[go: up one dir, main page]

JPH03239384A - Semiconductor laser protection circuit - Google Patents

Semiconductor laser protection circuit

Info

Publication number
JPH03239384A
JPH03239384A JP3684290A JP3684290A JPH03239384A JP H03239384 A JPH03239384 A JP H03239384A JP 3684290 A JP3684290 A JP 3684290A JP 3684290 A JP3684290 A JP 3684290A JP H03239384 A JPH03239384 A JP H03239384A
Authority
JP
Japan
Prior art keywords
semiconductor laser
voltage
gate
effect transistor
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3684290A
Other languages
Japanese (ja)
Inventor
Masaharu Moritsugu
森次 政春
Yasuyuki Ozawa
小澤 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3684290A priority Critical patent/JPH03239384A/en
Publication of JPH03239384A publication Critical patent/JPH03239384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To eliminate the need for manual protection operation by either applying voltage below pinchoff voltage to a gate of a field-effect transistor or keeping said gate in an open state when a semiconductor laser is not in operation and applying voltage above the pinchoff voltage when the semiconductor laser is acting. CONSTITUTION:When a semiconductor laser 1 is separated from a drive circuit under the condition where a drain D and source S of a field-effect transistor are connected in parallel or connected in reverse order between an anode 11 and a cathode 12 of the semiconductor laser 1, an attempt must be made to keep each electrode D and S, including a gate electrode G under an open state or apply voltage below pinchoff voltage as a gate voltage. This maintains the impedance between the drain D and the source S of the field-effect transistor 15 at several hundreds ohms. It is, therefore, possible to obtain the same protection effect that can be available when the span between the anode 11 and the cathode of the semiconductor laser 1 is automatically reduced, thereby eliminating the need for manual protection operation.

Description

【発明の詳細な説明】 〔概 要〕 光ディスク等の光源として使用される半導体レーザの保
護回路に関し、 手動保護操作の不要な半導体レーザ保護回路の提供を目
的とし、 電界効果トランジスタのドレインとソースとの一方を半
導体レーザのアノードに、他方を該半導体レーザのカソ
ードにそれぞれ接続し、前記半導体レーザが非動作時に
は前記電界効果トランジスタのゲートにピンチオフ電圧
以下の電圧を印加するか、またはゲートを開放状態とし
、動作時には前記ゲートにピンチオフ電圧以上の電圧を
印加するように構成する。
[Detailed Description of the Invention] [Summary] Regarding a protection circuit for a semiconductor laser used as a light source for optical disks, etc., the purpose of the present invention is to provide a protection circuit for a semiconductor laser that does not require manual protection operation, and to protect the drain and source of a field effect transistor. one is connected to the anode of the semiconductor laser, and the other is connected to the cathode of the semiconductor laser, and when the semiconductor laser is not operating, a voltage lower than the pinch-off voltage is applied to the gate of the field effect transistor, or the gate is left open. The configuration is such that a voltage higher than the pinch-off voltage is applied to the gate during operation.

〔産業上の利用分野〕[Industrial application field]

本発明は、光ディスク等の光源として使用される半導体
レーザの保護回路に関する。
The present invention relates to a protection circuit for a semiconductor laser used as a light source for optical discs and the like.

半導体レーザは、その発光特性上単一波長、単一位相で
あり指向性、エネルギ等従来の光源とは全く異なる性質
をもっており、光通信から光ディスク、更には計測用へ
と広い範囲で使用されている。特に光デイスク用の半導
体レーザは、生産個数、出荷金額において既に民生品並
みのレヘルである。半導体レーザはこのように多岐に渡
って使用されているが、最も高い使用実績を誇るのは何
と言ってもCD(コンパクトディスク)を初めとする光
デイスク市場である。
Semiconductor lasers have light emission characteristics of a single wavelength and a single phase, and have properties that are completely different from conventional light sources, such as directivity and energy, and are used in a wide range of applications from optical communication to optical disks and even measurement. There is. In particular, semiconductor lasers for optical disks are already on par with consumer products in terms of production numbers and shipping costs. Semiconductor lasers are used in a wide variety of ways, but the one with the highest track record of use is undoubtedly the optical disk market, including CDs (compact discs).

