDZの幅が薄く
なる。 On the other hand, regarding the width of the DZ, the temperature increase rate is low;
Alternatively, the width of the DZ becomes thinner when the maximum temperature increase is low.
所要の内部結晶欠陥密度及びDZ幅を得るため
には、前記要因の組合せを選択する必要がある。 In order to obtain the required internal crystal defect density and DZ width, it is necessary to select a combination of the above factors.
第1図cは前記昇温熱処理〔B〕を反復実施し
た後の状態を示す。この状態においては、形成さ
れた内部結晶欠陥がすべて破線で示される、後
の半導体装置製造工程で使用する最高温度での欠
陥消滅臨界サイズを越える。 FIG. 1c shows the state after repeated implementation of the temperature increasing heat treatment [B]. In this state, all of the formed internal crystal defects exceed the defect extinction critical size at the maximum temperature used in the subsequent semiconductor device manufacturing process, which is shown by the broken line.
第二回目以降の昇温熱処理〔B〕は内部結晶欠
陥サイズの成長を目的とするものであつて、DZ
の幅を第一の定温熱処理〔A〕及び昇温熱処理
〔B〕の第一回目によつて決定し、第二回目以降
の昇温熱処理〔B〕は既に形成されたDZの幅を
変化させない条件で実施する。 The second and subsequent temperature raising heat treatments [B] are for the purpose of growing the internal crystal defect size, and the DZ
The width of the DZ is determined by the first constant temperature heat treatment [A] and the first temperature raised heat treatment [B], and the second and subsequent temperature raised heat treatments [B] do not change the width of the already formed DZ. Implemented under certain conditions.
前記の如く内部結晶欠陥を形成するとき、シリ
コンウエハ内の格子間酸素は内部結晶欠陥部分に
移動、析出し、格子間酸素濃度は減少する。従つ
て、前記の例の如きシリコンウエハの前熱処理に
よる、或いは半導体装置完成後の内部結晶欠陥の
成長の状況を、格子間酸素濃度の初期値(ウエハ
形成状態の値)と考慮する時点の濃度との差、即
ち格子間酸素の単位体積当たりの析出量で表現す
ることが可能となる。 When internal crystal defects are formed as described above, interstitial oxygen within the silicon wafer moves and precipitates to the internal crystal defect portion, and the interstitial oxygen concentration decreases. Therefore, the initial value of the interstitial oxygen concentration (the value of the wafer formation state) is considered to be the concentration at the time when the state of growth of internal crystal defects due to the pre-heat treatment of the silicon wafer as in the above example or after the completion of the semiconductor device is considered as the initial value of the interstitial oxygen concentration (value of the wafer formation state). It becomes possible to express the difference between the two, that is, the amount of interstitial oxygen precipitated per unit volume.
前記の如きウエハ前熱処理によりDZ及び内部
結晶欠陥を形成されたシリコンウエハに半導体装
置を形成する半導体装置製造工程において、この
ウエハは通常更に幾度かの高温熱処理を受ける。
これらの半導体装置製造工程中の高温熱処理は、
前記の前熱処理と同様に内部結晶欠陥を成長せし
める効果を有する。この結果内部結晶欠陥が過度
に成長した場合には、ウエハに反りを生じ更には
スリツプラインと呼ばれる転位を生ずるに到る。
これらの反り或いはスリツプラインは半導体装置
の特性或いは寿命に障害を及ぼす。逆に内部結晶
欠陥の成長が小さい場合には、有害不純物等のゲ
ツタリング効果が小さい。 In a semiconductor device manufacturing process in which a semiconductor device is formed on a silicon wafer in which DZ and internal crystal defects have been formed by the above-mentioned pre-wafer heat treatment, this wafer is usually further subjected to several high-temperature heat treatments.
These high-temperature heat treatments during the semiconductor device manufacturing process are
Similar to the preheat treatment described above, this has the effect of growing internal crystal defects. As a result, if internal crystal defects grow excessively, the wafer will warp and furthermore, dislocations called slip lines will occur.
These warps or sliplines impede the characteristics or lifespan of the semiconductor device. Conversely, when the growth of internal crystal defects is small, the gettering effect of harmful impurities is small.
