[go: up one dir, main page]

JPH03239390A - Metal cored board and manufacture thereof - Google Patents

Metal cored board and manufacture thereof

Info

Publication number
JPH03239390A
JPH03239390A JP3665790A JP3665790A JPH03239390A JP H03239390 A JPH03239390 A JP H03239390A JP 3665790 A JP3665790 A JP 3665790A JP 3665790 A JP3665790 A JP 3665790A JP H03239390 A JPH03239390 A JP H03239390A
Authority
JP
Japan
Prior art keywords
hole
outer layer
substrate
aluminum plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3665790A
Other languages
Japanese (ja)
Other versions
JP2693005B2 (en
Inventor
Yasuo Furuhashi
古橋 靖夫
Toshiyuki Toyoshima
利之 豊島
Sadao Sato
貞夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2036657A priority Critical patent/JP2693005B2/en
Publication of JPH03239390A publication Critical patent/JPH03239390A/en
Application granted granted Critical
Publication of JP2693005B2 publication Critical patent/JP2693005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To improve the reliability of filling insulation of a through hole in a through hole section, the bonding property between a metal core and an insulation layer and the connection reliability of the through hole by installing a substrate which fills and bonds a specific compound with an aluminum sheet and the through hole where an outer layer copper foil or an outer layer one sided copper foiled substrate is laminated and formed with a bonded and insulated prepreg. CONSTITUTION:A substrate where a resin compound cured body 2b is filled and bonded with an aluminum sheet 1 and a through hole 5 are installed where an outer layer copper foil or an outer layer one sided copper foiled substrate 4 are laminated and formed with a bonding insulated pre-preg 3. The aluminum substrate is an aluminum sheet 1 with the through hole subjected to chromium sulfate acid treatment or phosphoric acid anodized aluminum processing, which is embedded in a resin compound where the percentage of silica particles with an average grain size of 4 to 20mum ranges from 50-180 pts. against the total amount of 100 pts. of epoxy resin and phenol resin after chemical etching. This construction makes it possible to improve the adhesion properties between a metal core and an insulation layer, the reliability of filling insulation of the through hole in the through hole section, and hence enhance through hole connection reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱放散性にすぐれた高密度実装用の金属芯基板
およびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal core substrate for high-density packaging with excellent heat dissipation properties and a method for manufacturing the same.

[従来の技術] 金属芯両面基板は、貫通孔を有する金属板を芯材とし、
その両側に絶縁層を有し、さらにその外側に導体層を有
するものであり、熱放散性に優れている。従来、このよ
うな金属芯両面基板は、貫通孔を有する金属板を芯材と
し、ガラス織布に樹脂が含浸されたプリプレグを絶縁層
として金属板の両面に配置し、その表面に銅箔などの導
体層を重ねて加熱加圧成形し、プリプレグ中の樹脂を金
属板の孔部に充填して硬化させることにより製造されて
いる。
[Prior art] A metal core double-sided board uses a metal plate with through holes as a core material,
It has an insulating layer on both sides and a conductive layer on the outside thereof, and has excellent heat dissipation. Conventionally, such metal-core double-sided boards have a metal plate with through holes as the core material, prepreg made of glass woven fabric impregnated with resin as an insulating layer on both sides of the metal plate, and a copper foil etc. It is manufactured by stacking the conductor layers and molding them under heat and pressure, filling the holes in the metal plate with the resin in the prepreg, and hardening the resin.

しかしながら、この製法には金属板が厚くなると孔部に
樹脂を充填しにくくなるという欠点がある。
However, this manufacturing method has a drawback in that the thicker the metal plate becomes, the more difficult it becomes to fill the holes with resin.

そこでこの製法を改良したものとして、スルーホール形
成用の貫通孔を有する金属板の両面に、ガラス不織布に
樹脂が含浸された絶縁層を介して金属箔を積層して硬化
させる方法が提案されている(特開昭Eil−4809
2号公報参照)。
Therefore, as an improvement on this manufacturing method, a method has been proposed in which metal foil is laminated and cured on both sides of a metal plate having through-holes for forming through-holes, with an insulating layer of glass nonwoven fabric impregnated with resin interposed therebetween. There is (JP-A-Sho Eil-4809
(See Publication No. 2).

しかしながら、これらの方法において貫通孔に充填され
る樹脂は熱膨張が大きく、金属芯またはスルーホール部
分の導体層との熱膨張の不整合により樹脂が金属芯から
はがれたり、スルーホール部分の導体層にクラックなど
が生じたりする。そして硬化峙の樹脂の収縮、熱膨張率
の差のため、貫通孔部分のへこみ(リンプル)が大きく
なり、配線パターン形成の際の感光性ドライフィルムと
の密着性が低下したり、ファインパターン化に問題が生
じたりする。
However, in these methods, the resin filled into the through-hole has a large thermal expansion, and due to mismatch in thermal expansion with the metal core or the conductor layer in the through-hole part, the resin may peel off from the metal core or the conductor layer in the through-hole part may Cracks may occur. Furthermore, due to the shrinkage of the resin during curing and the difference in thermal expansion coefficient, the dents (rimples) in the through-hole area become large, resulting in decreased adhesion with the photosensitive dry film during wiring pattern formation, and the formation of fine patterns. Problems may occur.

また金属芯として、高剛性であることや軽量であること
などの理由からアルミニウム(M)が用いられているが
、アルミニウム板に樹脂との接着力を付与するために、
その表面を研摩などの物理的な方法により粗化したり硫
酸アルマイト処理を施したりしている。
Aluminum (M) is also used as the metal core due to its high rigidity and light weight, but in order to give the aluminum plate adhesive strength with the resin,
The surface is roughened by physical methods such as polishing or treated with sulfuric acid alumite.

このようなアルミニウム板を芯材とする従来の金属芯基
板は、近年の苛酷な使用条件下においては、サーマルサ
イクル時の信頼性など種々の要求特性を充分に満足する
ものとはいえず、より一層の改良が望まれている。
Conventional metal-core substrates with aluminum plates as the core material cannot be said to fully satisfy various required characteristics such as reliability during thermal cycling under the harsh usage conditions of recent years. Further improvements are desired.

[発明が解決しようとする課題〕 以上のように、従来の金属芯基板には、スルーホール部
分の貫通孔の充填絶縁の信頼性、金属芯と絶縁層の密着
性、スルーホールの接続信頼性などが低いなどの問題が
ある。
[Problems to be Solved by the Invention] As described above, conventional metal core substrates have problems such as reliability of filling insulation in the through hole portion, adhesion between the metal core and the insulating layer, and connection reliability of the through hole. There are problems such as low performance.

本発明は前記のような実状に鑑みてなされたものであり
、金属芯と絶縁層との密着性がよく、スルーホール部分
の貫通孔を熱膨張率の小さい樹脂組成物で充填絶縁した
、スルーホールの接続信頼性の高い金属芯基板およびそ
の製法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a through-hole structure in which the metal core and the insulating layer have good adhesion, and the through-hole portion is filled and insulated with a resin composition having a small coefficient of thermal expansion. The purpose of the present invention is to provide a metal core substrate with high hole connection reliability and a method for manufacturing the same.