光デイスク装置は、記録媒体りに波長程度に集光された
微小スポットで情報の記録再生を行うため、従来の記録
装置に比べ高密度記録が可能である。また、レーザ光を
集光する対物レンズと記録媒体面が1mm程度離れた非
接触記録であるため、現在大型計算機から小型機の外部
記憶装置の主流にある。また、その記憶密度を極限まで
高めるため、ヘッド・媒体間隔をザブミクロン領域まで
狭め、そのためへ・7ドクラソシユという障害に悩まさ
れている磁気ディスクに比べ高い信頼性が確保できる。
Optical disk devices record and reproduce information on a recording medium using a minute spot focused on the wavelength, so they are capable of higher density recording than conventional recording devices. Furthermore, since it is non-contact recording in which the objective lens that focuses the laser beam and the surface of the recording medium are separated by about 1 mm, it is currently the mainstream external storage device for large computers to small machines. In addition, in order to maximize the storage density, the head-to-medium spacing has been narrowed down to the submicron range, making it possible to ensure higher reliability than magnetic disks, which suffer from problems such as 7-D cracks.

また、現在のWS (ワークステーション)/PC(パ
ーソナルコンピュータ)の普及の最大要因となったフロ
ッピディスク、磁気テープの様な可換性も備えている。
It also has the same interchangeability as floppy disks and magnetic tapes, which are the main reason for the spread of current WS (workstations)/PCs (personal computers).

従って、大型の汎用コンピュータからWS/PCまで広
い応用分野が期待されている。
Therefore, it is expected to have a wide range of applications, from large general-purpose computers to WS/PCs.

更に、光デイスク技術の進歩と共に、従来のユーザがデ
ータを一度だけ書ける追記型タイプの光ディスクから、
磁気ディスク、フロッピーディスクのように何度でもデ
ータの記録・消去が可能な書換可能型へと進んで来た。
Furthermore, with the advancement of optical disk technology, the traditional write-once type optical disk, on which the user can write data only once, has changed.
There has been progress toward rewritable disks, such as magnetic disks and floppy disks, where data can be recorded and erased as many times as desired.

それに伴って応用分野も格段に広くなろうとしている。Along with this, the field of application is also becoming much broader.

〔従来の技術〕[Conventional technology]

第4図は従来の光デイスク装置の要部構成図を示す。図
において、光源としての半導体レーザ1からの発散光は
、コリメートレンズ2で平行光7になりビームスプリッ
タ3を透過して、反射累う−4を経て対物レンズ5に入
射する。対物レンズ5は、スピンドル(図示せず)によ
り定速回転している記録媒体6の面振れや偏心に追従し
て所定のトラック」二に微小スポットとしてレーザ光を
照射く但し、対物レンズ5の駆動・移動機構は図示せず
)する。
FIG. 4 shows a block diagram of main parts of a conventional optical disk device. In the figure, diverging light from a semiconductor laser 1 serving as a light source is converted into parallel light 7 by a collimating lens 2, transmitted through a beam splitter 3, and then incident on an objective lens 5 via a reflection plane -4. The objective lens 5 irradiates a laser beam as a minute spot on a predetermined track by following the surface deflection and eccentricity of the recording medium 6 which is being rotated at a constant speed by a spindle (not shown). (The driving/moving mechanism is not shown).

記録媒体6からの反射光は、入射時と同一光路を逆進し
ビームスプリッタ3で反射され、集光レンズ8で光検出
器9上に集光され、再生信号及び前記対物レンズ5を光
軸方向及びトランク方向に駆動するためのフォーカス・
トラックエラー信号が検出される。
The reflected light from the recording medium 6 travels backward along the same optical path as when it was incident, is reflected by the beam splitter 3, is focused on the photodetector 9 by the condensing lens 8, and is directed to the reproduction signal and the objective lens 5 along the optical axis. Focus for driving in direction and trunk direction
A track error signal is detected.