更に半導体装置の実際の製造工程において、前
記の高温熱処理終了後に電極配線パターンを形成
するアルミニウム(Al)層の熱処理及びチツプ
とした後の組立工程における加熱等450℃程度の
低温熱処理が行なわれる。DZ及び内部結晶欠陥
に関してはこれらの低温熱処理の影響は無視し得
るが、これらの低温熱処理により格子間酸素がド
ナー化してキヤリア濃度が増大し半導体装置の特
性が変動する傾向がある。 Furthermore, in the actual manufacturing process of the semiconductor device, after the above-mentioned high-temperature heat treatment is completed, low-temperature heat treatment of about 450° C. is performed, such as heat treatment of the aluminum (Al) layer forming the electrode wiring pattern and heating in the assembly process after forming the chip. Although the effects of these low-temperature heat treatments on DZ and internal crystal defects can be ignored, these low-temperature heat treatments tend to convert interstitial oxygen into donors, increase the carrier concentration, and change the characteristics of the semiconductor device.
本発明は良好なIG効果を有し、かつシリコン
ウエハに反り又はスリツプラインを発生せず、更
に格子間酸素のドナー化によるウエハの抵抗率の
変化を抑制する半導体装置の製造方法を得ること
を目的とする。 The present invention aims to provide a method for manufacturing a semiconductor device that has a good IG effect, does not cause warping or slip lines in a silicon wafer, and further suppresses changes in resistivity of the wafer due to donorization of interstitial oxygen. purpose.
本発明の前記目的のうち、シリコンウエハ(基
板)の反り又はスリツプラインの発生防止につい
ては、半導体装置の製造工程において、CZ法に
より製造された未熱処理状態のシリコン基板に
950℃以上の温度で10分以上の熱処理を施した後
14℃/min以下の昇温工程を含む熱処理を1回以
上施すことにより、前記基板に含まれる格子間酸
素のうちの0.1×1018/cm-3以上0.8×1018/cm-3以
下の酸素を析出させ基板内部に結晶欠陥を形成す
るとともに、該基板内部の残余の格子間酸素の濃
度が0.7×1018/cm-3以上となるようにすることに
より達成され、更に、格子間酸素のドナー化によ
る基板の抵抗率の変化の抑制については、前記処
理完了後の前記基板中の格子間酸素の濃度を1.2
×1018/cm-3以下とすることにより達成される。 Among the above-mentioned objects of the present invention, prevention of warpage or slip lines in silicon wafers (substrates) is a method for preventing silicon wafers (substrates) from being warped or slip-lined.
After heat treatment at a temperature of 950℃ or higher for 10 minutes or more
By performing heat treatment including a temperature raising step of 14°C/min or less once or more, the interstitial oxygen contained in the substrate is reduced to 0.1×10 18 /cm -3 or more and 0.8×10 18 /cm -3 or less. This is achieved by precipitating oxygen to form crystal defects inside the substrate and at the same time making the concentration of residual interstitial oxygen inside the substrate 0.7×10 18 /cm -3 or more. In order to suppress changes in resistivity of the substrate due to donor formation, the concentration of interstitial oxygen in the substrate after the completion of the treatment is reduced to 1.2
This is achieved by setting it to less than ×10 18 /cm -3 .
第2図は本発明の前記特徴を表示する図表であ
つて、横軸は前記格子間酸素析出量Δ〔Oi〕、縦
軸は前記高温熱処理完了後の格子間酸素濃度
〔Oi〕f、平行斜線は格子間酸素濃度の初期値
〔Oi〕oに対応し、直線A,B,C及びDはそれ
ぞれ前記限界値を示す。 FIG. 2 is a chart showing the features of the present invention, in which the horizontal axis is the interstitial oxygen precipitation amount Δ[Oi], the vertical axis is the interstitial oxygen concentration [Oi] f after the completion of the high-temperature heat treatment, and the parallel The diagonal line corresponds to the initial value [Oi]o of the interstitial oxygen concentration, and the straight lines A, B, C, and D each indicate the limit value.