[課題を解決するための手段] 本発明は、 エポキシ樹脂とフェノール樹脂の合計ffl<100部
(重量部、以下同様)に対する平均粒径4〜20umの
シリカ粒子の割合が50〜180部である樹脂組成物中
に、ケミカルエツチングののち、硫酸クロム酸処理また
はリン酸アルマイト処理が施された貫通孔を有するアル
ミニウム板を埋設させたものから製造した基板と、外層
銅箔または外層用片面銅張基板とが、接着絶縁プリプレ
グにより積層成形され、スルーホールが設けられた金属
芯基板ならびに (a)エポキシ樹脂およびフェノール樹脂とシリカ粒子
とを混合した樹脂組成物を、アプリケーターを用いて離
型フィルムに塗布する工程、 (()〉離型フィルムに塗布された樹脂組成物」二に、
貫通孔を有するアルミニウム板を置き、さらにその−に
に離型フィルムをかぶせ、加熱ローラーを用いてアルミ
ニウム板を樹脂組成物中に埋設させる工程、 (c)樹脂組成物中に埋設させたアルミニウム板を加熱
して樹脂組成物を熱硬化させる工程、(d)離型フィル
ムを除去し、えられた基板と、基板の表裏の導体層の一
部になる外層銅箔または外層用片面銅張基板とを、基準
孔により位置合せし、接着絶縁プリプレグにより積層成
形する工程および (e)前記貫通孔の中心部に、貫通孔より小径のスルー
ホールを形成し、スルーホール内面と外層銅箔または外
層用片面鋼張基板の表面とをメッキして導体層を形成し
て表裏の導体の接続を行なったのち、導体層をエツチン
グして導体回路を形成する工程 からなる金属芯基板の製法 に関する。
[Means for Solving the Problems] The present invention provides that the proportion of silica particles with an average particle size of 4 to 20 um is 50 to 180 parts to the total ffl<100 parts (parts by weight, the same shall apply hereinafter) of the epoxy resin and the phenol resin. A substrate manufactured from an aluminum plate with through holes embedded in a resin composition that has been chemically etched and then treated with sulfuric acid chromic acid or phosphoric acid alumite, and an outer layer copper foil or one-sided copper clad for the outer layer. The substrate is laminated with adhesive insulating prepreg, a metal core substrate provided with through holes, and (a) a resin composition in which an epoxy resin, a phenol resin, and silica particles are mixed are applied to a release film using an applicator. Step of applying (()〉Resin composition applied to the release film) Second,
A step of placing an aluminum plate having through holes, further covering it with a release film, and embedding the aluminum plate in the resin composition using a heating roller, (c) aluminum plate embedded in the resin composition. (d) removing the mold release film, and the resulting substrate and an outer layer copper foil or a single-sided copper-clad substrate for the outer layer, which will become part of the conductor layer on the front and back of the substrate. and (e) forming a through hole with a smaller diameter than the through hole in the center of the through hole, and forming a through hole with a smaller diameter than the through hole, and aligning the through hole with the inner surface of the through hole and the outer layer with copper foil or the outer layer. The present invention relates to a method for producing a metal core board, which comprises the steps of plating the surface of a single-sided steel-clad board to form a conductor layer, connecting the front and back conductors, and then etching the conductor layer to form a conductor circuit.

[実施例] 本発明の金属芯基板は、たとえば第1図に示すようにア
ルミニウム板(1)に樹脂組成物硬化物(2b〉が充填
・付着せしめられた基板と、外層銅箔または外層用片面
銅張基板(以下、外層銅箔なとともいう)(4)とが、
接着絶縁プリプレグ(3)により積層形成され、スルー
ホール(5)が設けられたものである。
[Example] The metal core substrate of the present invention includes, for example, a substrate in which a cured resin composition (2b) is filled and adhered to an aluminum plate (1) as shown in FIG. The single-sided copper-clad board (hereinafter also referred to as outer layer copper foil) (4) is
It is formed by laminating layers of adhesive insulating prepreg (3) and is provided with through holes (5).

前記アルミニウム基板は、エポキシ樹脂とフェノール樹
脂の合計量100部に対する平均粒径4〜20洞のシリ
カ粒子の割合が50〜180部である樹脂組成物中に、
ケミカルエツチングののち、硫酸クロム酸処理またはリ
ン酸アルマイト処理が施された貫通孔を有するアルミニ
ウム板を埋設させたものから製造したものである。
The aluminum substrate includes a resin composition in which the ratio of silica particles with an average particle size of 4 to 20 cavities is 50 to 180 parts to 100 parts of the total amount of epoxy resin and phenol resin.
It is manufactured from an embedded aluminum plate having through-holes that has been chemically etched and then treated with sulfuric acid chromic acid or phosphoric acid alumite.

前記アルミニウム板は、寸法安定性、熱放散性、機械的
強度などの点から厚さ0.3〜1.5■であるのが好ま
しい。前記貫通孔の孔径などにはとくに限定はなく、通
常の金属芯基板におけるものと同程度でよい。
The aluminum plate preferably has a thickness of 0.3 to 1.5 cm from the viewpoint of dimensional stability, heat dissipation, mechanical strength, etc. There is no particular limitation on the diameter of the through hole, and it may be the same as that in a normal metal core substrate.

前記ケミカルエツチングはアルミニウム板の表面を化学
的に粗面化するために施される処理であり、たとえば塩
化第二鉄/塩酸溶液による処理などがあげられる。
The chemical etching is a process performed to chemically roughen the surface of an aluminum plate, and includes, for example, a process using a ferric chloride/hydrochloric acid solution.

前記硫酸クロム酸処理またはリン酸アルマイト処理は、
前記ケミカルエツチングが施されて粗面化したアルミニ
ウム板の表面にアルマイトの薄い被膜を形成して樹脂組
成物の硬化物との接着性を向上させるために施される処
理である。
The sulfuric acid chromic acid treatment or phosphoric acid alumite treatment is
This treatment is performed to form a thin alumite film on the surface of the aluminum plate, which has been roughened by the chemical etching, to improve adhesion to the cured product of the resin composition.

硫酸クロム酸処理は、通常、重クロム酸ナトリウム/硫
酸の処理液を用い、60〜65℃、4〜10分間の処理
条件で行なわれる。
The sulfuric acid chromic acid treatment is usually carried out using a treatment solution of sodium dichromate/sulfuric acid at 60 to 65° C. for 4 to 10 minutes.

リン酸アルマイト処理は、通常、リン酸の水溶液にアル
ミニウム板を浸漬し、15〜20VSto〜3゜分間の
処理条件で行なわれる。
The phosphoric acid alumite treatment is usually carried out by immersing the aluminum plate in an aqueous solution of phosphoric acid for a treatment time of 15 to 20 V Sto to 3 degrees.

この処理によって形成されるアルマイト層の厚さは、す
でにケミカルエツチングによってアルミニウム板表面が
充分化学的に粗面化されているので0.05〜1疋で充
分であり、この程度の厚さで接着性が改善される。アル
マイト層の厚さが1amよりも厚くなると、アルマイト
層にクラックが入りやすく接着性が低下する傾向がある
The thickness of the alumite layer formed by this process is 0.05 to 1 square because the surface of the aluminum plate has already been sufficiently chemically roughened by chemical etching. sex is improved. When the thickness of the alumite layer becomes thicker than 1 am, cracks tend to occur in the alumite layer and adhesiveness tends to decrease.

前記樹脂組成物としては、アルミニウム板との接着性、
耐熱性、吸水性などの点からエポキシ樹脂とフェノール
樹脂の無溶剤系が用いられ、この組成物は、軟化温度が
20〜40°Cで、室温で粘着性が小さく、硬化物がも
ろくないという点からも好ましい。この樹脂組成物には
さらにシリカ粒子が含まれるが、通常、エポキシ樹脂の
硬化触媒、シランカップリング剤なども含まれる。
The resin composition has adhesive properties with an aluminum plate,
A solvent-free system of epoxy resin and phenolic resin is used from the viewpoint of heat resistance and water absorption, and this composition has a softening temperature of 20 to 40°C, has low stickiness at room temperature, and the cured product is not brittle. It is also preferable from this point of view. This resin composition further contains silica particles, but usually also contains an epoxy resin curing catalyst, a silane coupling agent, and the like.

前記エポキシ樹脂としては、離型フィルムに塗布する際
の流動性の点から粘度が1000ポイズ程度以下のビス
フェノールA型低粘度エポキシ樹脂が好ましい。
The epoxy resin is preferably a bisphenol A type low viscosity epoxy resin having a viscosity of about 1000 poise or less from the viewpoint of fluidity when applied to a release film.

このようなエポキシ樹脂の具体例としては、たとえば油
化シェルエポキシ■製のエピコート#828、エピコー
ト11834などがあげられる。
Specific examples of such epoxy resins include Epicoat #828 and Epicoat 11834 manufactured by Yuka Shell Epoxy ■.

