[go: up one dir, main page]

JPH0323835A - Apparatus for measuring eye refractive force - Google Patents

Apparatus for measuring eye refractive force

Info

Publication number
JPH0323835A
JPH0323835A JP1160085A JP16008589A JPH0323835A JP H0323835 A JPH0323835 A JP H0323835A JP 1160085 A JP1160085 A JP 1160085A JP 16008589 A JP16008589 A JP 16008589A JP H0323835 A JPH0323835 A JP H0323835A
Authority
JP
Japan
Prior art keywords
light
eye
examined
light source
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1160085A
Other languages
Japanese (ja)
Other versions
JP2817798B2 (en
Inventor
Akio Umeda
梅田 昭男
Noriyuki Nagai
憲行 永井
Yasufumi Fukuma
康文 福間
Ikuo Kitao
北尾 郁雄
Hiroaki Ogushi
大串 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1160085A priority Critical patent/JP2817798B2/en
Publication of JPH0323835A publication Critical patent/JPH0323835A/en
Application granted granted Critical
Publication of JP2817798B2 publication Critical patent/JP2817798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To make it possible to obtain in a moment a result of a measurement and to measure the degree of astigmatism, the axis angle of astigmatism, etc., by providing a mask plate selectively transmitting light fluxes from a plurality of longitudinal lines and providing a light protection member protecting a part of a reflected light flux of the each selected light flux in the light path of a light receiving system. CONSTITUTION:A light projection system 1 consists of a light source 4, a half mirror 5 reflecting a light flux from the light source to an examined eye 3 and a flare protecting device 28 set on the opposite side of the light source therefrom. The light source consists of an illuminant 15, an IR rays filter 16, a mask plate 17, a condenser 18, a diffuser panel 19 and a slit panel 20. A light receiving system 2 consists of an objective lens 8 and a light receiving element 9 and in a light path, an edge-like light protection member 12 protecting a half side of the light flux defining an optical axis of the objective lens as a boundary is positioned vertically to the optical axis at a position where an image of the light source is formed when the eye refractive force of the examined eye is at a level of a standard value 1. A condition where the light flux is protected by means of the light protection member is changed thereby depending on the difference in the eye refractive force of the examined eye. This condition of light protection corresponds to the eye refractive force and it is possible to measure the eye refractive force based on the light vol. distribution. In addition, the condition of astigmatism is measured by separating with time the light vol. distribution on a plurality of longitudinal lines.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼屈折力測定装置、特に小児から乳幼児に対し
ても有用である眼屈折力測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eye refractive power measuring device, and particularly to an eye refractive power measuring device that is useful for children and infants.

C従来の技術] 従来、眼屈折力測定装置としては、被検者の応答を基に
眼屈折力を測定する所謂自覚式検眼器、被検眼を他覚的
に測定ずる所謂オートレフラク1〜メータ等の装置か知
られている。
C. Prior Art] Conventionally, as an eye refractive power measuring device, there is a so-called subjective ophthalmoscope that measures the eye refractive power based on the response of the examinee, and a so-called autorefraction meter that measures the eye to be examined objectively. Such devices are known.

然し乍ら、この種の装置で乳幼児の測定を行なう場合、
乳幼児の協力を得られない為自覚式検眼器では測定かで
きず、又一般のオートレフラクトメータでは被検眼の位
置を固定しなくてはならないか、乳幼児の場合被検眼の
位置の固定か難しく、測定は極めて困難であるという欠
点を有していた。
However, when measuring infants with this type of device,
Measurements cannot be performed with a subjective ophthalmoscope because the infant's cooperation cannot be obtained, and with a general autorefractometer, the position of the eye to be examined must be fixed, and in the case of infants, it is difficult to fix the position of the eye to be examined. It had the disadvantage that measurement was extremely difficult.