格子間酸素濃度の初期値〔Oi〕oのシリコン
ウエハについて、その前記格子間酸素析出量Δ
〔Oi〕及び高温熱処理完了後の格子間酸素濃度
〔Oi〕fの値が、第2図の〔Oi〕oを表わす直線
の、直線A或いは直線Bとの交点と直線C或いは
Dとの交点の範囲内にあるときに本発明の目的が
達成されるが、前記要件を満足する半導体装置の
製造方法の一例としては、所要の内部結晶欠陥及
びサイズを形成する格子間酸素の析出量Δ〔Oi〕
を基準に、前記要件を満足するシリコンウエハを
選択し、前記格子間酸素の析出量の基準値から半
導体素子製造工程中の格子間酸素の析出量を控除
した値の格子間酸素の析出量を与える熱処理を該
シリコンウエハに施し、DZ及び内部結晶欠陥核
乃至内部結晶欠陥を形成する方法がある。 For a silicon wafer with an initial value of interstitial oxygen concentration [Oi]o, the interstitial oxygen precipitation amount Δ
The value of [Oi] and the interstitial oxygen concentration [Oi] f after completion of high-temperature heat treatment is determined by the intersection of the straight line representing [Oi]o in FIG. 2 with straight line A or straight line B and the straight line C or D. The object of the present invention is achieved when the amount of precipitated interstitial oxygen that forms the required internal crystal defects and size Δ[ Oi〕
Based on the above, select a silicon wafer that satisfies the above requirements, and calculate the amount of interstitial oxygen precipitated by subtracting the amount of interstitial oxygen precipitated during the semiconductor device manufacturing process from the reference value of the interstitial oxygen precipitated amount. There is a method of subjecting the silicon wafer to a heat treatment to form DZ and internal crystal defect nuclei or internal crystal defects.
以下、本発明の完成過程を説明し、本発明の構
成と特有の効果とを明らかにし、更に実施方法に
ついて述べる。 Hereinafter, the process of completing the present invention will be explained, the structure and unique effects of the present invention will be clarified, and furthermore, the method of implementation will be described.
第3図はCZ法により製造されたシリコンウエ
ハに関して、その未処理の状態より半導体装置製
造工程における950℃以上の高温熱処理完了まで
の格子間酸素の析出量Δ〔Oi〕とウエハの反りの
量との相関を示す図表である。図において、横軸
は前記酸素の析出量Δ〔Oi〕、縦軸はウエハの反
りの量を示し、図中実線A及び〇印は〔Oi〕o
=1.7×1018/cm-3、破線B及び△印は〔Oi〕o=
1.5×1018/cm-3の場合を示す。 Figure 3 shows the amount of interstitial oxygen precipitation Δ[Oi] and the amount of wafer warpage from the untreated state to the completion of high-temperature heat treatment at 950°C or higher in the semiconductor device manufacturing process for silicon wafers manufactured by the CZ method. This is a chart showing the correlation between In the figure, the horizontal axis shows the amount of oxygen precipitated Δ[Oi], the vertical axis shows the amount of warpage of the wafer, and the solid line A and the circle mark in the figure indicate [Oi]o.
=1.7×10 18 /cm -3 , broken line B and △ mark are [Oi] o =
The case of 1.5×10 18 /cm -3 is shown.
図より明らかなる如く、格子間酸素の析出量Δ
〔Oi〕が少く0.8×1018/cm-3以下である場合には
ウエハの反りは殆んど発生せず、この値を超える
ときウエハの反りは急激に増大し、更にはスリツ
プラインを生ずるに到る。なお、格子間酸素の析
出量が減少するとこれに伴つてIG効果を生ずる
結晶欠陥の量も減少するので、格子間酸素の析出
量を少なくするのにもおのずと限度があり、良好
なIG効果を得るためには、格子間酸素の析出量
は、0.1×1018/cm-3以上であることが好ましい。 As is clear from the figure, the amount of interstitial oxygen precipitation Δ
When [Oi] is small, 0.8×10 18 /cm -3 or less, wafer warpage hardly occurs, and when this value is exceeded, wafer warpage increases rapidly and even creates a slip line. reach. Note that as the amount of precipitated interstitial oxygen decreases, the amount of crystal defects that cause the IG effect also decreases, so there is naturally a limit to reducing the amount of precipitated interstitial oxygen, and it is difficult to achieve a good IG effect. In order to obtain this, the amount of precipitated interstitial oxygen is preferably 0.1×10 18 /cm −3 or more.