さらに、エポキシ樹脂成分として、可撓性を向」ニさせ
るために、たとえば油化シェルエポキシ■製のエピコー
HI100I 、エピコート$ 1.004などのエポ
キシ樹脂を全樹脂分中20%(重量%、以下同様)程度
以下配合してもよく、また耐熱性を向上させ、軟化温度
を調節するために、たとえば日本化薬■製のEOCHな
どのクレゾールノボラック系エポキシ樹脂をビスフェノ
ールA型エポキシ樹脂に対して20%程度以下配合して
もよく、難燃性を付与するためにブロモ化エポキシ樹脂
を全エポキシ樹脂中50%程度以下配合してもよい。
Furthermore, as an epoxy resin component, in order to improve flexibility, epoxy resins such as Epicor HI100I and Epicor $ 1.004 manufactured by Yuka Shell Epoxy ■ are added at 20% (wt%) of the total resin content. Similarly, a cresol novolac epoxy resin such as EOCH manufactured by Nippon Kayaku ■ may be mixed with a bisphenol A type epoxy resin at 20% or less in order to improve heat resistance and adjust the softening temperature. % or less, and in order to impart flame retardancy, the brominated epoxy resin may be blended in an amount of about 50% or less of the total epoxy resin.

前記硬化剤であるフェノール樹脂としては、フェノール
、クレゾール、アルキルフェノールなどから誘導された
、軟化温度が80°C以上の多官能フェノールノボラッ
ク樹脂が好ましい。軟化温度が80℃未満のものでは、
硬化樹脂が脆くなる傾向がある。
The phenol resin used as the curing agent is preferably a polyfunctional phenol novolac resin derived from phenol, cresol, alkylphenol, etc. and having a softening temperature of 80° C. or higher. For those with a softening temperature of less than 80℃,
Cured resin tends to become brittle.

0 前記エポキシ樹脂成分とフェノール樹脂の配合割合は、
エポキシ基/フェノール性水酸基が1.0/1,2〜1
.010.8になる割合が好ましい。
0 The blending ratio of the epoxy resin component and phenol resin is
Epoxy group/phenolic hydroxyl group is 1.0/1,2~1
.. A ratio of 010.8 is preferable.

前記硬化触媒としては、通常のアミン類、トリフェニル
ホスフェートなどのリン系化合物、イミダゾール系化合
物などが用いられる。これらの中では、ポットライフ、
反応性などの点からイミダゾール系化合物が好ましい。
As the curing catalyst, common amines, phosphorus compounds such as triphenyl phosphate, imidazole compounds, etc. are used. Among these are potlife,
Imidazole compounds are preferred from the viewpoint of reactivity.

硬化触媒の配合割合は、エポキシ樹脂成分とフェノール
樹脂の合計量100部に対して0.01〜0.5部であ
るのが好ましい。
The blending ratio of the curing catalyst is preferably 0.01 to 0.5 parts based on 100 parts of the total amount of the epoxy resin component and phenol resin.

前記シリカ粒子は、硬化樹脂の熱膨張率を凋整し、アル
ミニウムのそれに近くするための成分であり、その平均
粒径は4〜20洞、好ましくは10〜20珊である。シ
リカの平均粒径が4−未満では、シリカ粒子添加後の樹
脂組成物の粘度−L昇が大きく、充垣率が高くならず、
20洞をこえると充填後にシリカ粒子の沈降がおこって
アルミニウム板の貫通孔に均一に充填することが困難に
なる。
The silica particles are a component for adjusting the coefficient of thermal expansion of the cured resin to be close to that of aluminum, and have an average particle size of 4 to 20 mm, preferably 10 to 20 mm. If the average particle size of silica is less than 4, the viscosity -L of the resin composition after adding silica particles increases significantly, and the filling rate does not increase.
If the number of holes exceeds 20, the silica particles will settle after filling, making it difficult to uniformly fill the through holes of the aluminum plate.

前記シリカ粒子の配合割合は、エポキシ樹脂とフェノー
ル樹脂の合計量100部に対して50−1.80部、好
ましくは80〜120部である。該割合が50部未満で
は熱膨張率に寄与する程度が小さくなり、180部をこ
えると樹脂組成物の粘度が高くなりすぎて無溶剤系とし
て使用できなくなる。
The blending ratio of the silica particles is 50 to 1.80 parts, preferably 80 to 120 parts, based on 100 parts of the total amount of epoxy resin and phenol resin. If the proportion is less than 50 parts, the contribution to the coefficient of thermal expansion will be small, and if it exceeds 180 parts, the viscosity of the resin composition will become too high to be used as a solvent-free system.

前記シランカップリング剤の具体例としては、たとえば
信越化学工業■製のKBM−403などがあげられ、そ
の配合割合は、エポキシ樹脂とフェノール樹脂の合計f
f1loO部に対して0.1〜3部が好ましい。
A specific example of the silane coupling agent is KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd., and its blending ratio is equal to the total f of epoxy resin and phenol resin.
It is preferably 0.1 to 3 parts based on part f1loO.

さらに難燃性を付与するための酸化アンチモンなどを配
合してもよい。
Further, antimony oxide or the like may be added to impart flame retardancy.

本発明に用いられる樹脂組成物は、通常、真空加熱混合
器などを用い、まずエポキシ樹脂とフェノール樹脂とを
90〜100℃で加熱溶解し、ついでシリカ粒子、シラ
ンカップリング剤を添加して均一に混合したのち、硬化
触媒を加えて真空で脱泡混合するなどの方法で調製する
ことができる。
The resin composition used in the present invention is usually prepared by first heating and melting an epoxy resin and a phenol resin at 90 to 100°C using a vacuum heating mixer or the like, and then adding silica particles and a silane coupling agent to make the resin composition uniform. It can be prepared by a method such as mixing with a curing catalyst, adding a curing catalyst, and degassing and mixing in a vacuum.

このような樹脂組成物にアルミニウム板を埋設させたも
のから製造した基板とは、第1図に示す1 2 ようにアルミニウム板(1)の貫通孔に樹脂組成物硬化
物(2b)が充填され、表面と裏面とに厚さ20〜30
0J+、さらに好ましくは20〜】00部程度の樹脂組
成物硬化物(2b)が付着せしめられた基板である。
A substrate manufactured by embedding an aluminum plate in such a resin composition is one in which the through holes of the aluminum plate (1) are filled with the cured resin composition (2b) as shown in Figure 1. , thickness 20~30 on the front and back sides
0J+, more preferably about 20 to 100 parts of the cured resin composition (2b) is attached to the substrate.

表面または裏面の樹脂組成物硬化物の厚さが20洞未満
にすることは製造上困難であり、300−をこえると樹
脂層にクラックが生じやすくなる傾向がある。
It is difficult in manufacturing to make the thickness of the cured resin composition on the front or back surface less than 20 mm, and if it exceeds 300 mm, the resin layer tends to be prone to cracking.

前記外層銅箔としては、従来から金属芯基板に用いられ
ているものと同様の厚さ15〜100 in程度の銅箔
が用いられる。
As the outer layer copper foil, a copper foil having a thickness of about 15 to 100 inches is used, which is similar to that conventionally used for metal core substrates.

前記外層用片面銅張基板は、0.1〜0.211111
11のガラスエポキシ積層板に、片面のみ銅箔を貼合せ
たものである。
The single-sided copper-clad substrate for the outer layer has a thickness of 0.1 to 0.211111.
The glass epoxy laminate of No. 11 is laminated with copper foil on only one side.

前記基板と外層銅箔などとを接着させる接着絶縁プリプ
レグにはとくに限定はなく、従来から通常の多層基板製
造に用いられているガラス布エポキシブリブレグ、ガラ
ス布ポリイミドプリプレグなどを用いることができる。
There are no particular limitations on the adhesive insulating prepreg used to bond the substrate and the outer layer copper foil, etc., and glass cloth epoxy prepregs, glass cloth polyimide prepregs, etc. that have been conventionally used in the production of normal multilayer boards can be used. .

接着絶縁プリプレグは熱放散性の点から薄いものが好ま
しく 、0.05〜0.2!o+vであるのが好ましい
The adhesive insulating prepreg is preferably thin from the viewpoint of heat dissipation, with a thickness of 0.05 to 0.2! Preferably, it is o+v.

本発明の金属芯基板には、前記の各層の他に、第2図に
示すように基板と基板との間に接着絶縁プリプレグ(3
)を介して内層基板(6)を挾むこともできる。
In addition to the above-mentioned layers, the metal core substrate of the present invention includes an adhesive insulating prepreg (3 layers) between the substrates as shown in FIG.
) can also sandwich the inner layer substrate (6).