第4図では、光デイスク装置の内、情報を記録・再生ず
るいわゆる光学ヘッドと呼ばれる部分だけを示している
。この光学ヘッド部分は半導体レーザ1を装着したまま
の状態で、通常は装置と切り離した状態で単独に光学系
等が調整された後、装置の所定位置に組み込まれる。こ
の切り離しの際、半導体レーザ1が図示しない装置側の
半導体レーザ駆動回路から切り離されて回路的にオープ
ン状態となる。ところで半導体レーザlは、人体や保存
環境での静電気や駆動回路の電源投入時のサージ等に非
常に敏感で壊れ易いという欠点を持っているため何らか
の対策が必要である。
In FIG. 4, only a so-called optical head, which records and reproduces information, of the optical disk device is shown. This optical head portion is installed at a predetermined position in the device after the optical system and the like are adjusted independently with the semiconductor laser 1 still attached and usually separated from the device. At this time of disconnection, the semiconductor laser 1 is disconnected from the semiconductor laser drive circuit (not shown) on the device side, resulting in an open circuit state. By the way, the semiconductor laser 1 has the disadvantage that it is very sensitive to static electricity in the human body or in the storage environment, surges when power is turned on in the drive circuit, etc., and is easily broken, so some kind of countermeasure must be taken.

第5図は従来の保護回路を説明する為の図である。図に
おいて、■は光学ヘッド16内に装着された半導体レー
ザであってアノード11とカソード12とから構成され
、アノード11は基準電位に接続され、カソード12に
は半導体レーザ駆動回路13から所要の駆動電流が供給
される回路構成になっている。また、半導体レーザーの
アノード1トカソード12間を短絡するためにショート
バーあるいはスライドスイッチ等の機能を有するスイッ
チ14が使で われhいた。このスイッチ14は半導体レーザーをオー
プン状態にする以前にこれをON操作することにより保
護を行うものであって、例えば半導体レーザーに接続さ
れた多芯可撓リード線に組み込まれた構造になっている
FIG. 5 is a diagram for explaining a conventional protection circuit. In the figure, ■ is a semiconductor laser mounted in the optical head 16, and is composed of an anode 11 and a cathode 12. It has a circuit configuration that supplies current. Further, a switch 14 having a function such as a short bar or a slide switch is used to short-circuit between the anode and cathode 12 of the semiconductor laser. This switch 14 protects the semiconductor laser by turning it on before opening it, and has a structure that is built into, for example, a multicore flexible lead wire connected to the semiconductor laser. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のスイッチ14は、機械的にカソード・アノードを
短絡するので当然のことながら、操作忘失。
Since the above-mentioned switch 14 mechanically shorts the cathode and anode, it is natural that the operator forgets to operate it.

接触不良や短絡業ス等を起こす可能性があった。There was a possibility that poor contact or short circuits could occur.

更には、光学ヘッドを取付け、取り外しする度に前記ス
イッチ14の操作が入るので工程的にも複雑となる問題
点があった。
Furthermore, since the switch 14 must be operated each time the optical head is attached or removed, there is a problem in that the process becomes complicated.