格子間酸素濃度の初期値〔Oi〕oが小さいと
きにはウエハの反りが急激に増大するΔ〔Oi〕の
値は小さくなり、〔Oi〕oが1.5×1018/cm-3より
小であるときは、次に述べる高温熱処理完了後の
格子間酸素濃度〔Oi〕fにより限度を決定する。 When the initial value of interstitial oxygen concentration [Oi]o is small, the warpage of the wafer increases rapidly.The value of Δ[Oi] becomes small, and when [Oi]o is smaller than 1.5×10 18 /cm -3 The limit is determined by the interstitial oxygen concentration [Oi]f after the completion of high temperature heat treatment, which will be described below.
第4図は半導体装置製造工程中における高温熱
処理完了後の格子間酸素濃度〔Oi〕fとウエハ
の反りの量との相関を示す図であり、横軸は前記
高温熱処理完了後の格子間酸素濃度〔Oi〕f、
縦軸はウエハの反りの量を示す。第3図において
実線A及び〇印は〔Oi〕o=1.5×1018/cm-3、破
線B及び△印は〔Oi〕o=1.3×1018/cm-3の場合
を示す。 FIG. 4 is a diagram showing the correlation between the interstitial oxygen concentration [Oi] f and the amount of wafer warpage after the completion of high-temperature heat treatment during the semiconductor device manufacturing process, and the horizontal axis is the interstitial oxygen concentration after the completion of the high-temperature heat treatment. Concentration [Oi] f,
The vertical axis indicates the amount of warpage of the wafer. In FIG. 3, the solid line A and the circle mark indicate the case where [Oi]o=1.5×10 18 /cm −3 , and the broken line B and the triangle symbol show the case where [Oi]o=1.3×10 18 /cm −3 .
第4図より明らかなる如く〔Oi〕oが、1.5×
1018/cm-3より小であるシリコンウエハについて
前記高温熱処理完了後の格子間酸素濃度〔Oi〕
fが0.7×1018/cm-3以下であるときにウエハの反
りは急激に増大し、更にはスリツプラインを生ず
るに到る。 As is clear from Figure 4, [Oi]o is 1.5×
The interstitial oxygen concentration [Oi] after completion of the above-mentioned high-temperature heat treatment for silicon wafers smaller than 10 18 /cm -3
When f is less than 0.7×10 18 /cm -3 , the warpage of the wafer increases rapidly and even leads to the formation of slip lines.
以上説明した格子間酸素の析出量Δ〔Oi〕の上
限及び高温熱処理完了後の格子間酸素濃度〔Oi〕
fの下限は、内部結晶欠陥の過度の成長によりシ
リコンウエハに反り更にはスリツプラインを生ず
ることを防止するものである。 The upper limit of the interstitial oxygen precipitation amount Δ[Oi] and the interstitial oxygen concentration [Oi] after completion of high-temperature heat treatment explained above
The lower limit of f is to prevent the silicon wafer from warping or even forming a slip line due to excessive growth of internal crystal defects.
これとは逆に格子間酸素の析出量Δ〔Oi〕が少
いとき、或いは格子間酸素濃度の初期値〔Oi〕
oが大きいときには高温熱処理完了後の格子間酸
素濃度〔Oi〕fが大きく、先に述べた如く、低
温熱処理により格子間酸素がドナー化して、キヤ
リア濃度が増大し半導体装置の特性を変動させる
おそれがある。 On the contrary, when the amount of precipitated interstitial oxygen Δ[Oi] is small, or the initial value of interstitial oxygen concentration [Oi]
When o is large, the interstitial oxygen concentration [Oi] f after high-temperature heat treatment is large, and as mentioned earlier, low-temperature heat treatment may cause interstitial oxygen to become a donor, increasing the carrier concentration and changing the characteristics of the semiconductor device. There is.