内層基板としては、通常の多層基板製造用の内装基板が
用いられる。
As the inner layer board, an ordinary interior board for manufacturing multilayer boards is used.

前記スルーホールは、金属芯基板の表面と裏面にある導
体の層をつなぐために前記樹脂が充填された貫通孔の中
心部に貫通孔よりも小さい孔径で設けられたものである
The through hole is provided at the center of the through hole filled with resin and has a hole diameter smaller than the through hole in order to connect the conductor layer on the front surface and the back surface of the metal core substrate.

このような本発明の金属芯基板は、たとえば第3図や第
4図に示すように外層銅箔なと(4)およびスルーホー
ル(5)の内面がメッキされてメッキ層(刀が形成され
たのち、外層銅箔なと(4)とメッキ層(7)をエツチ
ングして導体回路を形成して使用される。
Such a metal core board of the present invention has a plated layer (a sword is formed) by plating the inner surfaces of the outer layer copper foil (4) and the through holes (5), as shown in FIGS. 3 and 4, for example. Afterwards, the outer copper foil layer (4) and the plating layer (7) are etched to form a conductive circuit for use.

つぎに本発明の金属芯基板の製法について第5a〜50
図を用いて説明する。
Next, regarding the manufacturing method of the metal core substrate of the present invention, Sections 5a to 50 will be explained.
This will be explained using figures.

本発明の金属芯基板の製法は、っぎの各工程からなる。The method for manufacturing a metal core substrate of the present invention consists of the following steps.

3 4 すなわち、まず離型フィルム(8)上に、アプリケター
を用いて前記樹脂組成物(2a)が塗布される(工程(
a)) (第5a図参照)。
3 4 That is, first, the resin composition (2a) is applied onto the release film (8) using an applicator (step (
a)) (see Figure 5a).

前記離型フィルムとしては、たとえばテトラ−(デュポ
ン社製のポリフッ化ビニリデン)、ポリプロピレンなど
が耐熱性の点から好ましい。
As the release film, for example, Tetra (polyvinylidene fluoride manufactured by DuPont), polypropylene, etc. are preferable from the viewpoint of heat resistance.

塗布方法としては、たとえば樹脂組成物を80〜90℃
の温度に保ち、90〜100℃に加熱されたドクナーナ
イフまたはすき間が調節されたノズルを用いて離型フィ
ルムLに塗布する方法があげられる。
As a coating method, for example, the resin composition is heated to 80 to 90°C.
The release film L is coated using a Dokner knife heated to 90 to 100°C or a nozzle with a controlled gap.

塗布される樹脂組成物の厚さは、0.5〜1.51であ
るのが好ましい。
The thickness of the applied resin composition is preferably 0.5 to 1.51.

この工程〈のの終了後、連続してつぎの工程出)に移っ
てもよく、バッチで行なってもよい。
This step (after the completion of the step, the next step begins) may be carried out continuously, or it may be carried out in batches.

つぎに、第5b図に示すように離型フィルム(8)に塗
布された樹脂組成物(2a)上にアルミニウム板(1)
を置き、さらにその上に離型フィルム(8)をかぶせ、
加熱ローラ(9)を用いて樹脂組成物(2a)が離型フ
ィルム(8)に挾まれたかたちで樹脂組成物(2a)中
に埋設させ、アルミニウム板の裏表および貫通孔に樹脂
組成物を付着・充填させる(工程(b))。
Next, as shown in FIG. 5b, an aluminum plate (1) is placed on the resin composition (2a) applied to the release film (8).
, and then cover it with a release film (8).
Using a heating roller (9), the resin composition (2a) is sandwiched between mold release films (8) and embedded in the resin composition (2a), and the resin composition is applied to the front and back surfaces and through holes of the aluminum plate. Adhere and fill (step (b)).

前記加熱ローラの温度は100〜120’Cであるのが
好ましい。
Preferably, the temperature of the heating roller is 100 to 120'C.

樹脂組成物(2a)は軟化温度が20〜40℃であり室
温で固型状であるので、未硬化の状態で貫通孔のボイド
の有無をチエツクすることができ、ボイドなどが検出さ
れたばあいは、工程+b>を繰返すことによって、ボイ
ドのない状態にすることができる。
Since the resin composition (2a) has a softening temperature of 20 to 40°C and is solid at room temperature, the presence or absence of voids in the through holes can be checked in an uncured state, and if voids are detected, By repeating step +b>, a void-free state can be achieved.

ついで、樹脂組成物中にアルミニウム板(1)が埋設さ
れたものを加熱して樹脂組成物を硬化させ、第5c図に
示すような基板を形成する(工程(c))。
Next, the resin composition in which the aluminum plate (1) is embedded is heated to harden the resin composition to form a substrate as shown in FIG. 5c (step (c)).

前記加熱方法にはとくに限定はなく、離型フィルム(8
)に挾まれた形で樹脂組成物が貫通孔に充填されており
、ボイドなどが含まれないのでそのままオーブン中で加
熱硬化させてもよく、加圧しながら加熱硬化させてもよ
い。
There is no particular limitation on the heating method, and a release film (8
) The resin composition is filled in the through-holes in the form of sandwiched parts, and since it does not contain voids, it may be heated and cured in an oven as it is, or it may be heated and cured while being pressurized.

加熱条件としては、シリカ粒子の沈降を防止する、硬化
後の樹脂の収縮による貫通孔のリンプル(へこみ)を小
さくするという点から、70〜110℃の低温で2〜2
4時間保持して樹脂をゲル化させ5 6 たのち、150〜170°Cで1〜2時間加熱して硬化
させるという条件が好ましい。また、加圧下で硬化させ
るばあいには、樹脂組成物に埋設されたアルミニウム板
を40〜50℃でゲル化に達しない程度にエージングす
ることにより、シリカ粒子の沈降を防止することができ
る。
The heating conditions are as follows: 2 to 2 degrees Celsius at a low temperature of 70 to 110 degrees Celsius, from the viewpoints of preventing sedimentation of silica particles and reducing rimple (dent) of through holes due to contraction of resin after curing.
Preferably, the resin is held for 4 hours to gel, and then heated at 150 to 170°C for 1 to 2 hours to cure. Further, in the case of curing under pressure, sedimentation of the silica particles can be prevented by aging the aluminum plate embedded in the resin composition at 40 to 50° C. to an extent that does not result in gelation.

ついで、離型フィルムを除去して、前記基板と外層銅箔
など(4)とを基準孔(図示せず)により位置合せし、
接着絶縁プリプレグ(3)を用いて積層成形する(工程
(d)) (第5d図参照)。
Next, the release film is removed, and the substrate and the outer layer copper foil (4) are aligned using reference holes (not shown),
Laminate molding is performed using adhesive insulating prepreg (3) (step (d)) (see Figure 5d).

前記積層成形方法にはとくに限定はなく、たとえば両面
基板を製造するばあいには外層銅箔なと、プリプレグ、
基板、プリプレグ、外層銅箔などの順に積層し、多層基
板を製造するばあいには外層銅箔など、プリプレグ、基
板、プリプレグ、内層基板、プリプレグ、内層基板、プ
リプレグ、基板、プリプレグ、外層銅箔などの順に積層
するなどし、成形することができる。
The lamination molding method is not particularly limited, and for example, in the case of manufacturing a double-sided board, outer layer copper foil, prepreg, prepreg, etc.
When manufacturing a multilayer board by laminating the board, prepreg, outer layer copper foil, etc. in this order, the outer layer copper foil, prepreg, board, prepreg, inner layer board, prepreg, inner layer board, prepreg, board, prepreg, outer layer copper foil, etc. They can be formed by laminating them in this order.