これらの欠点を解消する為、ス1〜ロボ光で被検眼眼底
を照明し、被検眼の瞳孔での光束の状態をカメラで撮影
し、その結果から被検眼の眼屈折力を測定するいわゆる
フォ1・レフラクション方式の測定方法か提案されてい
る。
In order to eliminate these shortcomings, a so-called photographic method is used in which the fundus of the eye to be examined is illuminated with a robot light, the state of the light flux at the pupil of the eye to be examined is photographed with a camera, and the ocular refractive power of the eye to be examined is measured from the results. 1. A refraction measurement method has been proposed.

このフオ1〜レフラクション方式の測定に於いては、被
検眼の光軸が少しずれても充分に測定をすることかでき
、被検眼を固定することか困難である乳幼児の眼屈折力
の測定には有用であるとされているものである。
In this photo 1 - refraction method measurement, sufficient measurements can be made even if the optical axis of the eye to be examined is slightly shifted, and it is difficult to fix the eye to be examined when measuring the refractive power of an infant's eye. It is said to be useful for.

[発明が解決しようとする課題] 然し乍ら、斯かるフォトレフラクション方式の眼屈折力
測定装置では、カメラの光軸に対し、斜め方向からスト
ロボ光源により照明し、その選択して透過するマスク板
を設け、前記受光系の光路中に前記各選択された光束の
反射光束の一部を遮光する遮光部材を設けたことを特徴
とするものであり、更に測定光源を有し、被検眼眼底に
測定光源像を投影する為の投影系と、被検眼瞳孔と略共
役位置に配置した受光素子上に眼底からの反射光束を導
く為の受光系とを有し、受光素子上に形成された被検眼
の瞳孔像の光量分布より被検眼の眼屈折力を測定する眼
屈折力測定装置に於いて、前記光源か複数経線上の位置
よりそれぞれ異なる波長帯の測定光を発ずる様にし、前
記受光系の光路中に各波長帯の反射光束の一部を遮光す
る遮光部材を設けると共に該遮光部材を通過した反射光
束を波長帯毎に分離ずるダイクロイックミラーを設けた
ことを特徴とするものである。
[Problems to be Solved by the Invention] However, in such a photorefraction type eye refractive power measurement device, a mask plate is provided that illuminates the optical axis of the camera with a strobe light source from an oblique direction and selectively transmits the strobe light. , characterized in that a light shielding member is provided in the optical path of the light receiving system to shield a part of the reflected light flux of each of the selected light fluxes, and further includes a measurement light source, and the measurement light source is provided at the fundus of the eye to be examined. It has a projection system for projecting an image, and a light receiving system for guiding the reflected light flux from the fundus onto a light receiving element placed at a position approximately conjugate with the pupil of the eye to be examined. In an eye refractive power measuring device that measures the eye refractive power of the eye to be examined from the light intensity distribution of the pupil image, the light source emits measuring light in different wavelength bands from positions on multiple meridians, and the light receiving system The present invention is characterized in that a light shielding member is provided in the optical path to shield a part of the reflected light beam in each wavelength band, and a dichroic mirror is provided to separate the reflected light beam that has passed through the light shielding member into each wavelength band.

[作  用コ 被検眼の眼屈折力の相違により遮光部材による光束を遮
光する状態か異なってくる。この遮光の状態と眼屈折力
とは対応し、受光素子に投5 時の瞳孔像を単に撮影するたけであり、光源の位置によ
り測定できないディオプター値かあり、又測定可能な範
囲か狭いという問題を有している。
[Operation] Depending on the difference in the eye refractive power of the eye to be examined, the state in which the light beam is blocked by the light blocking member differs. This state of light shielding corresponds to the eye's refractive power, and the problem is that the pupil image is simply taken at 5 o'clock when it is projected onto the light receiving element, and there are some diopter values that cannot be measured depending on the position of the light source, and the measurable range is narrow. have.