第5図は格子間酸素のドナー化によるP(100)、
抵抗率10Ωcmのウエハの抵抗率の変化を示す図表
であり、横軸は450℃における熱処理時間を、縦
軸はウエハの抵抗率を示す。図において、曲線A
は〔Oi〕f=0.5×1018/cm-3、曲線Bは〔Oi〕
f=0.7×1018/cm-3、曲線Cは〔Oi〕f=0.9×
1018/cm3、曲線Dは〔Oi〕f=1.0×1018/cm3、曲
線Eは〔Oi〕f=1.2×1018/cm3、曲線Fは〔Oi〕
f=1.4×1018/cm3、曲線Gは〔Oi〕f=0.9×
1018/cm3の場合を示すが、曲線Fに示す〔Oi〕f
=1.4×1018/cm3については熱処理20時間のとき、
曲線Gに示す〔Oi〕f=1.9×1018/cm3について
は熱処理時間10時間のとひN反転を示した。 Figure 5 shows P(100) due to donorization of interstitial oxygen.
This is a chart showing changes in resistivity of a wafer with a resistivity of 10 Ωcm, where the horizontal axis shows the heat treatment time at 450°C and the vertical axis shows the resistivity of the wafer. In the figure, curve A
is [Oi] f=0.5×10 18 /cm -3 , and curve B is [Oi]
f=0.7×10 18 /cm -3 , curve C is [Oi] f=0.9×
10 18 /cm 3 , curve D is [Oi] f=1.0×10 18 /cm 3 , curve E is [Oi] f=1.2×10 18 /cm 3 , curve F is [Oi]
f=1.4×10 18 /cm 3 , curve G is [Oi] f=0.9×
The case of 10 18 /cm 3 is shown, but [Oi] f shown in curve F
For =1.4×10 18 /cm 3 , when heat treatment is 20 hours,
For [Oi]f=1.9×10 18 /cm 3 shown in curve G, N reversal was shown when the heat treatment time was 10 hours.
実際の半導体装置製造の際のこの種の低温熱処
理時間の累計は長くとも5時間に達することはな
いが、5時間で抵抗率10Ωcmより20Ωcm程度とな
る曲線Eに示す〔Oi〕f=1.2×1018/cm3を上限
とするのが妥当である。 Although the cumulative total of this type of low-temperature heat treatment time during actual semiconductor device manufacturing does not reach 5 hours at most, the resistivity decreases from 10 Ωcm to about 20 Ωcm in 5 hours, as shown in curve E [Oi]f=1.2× It is reasonable to set the upper limit to 10 18 /cm 3 .
以上の研究結果により、第2図の直線A,B,
C及びDに示す限界値を得たが、本要件を満足す
る半導体装置製造方法の一例としては、所要の内
部結晶欠陥密度及びサイズを形成する格子間酸素
の析出量Δ〔Oi〕を基準に、前記高温熱処理完了
後の格子間酸素濃度〔Oi〕fの下限及び上限に
対して所要の余猶を有する格子間酸素濃度の析出
量〔Oi〕oの未処理シリコンウエハを選択する。
一方半導体素子製造工程中の格子間酸素の析出量
を予め求めておき、前記Δ〔Oi〕の基準値と半導
体素子製造工程中の選択された〔Oi〕oのウエ
ハの格子間酸素の析出量とを比較する。一般に前
者が後者より大であつて、その差の値の格子間酸
素の析出量を与える熱処理を半導体素子製造工程
に先立つウエハ前処理として実施する。 Based on the above research results, the straight lines A, B in Figure 2,
Although the limit values shown in C and D were obtained, an example of a semiconductor device manufacturing method that satisfies these requirements is based on the precipitated amount Δ[Oi] of interstitial oxygen that forms the required internal crystal defect density and size. , select an untreated silicon wafer with a precipitated amount [Oi]o of interstitial oxygen concentration that has a necessary margin with respect to the lower and upper limits of the interstitial oxygen concentration [Oi]f after the completion of the high-temperature heat treatment.
On the other hand, the amount of precipitated interstitial oxygen during the semiconductor device manufacturing process is determined in advance, and the amount of interstitial oxygen precipitated on the wafer with the reference value of Δ[Oi] and the selected [Oi]o during the semiconductor device manufacturing process. Compare with. Generally, the former is larger than the latter, and a heat treatment that gives the amount of precipitated interstitial oxygen equal to the difference between them is performed as a wafer pretreatment prior to the semiconductor device manufacturing process.