ついで、前記貫通孔の中心部に貫通孔より小径のスルー
ホール(5)を形成し、スルーホール(51の内面を必
要によってプラズマエツチング処理し、スルーホール(
5)内面および外層銅箔(4)などの表面にメッキによ
り導体層を形成して表裏の導体の接続を行なったのち(
第5e図)、導体層をエツチングして導体回路を形成す
る(工程(e)〉。
Next, a through hole (5) having a smaller diameter than the through hole is formed in the center of the through hole, and the inner surface of the through hole (51) is subjected to plasma etching treatment if necessary.
5) After forming a conductor layer by plating on the inner surface and the surface of the outer layer copper foil (4) and connecting the front and back conductors (
FIG. 5e), the conductor layer is etched to form a conductor circuit (step (e)).

前記スルーホール(5)の形成方法にはとくに限定はな
く、たとえばドリルを用いるなどの通常の金属芯基板を
製造する際と同様の方法を用いることができる。
There is no particular limitation on the method of forming the through-hole (5), and a method similar to that used in manufacturing a normal metal core substrate, such as using a drill, can be used.

前記メッキの方法、条件にもとくに限定はなく、通常の
方法、条件で、たとえば銅などからなる厚さ10〜50
−程度のメッキ層が形成される。
There are no particular limitations on the method and conditions for plating, and for example, plating made of copper or the like with a thickness of 10 to 50 mm may be plated using normal methods and conditions.
A plating layer of - degree is formed.

前記導体層のエツチング方法などにもとくに限定はなく
、通常の方法、条件で行なわれる。
There are no particular limitations on the method of etching the conductor layer, and the etching can be carried out using conventional methods and conditions.

以上説明したように、本発明の金属芯基板は、アルミニ
ウム板の表面に、ケミカルエツチングののち硫酸クロム
酸処理またはリン酸アルマイト処理が施されているので
、アルミニウム板と樹脂組成物硬化物との接着性が優れ
ており、アルミニウム板の貫通孔が熱膨張率の小さいシ
リカ粒子が混7 8 入されたフェノール硬化エポキシ樹脂で充填されている
ので、アルミニウム板やスルーホールとの熱膨張のマツ
チングか良好であり、貫通孔の部分のリンプルが小さい
As explained above, in the metal core substrate of the present invention, the surface of the aluminum plate is subjected to chemical etching and then sulfuric acid chromic acid treatment or phosphoric acid alumite treatment, so that the aluminum plate and the cured resin composition are bonded together. It has excellent adhesion and the through-holes of the aluminum plate are filled with phenol-cured epoxy resin mixed with silica particles with a low coefficient of thermal expansion, making it easy to match thermal expansion with the aluminum plate and through-holes. It is in good condition with small rippling at the through hole.

また、本発明の金属芯基板の製法は、樹脂組成物をアル
ミニウム板の貫通孔にあらかじめ充填する工程を独立し
て行なうので、ボイドの存在しない状態にすることがで
き、冷熱サイクルなどに対する信頼性の高い熱放散性の
良好な金属芯基板をうることができる。
In addition, in the manufacturing method of the metal core substrate of the present invention, the step of filling the through holes of the aluminum plate with the resin composition is performed independently, so it is possible to create a state without voids, and the reliability against heating and cooling cycles is improved. A metal core substrate with high heat dissipation properties can be obtained.

つぎに本発明を実施例によってさらに具体的に説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 孔径が2.01の貫通孔を有する厚さl 、 Dimお
よび0.8mmの2枚のアルミニウム板(L80mmX
 230 mm)表面を脱脂したのち、水;濃塩酸:塩
化第二鉄−5:2:1の塩化第二鉄水溶液に常温で5分
間浸漬してケミカルエツチングした。ついで、希硝酸水
溶液、希水酸化すトリウム水溶液でスマット除去後、硫
酸300g#および重クロム酸ナトリウム30g#)の
硫酸クロム酸溶液に60 ℃で5分間浸漬し、水洗した
のち、50〜60℃の乾燥機で15分間乾燥し、表面処
理済みアルミニウム板をえた。
Example 1 Two aluminum plates with thickness l, Dim and 0.8 mm (L80 mm x
After degreasing the surface (230 mm), it was chemically etched by immersing it in a 5:2:1 ferric chloride aqueous solution at room temperature for 5 minutes. Then, after removing smut with a dilute nitric acid aqueous solution and a dilute thorium hydroxide aqueous solution, it was immersed in a sulfuric acid chromic acid solution containing 300 g of sulfuric acid and 30 g of sodium dichromate at 60°C for 5 minutes, washed with water, and then heated at 50 to 60°C. The aluminum plate was dried for 15 minutes in a dryer to obtain a surface-treated aluminum plate.

つぎに、エピコート8828 (浦化シェルエポキシ■
製のエポキシ樹脂) 84.85部およびPS14−4
327(郡栄化学工業■製のフェノール樹脂) 35.
15部をガラスピーカに入れてマントルヒーターで10
0℃に加熱して溶解し、M−2150(新日本製鉄化学
工業■製の球状シリカ粒子、平均粒径15珊) 1.5
0部およびKBM−403(信越化学工業■製のシラン
カップリング剤) 0.45部を添加して均一に分散し
たのち、2−エチル−4−メチルイミダゾール0.15
部を加えて真空脱泡して、樹脂組成物を調製した。
Next, Epicoat 8828 (Uraka Shell Epoxy ■
epoxy resin) 84.85 parts and PS14-4
327 (phenol resin manufactured by Gunei Chemical Industry ■) 35.
Put 15 parts into a glass speaker and heat up to 10 parts using a mantle heater.
Heat to 0°C and dissolve, M-2150 (spherical silica particles manufactured by Nippon Steel Chemical Co., Ltd., average particle size 15 coral) 1.5
After adding 0 part and 0.45 part of KBM-403 (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd.) and uniformly dispersing it, 0.15 part of 2-ethyl-4-methylimidazole was added.
A resin composition was prepared by adding 50% of the mixture and defoaming under vacuum.

ついで100℃のホットプレート上に厚さ25−のテト
ラ−フィルム(デュポン社製のポリフッ化ビニリデン)
を敷き、アプリケーターに前記樹脂組成物を注入し、厚
さL 、 0m111の樹脂組成物シートを形成した。
Then, a 25-thick tetra film (polyvinylidene fluoride manufactured by DuPont) was placed on a hot plate at 100°C.
was spread, and the resin composition was injected into an applicator to form a resin composition sheet with a thickness L of 0 m111.

つぎにその上に前記アルミニウム板、テトラ−フィルム
をこの順に重ね、110℃に加熱9 0 したロールの間を通して、アルミニウム板を樹脂組成物
中に埋設した。ついでこれを金型に挾んで、5kgのお
もりをのせ、オーブン中、70℃で15時間加熱し、つ
づいて150℃で2時間加熱して硬化させた。硬化後、
樹脂にボイドがないかどうか調べたところ、貫通孔の部
分の樹脂にボイドは見られなかった。
Next, the aluminum plate and Tetra film were layered on top of the aluminum plate in this order, and the aluminum plate was embedded in the resin composition by passing it between rolls heated to 110°C. Next, this was placed in a mold, a 5 kg weight was placed on it, and the mixture was heated in an oven at 70° C. for 15 hours, and then at 150° C. for 2 hours to harden it. After curing,
When examining whether there were any voids in the resin, no voids were found in the resin at the through-holes.

つぎに厚さ18AII11の銅箔、厚さ0.1mmのプ
リプレグ(三瓦期化学■製、GEPL−17(1、以下
同様)2枚、厚さl 、 On+o+の表面処理アルミ
ニウム板、厚さ0.1Hのプリプレグ2枚、厚さ0.2
mmtの内層基板(銅の厚さ35岬、以下同様)、厚さ
0.1mmtのプリプレグ2枚、厚さ0.2mmtの内
層基板、厚さO,in+ntのプリプレグ2枚、厚さ0
46mmの表面処理アルミニウム基板、厚さ0.io+
mのプリプレグ2枚および厚さ18−の銅箔をこの順に
基準孔で位置決めして積層し、180℃、1時間、40
kg/cI#の条件で加熱加圧して積層板をえた。
Next, copper foil with a thickness of 18AII11, prepreg with a thickness of 0.1 mm (manufactured by Sangawa Kagaku ■, GEPL-17 (1, the same applies hereinafter), 2 sheets, thickness 1, On + O + surface treated aluminum plate, thickness 0 .2 sheets of 1H prepreg, thickness 0.2
mmt inner layer board (copper thickness 35 cape, same below), 2 prepregs 0.1mmt thick, inner layer board 0.2mmt thick, 2 prepregs thickness O, in+nt, thickness 0
46mm surface treated aluminum substrate, thickness 0. io+
Two sheets of prepreg with a thickness of 1.5 m and a copper foil with a thickness of 18 mm were positioned in this order using the reference holes and laminated, and then heated at 180°C for 1 hour for 40 min.
A laminate was obtained by heating and pressing under the conditions of kg/cI#.