更に従来この種の装置では乱視度、乱視軸角度等乱視に
ついての測定に関しては考慮されていなかった。
Furthermore, conventional devices of this type have not taken into account measurements of astigmatism, such as the degree of astigmatism and the angle of the astigmatism axis.

本発明は、上記実情に鑑みなしたものであり、瞬時に測
定結果を得ることかできると共に乱視度、乱視軸角度等
についても測定し得る眼屈折力測定装置を提供しようと
するものである。
The present invention was made in view of the above-mentioned circumstances, and it is an object of the present invention to provide an eye refractive power measuring device that can obtain measurement results instantaneously and also measure the degree of astigmatism, astigmatic axis angle, etc.

1課題を解決するための手段] 本発明は、測定光源を有し、被検眼眼底に測定光源像を
投影する為の投影系と、被検眼瞳孔と略共役位置に配置
した受光素子上に眼底からの反射光束を導く為の受光系
とを有し、受光素子上に形成された被検眼の瞳孔像の光
量分布より被検眼の眼屈折力を測定する眼屈折力測定装
置に於いて、前記光源が複数経線上より光束を投影する
様に横戊されると共に該複数の光束を影された光束の状
態、即ち、光量分布を基に眼屈折力を測定できる。又、
乱視状態は複数経線での眼屈折力を測定することで特定
でき、第1の発明では複数経線についての光量分布を時
間的に分離して測定し、第2の発明では測定光束を異な
る波長に分離してそれぞれ測定する。
1. Means for Solving the Problems] The present invention includes a projection system that includes a measurement light source and projects a measurement light source image onto the fundus of the eye to be examined, and a projection system that has a measurement light source and a projection system that projects the image of the measurement light source onto the fundus of the eye to be examined, and a fundus that is placed on a light-receiving element disposed at a substantially conjugate position with the pupil of the eye to be examined. In the eye refractive power measuring device which has a light receiving system for guiding the reflected light flux from the light receiving element and measures the eye refractive power of the eye to be examined from the light intensity distribution of the pupil image of the eye to be examined formed on the light receiving element, The eye refractive power can be measured based on the state of the light beam that is projected by the light source from a plurality of meridians, that is, the light intensity distribution. or,
Astigmatism can be identified by measuring the eye refractive power along multiple meridians, and in the first invention, the light intensity distribution for multiple meridians is measured separately in time, and in the second invention, the measurement light flux is divided into different wavelengths. Separate and measure each.

[実 旅 例] 以下、図面を参照しつつ本発明の一実施例を説明する。[Actual travel example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

乱視は、各経線ての眼屈折力(ディオプター値)が異な
ることによって生じ、乱視の状態は球面度S、乱視度C
、乱視軸角度Aを測定することで特定することかできる
。又、任意の角度θの経線でのデオプター値D,と球面
度S、乱視度C、乱視軸角度Aとの関係は下記の式で表
される, D.9 =S十C Sin (θ−A)   −(1)
従って、3経線θ1、θ冫、θ3のティオプター値を求
めれば、球面度数S、乱視度数S、乱視軸角度Aか求め
られ、乱視状態が特定でき6 以下、第1図〜第4図に於いて本発明の第1の実施例に
ついて説明する。
Astigmatism is caused by the difference in eye refractive power (diopter value) at each meridian, and the state of astigmatism is sphericity S, astigmatism C
, can be specified by measuring the astigmatic axis angle A. Further, the relationship between the deopter value D at a meridian of an arbitrary angle θ, the degree of sphericity S, the degree of astigmatism C, and the astigmatic axis angle A is expressed by the following formula.D. 9 = S0C Sin (θ-A) - (1)
Therefore, by calculating the teopter values of the three meridians θ1, θx, and θ3, the spherical power S, astigmatic power S, and astigmatic axis angle A can be determined, and the astigmatism state can be identified.6 Below, in Figures 1 to 4, A first embodiment of the present invention will now be described.