本発明の前記ウエハ前熱処理を先に述べた特願
昭56−035023及び特願昭56−035024の方法に準じ
て実施するとすれば、前記熱処理〔A〕に続く熱
処理〔B〕の最高昇温温度を950℃以下の低温領
域に止めて、未だ内部結晶欠陥にまで成長しない
欠陥核の状態に止めることが適当である場合が多
く、更に熱処理〔B〕を2回以上繰返すことは通
常不必要である。 If the pre-wafer heat treatment of the present invention is carried out according to the method of the aforementioned Japanese Patent Application No. 56-035023 and No. 56-035024, the maximum temperature increase in the heat treatment [B] following the heat treatment [A] In many cases, it is appropriate to keep the temperature in a low temperature range of 950°C or less to keep the defect nucleus in a state that has not yet grown into an internal crystal defect, and it is usually unnecessary to repeat heat treatment [B] two or more times. It is.
以上説明したごとく、本発明によれば、半導体
装置の製造工程において、CZ法により製造され
た未熱処理状態のシリコン基板に950℃以上の温
度で10分以上の熱処理を施した後14℃/min以下
の昇温工程を含む熱処理を1回以上施して前記基
板に含まれる格子間酸素のうちの0.1×1018/cm-3
以上0.8×1018/cm-3以下の酸素を析出させ基板内
部に結晶欠陥を形成するとともに、該基板内部の
残余の格子間酸素の濃度が0.7×1018/cm-3以上と
なるようにすることにより、良好なIG効果を得
つつ基板の反り又はスリツプラインの発生を防止
することができ、更に、前記処理完了後の基板中
の格子間酸素の濃度を1.2×1018/cm3以下とする
ことにより、格子間酸素のドナー化による基板の
抵抗率の変化を抑制することができるので、IG
効果を用いる半導体装置の品質向上に大きい効果
がある。 As explained above, according to the present invention, in the manufacturing process of a semiconductor device, an unheated silicon substrate manufactured by the CZ method is heat-treated at a temperature of 950°C or more for 10 minutes or more, and then the heat treatment is performed at a rate of 14°C/min. A heat treatment including the following temperature raising process is performed one or more times to remove 0.1×10 18 /cm -3 of the interstitial oxygen contained in the substrate.
Crystal defects are formed inside the substrate by precipitating oxygen of 0.8×10 18 /cm -3 or more, and the concentration of residual interstitial oxygen inside the substrate is 0.7×10 18 /cm -3 or more. By doing so, it is possible to obtain a good IG effect while preventing the occurrence of substrate warpage or slip lines, and furthermore, the concentration of interstitial oxygen in the substrate after the completion of the above treatment can be reduced to 1.2×10 18 /cm 3 or less. By doing so, it is possible to suppress changes in the resistivity of the substrate due to donorization of interstitial oxygen.
This has a great effect on improving the quality of semiconductor devices using this effect.
第1図a乃至cは従来技術による内部結晶欠陥
サイズ及び密度の成長を示す図、第2図は本発明
の特徴を表示する図表、第3図は格子間酸素析出
量とウエハの反りの量との相関を示す図、第4図
は高温熱処理完了後の格子間酸素濃度とウエハの
反りの量との相関を示す図、第5図は450℃熱処
理時間とウエハの抵抗率との相関を示す図であ
る。
Figures 1 a to c are diagrams showing the growth of internal crystal defect size and density according to the prior art, Figure 2 is a diagram showing the features of the present invention, and Figure 3 is a diagram showing the amount of interstitial oxygen precipitation and the amount of wafer warpage. Figure 4 shows the correlation between the interstitial oxygen concentration and the amount of wafer warpage after high-temperature heat treatment, and Figure 5 shows the correlation between 450°C heat treatment time and wafer resistivity. FIG.