ついでこの積層板の貫通孔の中心部にφ0.92mmの
ドリルでスルーホールをあけ、つづいてスルーホール内
面および銅箔の表面に厚さ40岬の銅メンキ層を形威し
、ついで基板表面を通常の方法でバターニングして所望
の導体回路を有する金属芯基板をえた。
Next, a through hole was drilled in the center of the through hole of this laminate using a drill of 0.92 mm in diameter, and a copper coating layer with a thickness of 40 mm was formed on the inner surface of the through hole and the surface of the copper foil, and then the surface of the board was coated. A metal core substrate having a desired conductive circuit was obtained by patterning using a conventional method.

えられた金属芯基板の特性をつぎに示す方法によって評
価した。結果を第1表に示す。
The characteristics of the obtained metal core substrate were evaluated by the method shown below. The results are shown in Table 1.

(貫通孔ボイド) ボイドが認められないものを○、認められたものをXと
する。
(Through hole void) If no void is observed, mark it as ○, and if it is found, mark as X.

(貫通孔リンプル) スルーホールをあける前のへこみの深さを測定する。(Through hole rimple) Measure the depth of the dent before drilling the through hole.

(ヒートサイクル耐性) 125℃の高温下に15分間、室温下に2分間、−65
℃の低温下に15分間、室温下に2分間放置する操作を
1サイクルとして、300サイクル繰返したのち、アル
ミニウム板からの樹脂のハガレおよびスルーホールの導
体層にクラックがないかどうか調べる。ハガレやクラッ
クが認められないものを○、認められたものを×とする
(Heat cycle resistance) 15 minutes at a high temperature of 125°C, 2 minutes at room temperature, -65
After repeating 300 cycles, each cycle consisting of 15 minutes at a low temperature of .degree. C. and 2 minutes at room temperature, the aluminum plate was examined for peeling of the resin and for cracks in the conductor layer of the through holes. Those with no peeling or cracks are marked as ○, and those with any peeling or cracks are marked as ×.

1 2 (ホットオイル耐衝撃性) 260℃のホットオイル中に3〜5秒間浸漬し、室温の
トリクレン中に20秒間浸漬する操作を1サイクルとし
て、10サイクル繰返したのち、アルミニウム板からの
樹脂のハガレおよびスルーホールの導体層のクラックを
調べる。
1 2 (Hot oil impact resistance) One cycle consists of immersion in hot oil at 260°C for 3 to 5 seconds, followed by immersion in room temperature trichlorene for 20 seconds, and after repeating 10 cycles, the resin from the aluminum plate was removed. Check for peeling and cracks in the through-hole conductor layer.

(ハンダ耐熱衝撃性) 260℃のハンダ中に10秒間浸漬し、室温下で5分間
放置する操作を1サイクルとして、5サイクル繰返した
のち、アルミニウム板からの樹脂のハガレおよびスルー
ホールの導体層のクラックを調べる。
(Solder thermal shock resistance) After repeating 5 cycles, one cycle is immersion in solder at 260°C for 10 seconds and leaving it at room temperature for 5 minutes. Check for cracks.

実施例2 シリカ粒子としてM−2120(新日本製鉄化学■製の
球状シリカ、平均粒径121Im) 110部、シラン
カップリング剤としてKBM−4030部8部を用いた
ほかは実施例1と同様にして金属芯基板を製造し、その
特性を評価した。結果を第1表に示す。
Example 2 The same procedure as in Example 1 was used except that 110 parts of M-2120 (spherical silica manufactured by Nippon Steel Chemical Co., Ltd., average particle size 121 Im) was used as the silica particles, and 8 parts of KBM-4030 was used as the silane coupling agent. A metal core substrate was manufactured using the same method, and its characteristics were evaluated. The results are shown in Table 1.

実施例3 実施例1における硫酸クロム酸処理のかわりに、リン酸
120 g/ρの水溶液に浸漬して電圧15Vで10分
間リン酸アルマイト処理し、水洗、乾燥して表面処理済
みアルミニウム板をえた。
Example 3 Instead of the sulfuric acid chromic acid treatment in Example 1, a phosphoric acid alumite treatment was performed by immersing it in an aqueous solution of 120 g/ρ of phosphoric acid at a voltage of 15 V for 10 minutes, washing with water, and drying to obtain a surface-treated aluminum plate. .

つぎにシリカ粒子としてヒユーズレックスE−2(森社
製の平均粒径7.5犀破砕シリ力粒子) 80部、シラ
ンカップリング剤としてK13M−4030,24部を
用いたほかは実施例1と同様にして樹脂組成物を調整し
た。
Next, Example 1 was used except that 80 parts of Fuzurex E-2 (average particle size 7.5 rhinoceros crushed silica particles manufactured by Morisha Co., Ltd.) was used as the silica particles, and 24 parts of K13M-4030 was used as the silane coupling agent. A resin composition was prepared in the same manner.

ツイテ実施例1と同様にしてアルミニウム板ヲ樹脂組成
物中に埋設したのち、圧力20kg/cJ、温度110
°Cで1時間、170℃で1時間加熱して硬化させ、つ
いで実施例1と同様にして金属芯基板を製造し、その特
性を評価した。結果を第1表に示す。
After embedding the aluminum plate in the resin composition in the same manner as in Example 1, the pressure was 20 kg/cJ and the temperature was 110 mm.
C. for 1 hour and 170.degree. C. for 1 hour for curing, then a metal core substrate was produced in the same manner as in Example 1, and its properties were evaluated. The results are shown in Table 1.

比較例1 エビコー) #828 40部、エピコート#l−00
4(油化シェルエポキシ■製のエポキシ樹脂)30部お
よびDEN481 (ダウケミカル社製のエポキシ樹脂
)30部をガラスピーカに入れて90°Cで加熱溶解し
たのち、)IT−2844(チバガイギー社製の変性D
ICY) 5部、3 4 ベンジルジメチルアミン0.2部を加えて均一に溶解混
合脱泡して樹脂組成物を調製した。
Comparative Example 1 Epicoat #828 40 parts, Epicoat #l-00
4 (epoxy resin manufactured by Yuka Shell Epoxy ■) and 30 parts of DEN481 (epoxy resin manufactured by Dow Chemical Company) were placed in a glass speaker and heated and melted at 90°C. degeneration D of
5 parts of ICY) and 0.2 parts of 34 benzyldimethylamine were added and uniformly dissolved, mixed and defoamed to prepare a resin composition.

ついで実施例1で用いたものと同じアルミニウム板を、
えられた樹脂組成物中に実施例1と同様にして埋設した
のち圧力20kg/cJ、温度110°Cで1時間、1
70℃で1時間加熱して硬化させ、ついで実施例1と同
様にして金属芯基板を製造し、その特性を評価した結果
を第1表に示す。
Next, the same aluminum plate used in Example 1 was
The resulting resin composition was embedded in the same manner as in Example 1, and then heated for 1 hour at a pressure of 20 kg/cJ and a temperature of 110°C.
It was heated at 70° C. for 1 hour to cure it, and then a metal core substrate was manufactured in the same manner as in Example 1. Table 1 shows the results of evaluating the characteristics.

比較例2 実施例1における硫酸クロム酸処理のかわりに硫酸15
0g/βの溶液に浸漬し、2A/dI112の条件で2
0分間硫酸アルマイト処理をし、水洗、乾燥して表面処
理済みアルミニウム板をえた。
Comparative Example 2 Sulfuric acid 15 was used instead of the sulfuric acid chromic acid treatment in Example 1.
Immersed in a solution of 0g/β and 2A/dI112.
The aluminum plate was subjected to sulfuric acid alumite treatment for 0 minutes, washed with water, and dried to obtain a surface-treated aluminum plate.