1は光源像を被検眼3の眼底7に投影ずる為の投影系で
あり、2は眼底7により反射された光束10を受光する
為の受光系であり、投影系1及び受光系2は被検眼3に
対向して配置される。
1 is a projection system for projecting a light source image onto the fundus 7 of the eye 3 to be examined; 2 is a light receiving system for receiving the light beam 10 reflected by the fundus 7; the projection system 1 and the light receiving system 2 are It is arranged opposite to the optometry clinic 3.

前記投影系1は、光源4及び光源4からの光束11を被
検眼3に向Gフで反射させる為のハーフミラー5及び該
ハーフミラー5の反光源測に配設したフレア防止器28
から成り、該投影系1は光源4からの光束11を瞳孔6
を通して眼底7上に光源4の像を形成する様に投影する
The projection system 1 includes a light source 4 and a half mirror 5 for reflecting the light beam 11 from the light source 4 toward the subject's eye 3 in the G direction, and a flare preventer 28 disposed opposite the light source of the half mirror 5.
The projection system 1 directs a light beam 11 from a light source 4 to a pupil 6.
An image of the light source 4 is projected onto the fundus 7 through the lens.

又、該光源4は、タンクステンフィラメン1〜を有する
発光体15、赤外線用フィルター16、マスク板17、
フレネルレンズ等の集光レンズ18、拡散板19、スリ
ット板20から構成されている。
The light source 4 also includes a light emitting body 15 having tanksten filaments 1 to 1, an infrared filter 16, a mask plate 17,
It is composed of a condensing lens 18 such as a Fresnel lens, a diffuser plate 19, and a slit plate 20.

前記マスク板17は、回転自在に支持されていると共に
所要の経線上に外周側に白って幅広となる投光窓21が
穿設されている。又、該マスク板ー5を透過して受光素
子9上に導かれる。
The mask plate 17 is rotatably supported and has a white and wide light projection window 21 formed on the outer peripheral side on a required meridian. Further, the light passes through the mask plate 5 and is guided onto the light receiving element 9.

該受光素子9は、エリアCOD、撮像管或は2以上の受
光素子の集合体であり、受光素子9の受光面9aは対物
レンズ8に関して被検眼3の瞳孔6と共役位置に配置さ
れる。
The light-receiving element 9 is an area COD, an image pickup tube, or an assembly of two or more light-receiving elements, and the light-receiving surface 9a of the light-receiving element 9 is arranged at a conjugate position with the pupil 6 of the eye 3 to be examined with respect to the objective lens 8.

前記受光系2の光路内には、被検眼3の眼屈折力か基準
ディオプター値の場合に光源像か形威される位置に、対
物レンズ8の光軸Oを境界として光束10の片測を遮光
ずる為のエッチ状の遮光部材12を光軸と垂直な平面内
に配置する。
In the optical path of the light-receiving system 2, a single measurement of the light beam 10 is arranged with the optical axis O of the objective lens 8 as a boundary at a position where a light source image is formed when the eye refractive power of the eye 3 to be examined or the reference diopter value is used. An etched light shielding member 12 for shielding light is arranged in a plane perpendicular to the optical axis.

該遮光部材12は、前記各スリット孔20a 20b2
0c・・・の経線と直交するエッチ状稜線25a, 2
5b25c・・・を有ずる6角形状の透過孔25か穿設
されている。
The light shielding member 12 has each of the slit holes 20a and 20b2.
Etched ridge lines 25a, 2 perpendicular to the meridian of 0c...
A hexagonal transparent hole 25 having a diameter of 5b, 25c, . . . is bored.

又、前記受光素子9か紹込れているビデオ力メラ26は
、制御部27により該受光素子9から信号を取出し、映
像用のビデオ信号として演算器13にビデオ同期信号と
共に入力する。
Further, the video camera 26 into which the light receiving element 9 is introduced extracts a signal from the light receiving element 9 by the control section 27 and inputs it to the computing unit 13 as a video signal for video together with a video synchronizing signal.