本発明は上記従来の欠点に鑑みてなされたもので、手動
保護操作の不要な半導体レーザ保護回路の提供を目的と
する。
The present invention has been made in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide a semiconductor laser protection circuit that does not require manual protection operations.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は、本発明の保護回路を示す。電界効果トランジ
スタ15のドレインとソースとの一方を半導体レーザ1
のアノードに、他方を該半導体レザのカソードにそれぞ
れ接続し、前記半導体レーザが非動作時には前記電界効
果トランジスタのゲート電圧としてピンチオフ電圧以下
の電圧を印加するか、またはゲートを開放状態とし、動
作時には前記ゲート電圧としてピンチオフ電圧以上の電
圧を印加するように構成する。
FIG. 1 shows a protection circuit of the invention. One of the drain and source of the field effect transistor 15 is connected to the semiconductor laser 1.
and the other to the cathode of the semiconductor laser, and when the semiconductor laser is not in operation, a voltage below the pinch-off voltage is applied as the gate voltage of the field effect transistor, or the gate is in an open state, and when it is in operation, a voltage below the pinch-off voltage is applied. A voltage higher than a pinch-off voltage is applied as the gate voltage.

〔作 用〕[For production]

半導体レーザ1のアノードとカソード間に電界効果トラ
ンジスタ15のドレインとソースまたはその逆を並列接
続したままの状態で半導体レーザ1をその駆動回路(光
学ヘッド)から切り離した場合に、ゲート電極を含む各
電極をオープン状態にするか、あるいはゲート電圧とし
てピンチオフ電圧以下の電圧を印加することにより、電
界効果トランジスタ15のドレインとソース間のインピ
ーダンスが数百オーム程度に維持されることになり、こ
れにより半導体レーザ1のアノードとカソード間を自動
的に短絡したのと同じ保護効果を得ることができる。
When the semiconductor laser 1 is separated from its drive circuit (optical head) with the drain and source of the field effect transistor 15 connected in parallel between the anode and cathode of the semiconductor laser 1, or vice versa, each part including the gate electrode By opening the electrodes or applying a voltage lower than the pinch-off voltage as the gate voltage, the impedance between the drain and source of the field effect transistor 15 is maintained at about several hundred ohms, which makes the semiconductor The same protection effect as automatically shorting the anode and cathode of the laser 1 can be obtained.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、構成、動作の説明を理解し易くするために全図を
通じて同一部分には同一符号を付してその重複説明を省
略する。
Note that, in order to make the explanation of the configuration and operation easier to understand, the same parts are given the same reference numerals throughout all the figures, and repeated explanation thereof will be omitted.

第1図は本発明の保護回路を示す。図において、電界効
果トランジスタ15のドレインとソースとの一方を半導
体レーザ1のアノードに、他方を該半導体レーザのカソ
ードにそれぞれ接続し、半導体レーザ1が非動作時には
前記電界効果トランジスタ15のゲートにゲート電圧と
してピンチオフ電圧以下の電圧を印加するか、またはゲ
ートを開放状態とし、動作時には前記ゲートにゲート電
圧としてピンチオフ電圧以上の電圧を印加するように構
成している。この図では前記印加用の電源は図示してい
ない。
FIG. 1 shows the protection circuit of the invention. In the figure, one of the drain and source of the field effect transistor 15 is connected to the anode of the semiconductor laser 1, and the other is connected to the cathode of the semiconductor laser, and when the semiconductor laser 1 is not in operation, the gate is connected to the gate of the field effect transistor 15. The configuration is such that a voltage equal to or lower than the pinch-off voltage is applied as a voltage, or the gate is left in an open state, and a voltage equal to or higher than the pinch-off voltage is applied to the gate as the gate voltage during operation. In this figure, the power source for applying the voltage is not shown.

半導体レーザの保護としは、非動作時(外部から電源が
供給されない状態でも)カソード・アノード間を有限の
抵抗で結んでやれば良い訳である。
To protect a semiconductor laser, it is sufficient to connect the cathode and anode with a finite resistance when not in operation (even when no external power is supplied).

そこで、外部から抵抗を制御でき、電源オフ時に抵抗の
小さい素子(ノーマリ−オン)として、電界効果トラン
ジスタ(Field Effect Transist
or ;以下FETと呼称する)を利用したものである
Therefore, as an element (normally-on) whose resistance can be controlled externally and whose resistance is small when the power is turned off, a field effect transistor (Field Effect Transistor) is used.
(hereinafter referred to as FET).