ついでえられたアルミニウム板を用い、樹脂組成物とし
て比較例1で調製したものを用いたほかは実施例1と同
様にして金属芯基板を製造し、その特性を評価した。結
果を第1表に示す。
Then, using the obtained aluminum plate, a metal core substrate was manufactured in the same manner as in Example 1 except that the resin composition prepared in Comparative Example 1 was used, and its characteristics were evaluated. The results are shown in Table 1.

比較例3 実施例1で用いたものと同じアルミニウム板を液体ホー
ニングで機械的に表面粗化し、表面処理済みアルミニウ
ム板をえた。
Comparative Example 3 The surface of the same aluminum plate used in Example 1 was mechanically roughened by liquid honing to obtain a surface-treated aluminum plate.

つぎに、エピコート5048880 (油化シェルエポ
キシ■製のエポキシ樹脂)125部、ジシアンジアミド
4部およびジメチルベンジルアミン0.2部をメチルセ
ロソルブ40部に溶解し、この溶液に厚さ0、io+m
tのガラス布を浸漬したのち、130℃で15分間乾燥
して樹脂重量が65%の孔埋め用プリプレグをえた。
Next, 125 parts of Epicoat 5048880 (an epoxy resin manufactured by Yuka Shell Epoxy ■), 4 parts of dicyandiamide, and 0.2 parts of dimethylbenzylamine were dissolved in 40 parts of methyl cellosolve, and a thickness of 0, io+m was added to this solution.
After soaking the glass cloth of No. t, it was dried at 130° C. for 15 minutes to obtain a hole-filling prepreg with a resin weight of 65%.

ついで表面処理アルミニウム板の表裏両面にプリプレグ
をそれぞれ3枚ずつ積層し、圧力40kg/cぽい温度
170℃で硬化させ、基板をえた。しかしこの基板の貫
通孔の部分にはボイドが見られた。
Next, three sheets of prepreg were laminated on each of the front and back surfaces of the surface-treated aluminum plate and cured at a pressure of 40 kg/c and a temperature of 170° C. to obtain a substrate. However, voids were observed in the through holes of this substrate.

えられた基板を用いたほかは実施例1と同様にして金属
芯基板を製造、その特性を評価した。結果を第1表に示
す。
A metal core substrate was manufactured in the same manner as in Example 1 except that the obtained substrate was used, and its characteristics were evaluated. The results are shown in Table 1.

[以下余白] 5 6 7 (図面の主要符号) (1)ニアルミニウム板 (2a) :樹脂組成物 (2b) :樹脂紹成物硬化物 (3):接着絶縁プリプレグ (4):外層銅箔など (5)ニスルーホール (6):内層基板 (7)、メッキ層 (8):離型フィルム (9):加熱ローラ 代 理 人 大 i 増 雄 [発明の効果] 本発明の金属芯基板は、硫酸クロム酸処理またはリン酸
アルマイト処理が施されたアルミニウム板を用いたので
、樹脂とアルミニウム板との接着性が優れており、アル
ミニウム板が熱膨張率の小さいシリカ粒子が混入された
フェノール硬化エポキシ樹脂に埋設されているので、ア
ルミニウム板やスルーホール内面に設けられたメッキ層
との熱膨張のマツチングが良好であり、スルーホールの
接続信頼性が高く、貫通孔の部分のリンプルが小さい。
[Margins below] 5 6 7 (Main symbols in the drawing) (1) Nialuminum plate (2a): Resin composition (2b): Cured resin introduction product (3): Adhesive insulation prepreg (4): Outer layer copper foil etc. (5) Varnish through hole (6): Inner layer substrate (7), Plating layer (8): Release film (9): Heating roller agent large i Masuo [Effects of the invention] The metal core substrate of the present invention is Since we use an aluminum plate treated with chromic acid or phosphoric acid alumite, the adhesion between the resin and the aluminum plate is excellent, and the aluminum plate is made of phenol-cured epoxy resin mixed with silica particles that have a small coefficient of thermal expansion. Since it is embedded in the aluminum plate, thermal expansion matching with the aluminum plate and the plating layer provided on the inner surface of the through hole is good, the connection reliability of the through hole is high, and rippling at the through hole portion is small.

また、本発明の金属芯基板の製法は、樹脂組成物にアル
ミニウム板を埋設する上程が独立しているので、ボイド
の存在しない絶縁の信頼性の高い金属芯基板を製造する
ことができる。
Furthermore, in the method for manufacturing a metal core substrate of the present invention, the step of embedding the aluminum plate in the resin composition is independent, so a metal core substrate with high insulation reliability and no voids can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は両面基板の縦断面図、第2図は多層基板の縦断
面図、第3図は両面基板の縦断面図、第4図は多層基板
の縦断面図、第5a〜50図は、本発明の金属芯基板の
製法の各上程の説明図である。 8 4:外層銅箔なと 5;スルーホール 第5a図 第5b図 加熱ローラ 書C自発ン 1.事件の表示 待願質2−36657号 2、発明の名称 金属芯基板およびその製法 3、補正をする者 (601)三菱電機株式会社 代表者 志 岐 守 4、代 25e図 :離型フィルム 5、 補正の対象 (1)明細書の「発明の詳細な説明」の欄(2)図 面 6、 補正の内容 〈1)明細書9頁6行の「1−」を「5即」と補正する
。 (2)同11頁14〜15行の「10〜201jIn」
をr6−15+mJと補正する。 (3)同18頁2行の「外層銅箔(4)など」を「外層
銅箔なと(4)」と補正する。 (4)同24頁7〜8行の「調整」を「調製」と補正す
る。 (5)図面の第5C図、第5d図および第5e図を別紙
のとおり補正する(第5c図以外は図面に変更なし)。 7、 添付書類の目録 (1)補正図面(第5C図、第5d図および第5e図)
1通 才5e図 8:離型フィルム
Figure 1 is a vertical cross-sectional view of a double-sided board, Figure 2 is a vertical cross-sectional view of a multilayer board, Figure 3 is a vertical cross-sectional view of a double-sided board, Figure 4 is a vertical cross-sectional view of a multilayer board, and Figures 5a to 50 are FIG. 2 is an explanatory diagram of each step of the method for manufacturing a metal core substrate of the present invention. 8 4: Outer layer copper foil 5; Through hole Fig. 5a Fig. 5b Heating roller paper C spontaneous 1. Case Indication Requested Question No. 2-36657 No. 2, Name of the invention Metal core substrate and its manufacturing method 3, Person making the amendment (601) Mitsubishi Electric Corporation Representative Mamoru Shiki 4, Generation 25e Figure: Release film 5, Target of amendment (1) "Detailed Description of the Invention" column of the specification (2) Drawing 6, contents of amendment <1) Amend "1-" in line 6 on page 9 of the specification to "5 soku" . (2) "10-201jIn" on page 11, lines 14-15
is corrected to r6-15+mJ. (3) In the second line of page 18, "Outer layer copper foil (4), etc." is corrected to "Outer layer copper foil (4)." (4) "Adjustment" in lines 7-8 on page 24 is corrected to "preparation." (5) Figures 5C, 5d, and 5e of the drawings are corrected as shown in the attached sheet (no changes are made to the drawings except for Figure 5c). 7. List of attached documents (1) Amended drawings (Figures 5C, 5d, and 5e)
Figure 8: Release film

Claims (2)