Claims (1)
り製造された未熱処理状態のシリコン基板に950
℃以上の温度で10分以上の熱処理を施した後14
℃/min以下の昇温工程を含む熱処理を1回以上
施すことにより、前記基板に含まれる格子間酸素
のうちの0.1×1018/cm-3以上0.8×1018/cm-3以下
の酸素を析出させ基板内部に結晶欠陥を形成する
とともに、該基板内部の残余の格子間酸素の濃度
が0.7×1018/cm-3以上となるようにする工程を有
することを特徴とする半導体装置の製造方法。 2 前記工程完了後の前記基板中の格子間酸素の
濃度を1.2×1018/cm-3以下とすることを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造
方法。[Claims] 1. In the manufacturing process of a semiconductor device, a silicon substrate in an unheated state manufactured by the CZ method is
After heat treatment for more than 10 minutes at a temperature above 14℃
By performing heat treatment including a temperature raising step of ℃/min or less once or more, oxygen of 0.1×10 18 /cm -3 or more and 0.8×10 18 /cm -3 or less of the interstitial oxygen contained in the substrate is removed. 1. A semiconductor device characterized by comprising a step of depositing crystal defects to form crystal defects inside a substrate, and at the same time making the concentration of residual interstitial oxygen inside the substrate 0.7×10 18 /cm -3 or more. Production method. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the concentration of interstitial oxygen in the substrate after the completion of the step is 1.2×10 18 /cm −3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15459181A JPS5856344A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15459181A JPS5856344A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5856344A JPS5856344A (en) | 1983-04-04 |
JPH0324058B2 true JPH0324058B2 (en) | 1991-04-02 |
Family
ID=15587531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15459181A Granted JPS5856344A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5856344A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01312840A (en) * | 1988-06-10 | 1989-12-18 | Fujitsu Ltd | Manufacturing method of semiconductor device |
JP4605876B2 (en) * | 2000-09-20 | 2011-01-05 | 信越半導体株式会社 | Silicon wafer and silicon epitaxial wafer manufacturing method |
JP4463957B2 (en) * | 2000-09-20 | 2010-05-19 | 信越半導体株式会社 | Silicon wafer manufacturing method and silicon wafer |
JP2002289820A (en) * | 2001-03-28 | 2002-10-04 | Nippon Steel Corp | SIMOX substrate manufacturing method and SIMOX substrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5577170A (en) * | 1978-12-06 | 1980-06-10 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Silicon mono-crystal wafer |
-
1981
- 1981-09-29 JP JP15459181A patent/JPS5856344A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5577170A (en) * | 1978-12-06 | 1980-06-10 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Silicon mono-crystal wafer |
Also Published As
Publication number | Publication date |
---|---|
JPS5856344A (en) | 1983-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2171375C (en) | Manufacturing method of a silicon wafer having a controlled bmd concentration in the bulk and a good dz layer | |
US4645546A (en) | Semiconductor substrate | |
US5502331A (en) | Semiconductor substrate containing bulk micro-defect | |
KR100423752B1 (en) | A Semiconductor Silicon Wafer and a Method for making thereof | |
JPH07321120A (en) | Heat treatment of silicon wafer | |
JP3381816B2 (en) | Semiconductor substrate manufacturing method | |
KR20060040733A (en) | Wafer Manufacturing Method | |
JP4154881B2 (en) | Heat treatment method for silicon semiconductor substrate | |
JP3022044B2 (en) | Method for manufacturing silicon wafer and silicon wafer | |
JP4196602B2 (en) | Epitaxial growth silicon wafer, epitaxial wafer, and manufacturing method thereof | |
JP4055343B2 (en) | Heat treatment method for silicon semiconductor substrate | |
JPH0324058B2 (en) | ||
JPH0119265B2 (en) | ||
JP3022045B2 (en) | Method of manufacturing silicon wafer and silicon wafer | |
JP7495238B2 (en) | Silicon wafer manufacturing method | |
JP3294723B2 (en) | Silicon wafer manufacturing method and silicon wafer | |
US20030129834A1 (en) | Semiconductor wafer with crystal lattice defects, and process for producing this semiconductor wafer | |
JPH08250506A (en) | Silicon epitaxial wafer and method of manufacturing the same | |
JP3294722B2 (en) | Method for manufacturing silicon wafer and silicon wafer | |
JPH10144696A (en) | Silicon wafer and its manufacture | |
KR100312971B1 (en) | Reduction of Oxygen Impurity Concentration in Silicon Wafers | |
JP3171308B2 (en) | Silicon wafer and method for manufacturing the same | |
JPH08162461A (en) | Method of heat treating semiconductor substrate | |
JPH09223699A (en) | Silicon wafer and its manufacturing method | |
JPS58138034A (en) | Manufacture of semiconductor device |