第2図は本発明に用いるFETの特性説明図であって、
第2図(alは静特性図、第2図(blは電極。
FIG. 2 is a characteristic diagram of the FET used in the present invention,
Figure 2 (al is a static characteristic diagram, Figure 2 (bl is an electrode).

電圧の関係を示す図である。両図においてFETとは、
多数キャリアとして正札を注入されたP型チャネル又は
多数キャリアとしてエレクトロンを注入されたN型チャ
ネルと呼ばれる半導体領域と、これと反対の極性をもっ
たゲートGから構成される。そしてFETの動作は、チ
ャネル抵抗を逆〕\イアスされたゲート電圧(ゲートと
ソース間の電圧) Vgで制御することによって行う。
FIG. 3 is a diagram showing the relationship between voltages. In both figures, FET is
It consists of a semiconductor region called a P-type channel into which genuine cards are injected as majority carriers or an N-type channel into which electrons are injected as majority carriers, and a gate G having the opposite polarity. The operation of the FET is performed by controlling the channel resistance with a reverse biased gate voltage (voltage between the gate and the source) Vg.

この静特性の第一象限に示したのは、ゲート電圧シg一
定でドレイン・ソース間電圧Vdsを変化した時のドレ
イン電流の変化であり、第二象限には、ドレイン・ソー
ス間電圧Vclsを固定してゲーF i圧Vgを変化し
た時のドレイン電流を示している。ここでゲート電圧ν
gが零、つまりオープンの場合にばドレイン・ソース間
はある有限の抵抗を持ち、一般には100Ω前後を維持
する性質がある。これに対してゲート電圧Vgがある一
定以上の場合、ドレイン電流が殆ど零になる。このドレ
イン電流が零になるゲート電圧をピンチオフ電圧と呼称
する。この時のドレイン・ソース間の抵抗は数MΩ以上
であり、オープン状態と見做すことができる。
The first quadrant of this static characteristic shows the change in drain current when the drain-source voltage Vds is changed with the gate voltage sig constant, and the second quadrant shows the drain-source voltage Vcls. It shows the drain current when the gate F i voltage Vg is changed while being fixed. Here gate voltage ν
When g is zero, that is, it is open, there is a certain finite resistance between the drain and source, which generally maintains a resistance of around 100Ω. On the other hand, when the gate voltage Vg is above a certain level, the drain current becomes almost zero. The gate voltage at which this drain current becomes zero is called the pinch-off voltage. At this time, the resistance between the drain and source is several MΩ or more, and it can be considered as an open state.