【特許請求の範囲】[Claims] (1)エポキシ樹脂とフェノール樹脂の合計量100重
量部に対する平均粒径4〜20μmのシリカ粒子の割合
が50〜180重量部である樹脂組成物中に、ケミカル
エッチングののち、硫酸クロム酸処理またはリン酸アル
マイト処理が施された貫通孔を有するアルミニウム板を
埋設させたものから製造した基板と、外層銅箔または外
層用片面銅張基板とが、接着絶縁プリプレグにより積層
成形され、スルーホールが設けられた金属芯基板。
(1) After chemical etching, sulfuric acid chromic acid treatment or A board manufactured from an embedded aluminum plate with through-holes treated with phosphate alumite and a copper foil outer layer or a single-sided copper-clad board for the outer layer are laminated and molded using adhesive insulating prepreg, and through-holes are formed. metal core board.
(2)(a)エポキシ樹脂およびフェノール樹脂とシリ
カ粒子とを混合した樹脂組成物を、アプリケーターを用
いて離型フィルムに塗布する工程、 (b)離型フィルムに塗布された樹脂組成物上に、貫通
孔を有するアルミニウム板を置き、さらにその上に離型
フィルムをかぶせ、加熱ローラーを用いてアルミニウム
板を樹脂組成物中に埋設させる工程、 (c)樹脂組成物中に埋設させたアルミニウム板を加熱
して樹脂組成物を熱硬化させる工程、 (d)離型フィルムを除去し、えられた基板と、基板の
表裏の導体層の一部になる外層銅箔または外層用片面銅
張基板とを、基準孔により位置合せし、接着絶縁プリプ
レグにより積層成形する工程および (e)前記貫通孔の中心部に、貫通孔より小径のスルー
ホールを形成し、スルーホール内面と外層銅箔または外
層用片面銅張基板の表面とをメッキして導体層を形成し
て表裏の導体の接続を行なったのち、導体層をエッチン
グして導体回路を形成する工程 からなる金属芯基板の製法。
(2) (a) A step of applying a resin composition prepared by mixing an epoxy resin, a phenol resin, and silica particles to a release film using an applicator; , a step of placing an aluminum plate having through holes, further covering it with a release film, and embedding the aluminum plate in the resin composition using a heating roller; (c) an aluminum plate embedded in the resin composition; (d) removing the mold release film, and forming the obtained substrate and an outer layer copper foil or a single-sided copper clad substrate for the outer layer, which will become part of the conductor layer on the front and back sides of the substrate; and (e) forming a through hole with a smaller diameter than the through hole in the center of the through hole, and aligning the through hole with the inner surface of the through hole and the outer layer of copper foil or the outer layer. A method for manufacturing a metal core board, which consists of the steps of plating the surface of a single-sided copper-clad board to form a conductor layer, connecting the front and back conductors, and then etching the conductor layer to form a conductor circuit.
JP2036657A 1990-02-16 1990-02-16 Metal core substrate and manufacturing method thereof Expired - Lifetime JP2693005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036657A JP2693005B2 (en) 1990-02-16 1990-02-16 Metal core substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036657A JP2693005B2 (en) 1990-02-16 1990-02-16 Metal core substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03239390A true JPH03239390A (en) 1991-10-24
JP2693005B2 JP2693005B2 (en) 1997-12-17

Family

ID=12475931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036657A Expired - Lifetime JP2693005B2 (en) 1990-02-16 1990-02-16 Metal core substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2693005B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126935A (en) * 1997-07-03 1999-01-29 Denki Kagaku Kogyo Kk Metal base circuit board
JP2005109363A (en) * 2003-10-02 2005-04-21 Kunio Mori Aluminum plate, its manufacturing method, and aluminum-based printed wiring board
WO2012118224A1 (en) * 2011-03-03 2012-09-07 国立大学法人千葉大学 Functional laminated composite material and method for producing same
CN108770191A (en) * 2018-08-21 2018-11-06 信丰福昌发电子有限公司 A kind of copper-based wiring board of new-energy automobile and preparation method thereof
JP2018533197A (en) * 2015-07-17 2018-11-08 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Electric circuit board and method of manufacturing same type board
CN116113139A (en) * 2022-11-25 2023-05-12 东莞市皓龙激光科技有限公司 High-heat-conductivity aluminum-based circuit board and preparation process thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074121A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Method for manufacturing printed wiring board
CN102076174A (en) * 2011-01-30 2011-05-25 乐健线路板(珠海)有限公司 Method for manufacturing dual-layer sandwiched metal base PCB (printed circuit board) with high thermal conductivity
CN103945656A (en) * 2013-01-22 2014-07-23 深圳市万泰电路有限公司 Method of manufacturing double-sided aluminum substrate with resin plug holes and counterbore holes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162498A (en) * 1981-03-31 1982-10-06 Hitachi Chemical Co Ltd Method of producing metal core-filled insulating substrate
JPS61226998A (en) * 1985-04-01 1986-10-08 三菱電機株式会社 Manufacture of metal core printed wiring board
JPS62160788A (en) * 1986-01-09 1987-07-16 株式会社神戸製鋼所 Aluminum plate for circuit board
JPS63168072A (en) * 1986-12-27 1988-07-12 住友ベークライト株式会社 Metal base printed circuit substrate
JPH01312894A (en) * 1988-06-10 1989-12-18 Showa Alum Corp Manufacturing method of aluminum plate for printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162498A (en) * 1981-03-31 1982-10-06 Hitachi Chemical Co Ltd Method of producing metal core-filled insulating substrate
JPS61226998A (en) * 1985-04-01 1986-10-08 三菱電機株式会社 Manufacture of metal core printed wiring board
JPS62160788A (en) * 1986-01-09 1987-07-16 株式会社神戸製鋼所 Aluminum plate for circuit board
JPS63168072A (en) * 1986-12-27 1988-07-12 住友ベークライト株式会社 Metal base printed circuit substrate
JPH01312894A (en) * 1988-06-10 1989-12-18 Showa Alum Corp Manufacturing method of aluminum plate for printed circuit board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126935A (en) * 1997-07-03 1999-01-29 Denki Kagaku Kogyo Kk Metal base circuit board
JP2005109363A (en) * 2003-10-02 2005-04-21 Kunio Mori Aluminum plate, its manufacturing method, and aluminum-based printed wiring board
WO2012118224A1 (en) * 2011-03-03 2012-09-07 国立大学法人千葉大学 Functional laminated composite material and method for producing same
JP2012183678A (en) * 2011-03-03 2012-09-27 Chiba Univ Functional laminated composite material, and method for manufacturing the same
JP2018533197A (en) * 2015-07-17 2018-11-08 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Electric circuit board and method of manufacturing same type board
US10940671B2 (en) 2015-07-17 2021-03-09 Rogers Germany Gmbh Substrate for electrical circuits and method for producing a substrate of this type
CN108770191A (en) * 2018-08-21 2018-11-06 信丰福昌发电子有限公司 A kind of copper-based wiring board of new-energy automobile and preparation method thereof
CN108770191B (en) * 2018-08-21 2024-02-23 信丰福昌发电子有限公司 New energy automobile copper base line circuit board and manufacturing method thereof
CN116113139A (en) * 2022-11-25 2023-05-12 东莞市皓龙激光科技有限公司 High-heat-conductivity aluminum-based circuit board and preparation process thereof

Also Published As

Publication number Publication date
JP2693005B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP6572983B2 (en) Epoxy resin composition
JP4957552B2 (en) Manufacturing method of prepreg with carrier for printed wiring board, prepreg with carrier for printed wiring board, manufacturing method of thin double-sided board for printed wiring board, thin double-sided board for printed wiring board, and manufacturing method of multilayer printed wiring board
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5396805B2 (en) Epoxy resin composition
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JPWO2009038166A1 (en) Epoxy resin composition
WO2007097209A1 (en) Epoxy resin composition
JPH03239390A (en) Metal cored board and manufacture thereof
JP2008251971A (en) Process for producing multilayer printed wiring board
KR101362288B1 (en) Copper foil with primer resin layer, copper-clad laminate comprising the copper foil for a printed circuit board, preparation method of the copper foil, and primer resin composition used for the copper foil
JP3982233B2 (en) Wiring board manufacturing sheet material and multilayer board
JP3125582B2 (en) Manufacturing method of metal foil-clad laminate
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JPH10242607A (en) Metal base board and its manufacture
JP3685507B2 (en) Manufacturing method of multilayer printed wiring board
JP2911778B2 (en) Manufacturing method of multilayer printed wiring board
JPH05136537A (en) Metallic bace circuit board and its manufacturing method
JP3056666B2 (en) Manufacturing method of multilayer printed wiring board
JP3804812B2 (en) Method for producing insulating varnish
KR20140002354A (en) Composition, insulating film made therefrom, and multilayer printed circuit boards having the same
JP2633286B2 (en) Manufacturing method of electric laminate
JPH07245480A (en) Method of manufacturing multilayer printed interconnection board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13