第3図は本発明の実施例を示す図である。ここでは光学
ヘッド16に搭載されている半導体レーザ1の部分だけ
を抜き出して示している。破線で囲む部分は光学ヘッド
16が半導体レーザ駆動回路から切り離された場合の引
き出し部を示したもので、光学ヘッド16と一体的に引
き出される構造になっている。そこで光学ヘッド16が
半導体レーザ駆動回路から切り離された場合、又は半導
体レーザ1に電源が供給されない場合、半導体レーザ1
のカ=9= 0 ソード・アノード間に接続されたFET15のゲート電
圧は零である。つまり半導体レーザ1の両端子が低抵抗
で接続されたことに等しい。また、実際に半導体レーザ
lを発光させる場合、外部からのコントロール電圧等で
FET15のゲート電圧をピンチオフ電圧以上に設定し
てやれば、FET15のドレイン・ソース間の抵抗は、
はぼ無限大の抵抗値を維持するので、FET15の両端
子は切り離されたことに等しく、正常の半導体レーザ駆
動が可能になる。
FIG. 3 is a diagram showing an embodiment of the present invention. Here, only the portion of the semiconductor laser 1 mounted on the optical head 16 is extracted and shown. The part surrounded by the broken line shows the extraction part when the optical head 16 is separated from the semiconductor laser drive circuit, and has a structure in which it can be extracted integrally with the optical head 16. Therefore, when the optical head 16 is disconnected from the semiconductor laser drive circuit or when power is not supplied to the semiconductor laser 1, the semiconductor laser 1
=9=0 The gate voltage of the FET 15 connected between the sword and the anode is zero. In other words, both terminals of the semiconductor laser 1 are connected with low resistance. In addition, when actually making the semiconductor laser l emit light, if the gate voltage of the FET 15 is set to be higher than the pinch-off voltage using an external control voltage, etc., the resistance between the drain and source of the FET 15 is
Since the resistance value is maintained at an almost infinite value, both terminals of the FET 15 are equivalent to being disconnected, and normal semiconductor laser driving becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の保護回路、 第2図は本発明に用いるF E ′rの特性説明図、第
3図は本発明の実施例を示す図、 第4図は従来の光デイスク装置の要部構成図、第5図は
従来の保護回路を説明する為の図を示す。 第1図において、■は半導体レーザ、15は電界効果ト
ランジスタ(FET)をそれぞれ示す。 〔発明の効果〕 以りの説明から明らかなように本発明によれば、半導体
レーザの保護が回路的に制御できるので、各調整工程で
人手による機械的操作が不要となり、信頼性の向上に繋
がる。またショートバースインチに比べ低コスト、省ス
ペース化が可能になるという効果がある。
FIG. 1 is a protection circuit of the present invention, FIG. 2 is a characteristic diagram of F E 'r used in the present invention, FIG. 3 is a diagram showing an embodiment of the present invention, and FIG. 4 is a diagram of a conventional optical disk device. A main part configuration diagram, FIG. 5, is a diagram for explaining a conventional protection circuit. In FIG. 1, ▪ indicates a semiconductor laser, and 15 indicates a field effect transistor (FET). [Effects of the Invention] As is clear from the following explanation, according to the present invention, the protection of the semiconductor laser can be controlled by a circuit, so manual mechanical operations are not required in each adjustment process, and reliability is improved. Connect. It also has the effect of being able to save cost and space compared to short berth inches.

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタ(15)のドレインとソースとの
一方を半導体レーザ(1)のアノードに、他方を該半導
体レーザのカソードにそれぞれ接続し、前記半導体レー
ザが非動作時には前記電界効果トランジスタのゲートに
ピンチオフ電圧以下の電圧を印加するか、またはゲート
を開放状態とし、動作時には前記ゲートにピンチオフ電
圧以上の電圧を印加するようにしたことを特徴とする半
導体レーザ保護回路。
One of the drain and source of the field effect transistor (15) is connected to the anode of the semiconductor laser (1), and the other is connected to the cathode of the semiconductor laser, and when the semiconductor laser is not in operation, the gate of the field effect transistor is pinched off. 1. A semiconductor laser protection circuit, characterized in that a voltage lower than a pinch-off voltage is applied or a gate is left in an open state, and a voltage higher than a pinch-off voltage is applied to the gate during operation.
JP3684290A 1990-02-16 1990-02-16 Semiconductor laser protection circuit Pending JPH03239384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3684290A JPH03239384A (en) 1990-02-16 1990-02-16 Semiconductor laser protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3684290A JPH03239384A (en) 1990-02-16 1990-02-16 Semiconductor laser protection circuit

Publications (1)

Publication Number Publication Date
JPH03239384A true JPH03239384A (en) 1991-10-24

Family

ID=12481014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3684290A Pending JPH03239384A (en) 1990-02-16 1990-02-16 Semiconductor laser protection circuit

Country Status (1)

Country Link
JP (1) JPH03239384A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105337A (en) * 2007-10-25 2009-05-14 Sharp Corp Semiconductor laser protective circuit, optical pickup device, optical module, and information recording/reproducing apparatus
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US12092914B2 (en) 2018-01-08 2024-09-17 Digilens Inc. Systems and methods for manufacturing waveguide cells
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12158612B2 (en) 2021-03-05 2024-12-03 Digilens Inc. Evacuated periodic structures and methods of manufacturing
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12222499B2 (en) 2020-12-21 2025-02-11 Digilens Inc. Eye glow suppression in waveguide based displays
US12306585B2 (en) 2018-01-08 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10725312B2 (en) 2007-07-26 2020-07-28 Digilens Inc. Laser illumination device
JP2009105337A (en) * 2007-10-25 2009-05-14 Sharp Corp Semiconductor laser protective circuit, optical pickup device, optical module, and information recording/reproducing apparatus
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US11175512B2 (en) 2009-04-27 2021-11-16 Digilens Inc. Diffractive projection apparatus
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11487131B2 (en) 2011-04-07 2022-11-01 Digilens Inc. Laser despeckler based on angular diversity
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US11287666B2 (en) 2011-08-24 2022-03-29 Digilens, Inc. Wearable data display
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US12306418B2 (en) 2011-08-24 2025-05-20 Rockwell Collins, Inc. Wearable data display
US11874477B2 (en) 2011-08-24 2024-01-16 Digilens Inc. Wearable data display
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US11994674B2 (en) 2012-05-11 2024-05-28 Digilens Inc. Apparatus for eye tracking
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11662590B2 (en) 2013-05-20 2023-05-30 Digilens Inc. Holographic waveguide eye tracker
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US10527797B2 (en) 2015-02-12 2020-01-07 Digilens Inc. Waveguide grating device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US12013561B2 (en) 2015-03-16 2024-06-18 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US12298513B2 (en) 2016-12-02 2025-05-13 Digilens Inc. Waveguide device with uniform output illumination
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US12352960B2 (en) 2018-01-08 2025-07-08 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US12306585B2 (en) 2018-01-08 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides
US12092914B2 (en) 2018-01-08 2024-09-17 Digilens Inc. Systems and methods for manufacturing waveguide cells
US12366823B2 (en) 2018-01-08 2025-07-22 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US11726261B2 (en) 2018-03-16 2023-08-15 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11150408B2 (en) 2018-03-16 2021-10-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US12271035B2 (en) 2019-06-07 2025-04-08 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US12222499B2 (en) 2020-12-21 2025-02-11 Digilens Inc. Eye glow suppression in waveguide based displays
US12158612B2 (en) 2021-03-05 2024-12-03 Digilens Inc. Evacuated periodic structures and methods of manufacturing

Similar Documents

Publication Publication Date Title
JPH03239384A (en) Semiconductor laser protection circuit
US4517667A (en) Direct read after write optical disk system
JP2682621B2 (en) Bias magnetic field abnormality detector
JPH07272304A (en) Optical information recording/reproducing device
JPH0294061A (en) Optical output control device and information reproducing device
CA1263893A (en) Optical memory with sampled tracking for a preformatted medium
US5265085A (en) Simultaneous MO and ROM optical disk signal detection
JPS58158051A (en) Controller for stabilizing output of semiconductor laser oscillator
KR19980071505A (en) Read / write head assembly and method of reading and writing optical disc
JP2005175202A (en) Recording element
JPS58188343A (en) Information memory device
EP0432977A2 (en) Optical device for detecting modulation in a light beam
TW490664B (en) Laser output control in optical disk recording/reproducing device
US6643161B2 (en) Write-once polymer memory with e-beam writing and reading
US6580675B1 (en) Laser driver for an optical recording system
JP3081429B2 (en) Information recording / reproducing device
JPS62183092A (en) Recording and reproducing device
JP2774506B2 (en) High density information recording medium and recording / reproducing apparatus therefor
US6381209B1 (en) Multi-channel optical head for optical recording and reading optical storage data
EP0370483A2 (en) Information reproducing apparatus
JPS621135A (en) Optical card information recording and reproducing device
JPH0793792A (en) Reference voltage generating circuit
EP1642274B1 (en) An optical disk drive
JPH03116553A (en) Optical disk device
JPH01191326A (en) Optical information processor