演算器13か前記ビデオ信号を基に受光素子9の受光状
態を演算し、又受光状態を基に眼屈折9 17は後述ずる様にモータ22により所定の速度で回転
される様になっている。
A calculator 13 calculates the light receiving state of the light receiving element 9 based on the video signal, and based on the light receiving state, the eye refractor 917 is rotated at a predetermined speed by a motor 22 as described later. .

前記スリット板20は、中心を等分する6経線上に位置
に、外周側に向って広幅となるスリッ1へ孔20a, 
20b, 20c, 20d, 20(3. 2Ofか
穿設されている。 前記フレア防止器28を説明する。
The slit plate 20 has holes 20a to the slit 1, which become wider toward the outer circumference, at positions on six meridian lines that equally divide the center.
The flare preventer 28 will be explained.

短冊状の吸収板23を投影系1の光軸に対して面が傾斜
する姿勢で、複数枚平行に配設し、該吸収板23のハー
フミラー5と反対測に吸収壁24を設ける。
A plurality of strip-shaped absorption plates 23 are arranged in parallel with their surfaces inclined with respect to the optical axis of the projection system 1, and an absorption wall 24 is provided opposite to the half mirror 5 of the absorption plates 23.

吸収壁24は光学系を収納する鏡筒の内面であってもよ
い。
The absorption wall 24 may be the inner surface of a lens barrel that houses the optical system.

前記吸収板23の両面、吸収壁24には反射防止用コー
I〜、或は黒色反射防止塗料等を塗布する。
Both surfaces of the absorption plate 23 and the absorption wall 24 are coated with antireflection coat I or black antireflection paint.

斯かるフレア防止器28は、ハーフミラー5を透過した
光源4からの光を吸収板23、吸収壁24で複数回反射
させることで減衰させ、ハーフミラー5を透過した光か
受光系3で受光ざれるのを防止する。
Such a flare preventer 28 attenuates the light from the light source 4 that has passed through the half mirror 5 by reflecting it multiple times on the absorption plate 23 and the absorption wall 24, and the light that has passed through the half mirror 5 is received by the light receiving system 3. Preventing damage.

前記受光系2は、対物レンズ8及び受光素子9から成り
、眼底7からの光束10はハーフミラ力、乱視状態を演
算して表示器14に出力する様になっている。
The light-receiving system 2 is composed of an objective lens 8 and a light-receiving element 9, and is configured to calculate the half-mirror force and astigmatism state of the light beam 10 from the fundus 7 and output it to the display 14.

更に、演算器13は光源4のマスク板17の回転速度と
、ビデオ信号との同期をとる為、前記モータ22を駆動
部29を介して速度制御している。
Further, the computing unit 13 controls the speed of the motor 22 via a drive unit 29 in order to synchronize the rotational speed of the mask plate 17 of the light source 4 with the video signal.

30はモータの回転を検出するエンコー夕を示す。30 indicates an encoder for detecting the rotation of the motor.

前記マスク板17に対して、ホール素子31が設4−)
ちれ、又、マスク板17には速度検出用の微小マグネッ
ト32とスリット位置に対応した位置検出用微小マグネ
ット33か穿設され、前記ホール素子31は微小マグネ
ット32.33を検出して、その信号を前記演算器13
に入力する様になっている。
A Hall element 31 is provided for the mask plate 17 (4-)
Also, a minute magnet 32 for speed detection and a minute magnet 33 for position detection corresponding to the slit position are drilled in the mask plate 17, and the Hall element 31 detects the minute magnets 32 and 33 and The signal is sent to the arithmetic unit 13
It is now possible to input the .

以下作用を説明する。The action will be explained below.

前記した様に乱視の測定は3経線のディオプター値を測
定することで求められるので、先ず第5図〜第1−3図
に於いて1経線についてのディオプター値測定について
説明する。
As mentioned above, astigmatism can be measured by measuring the diopter values of three meridians, so first, the measurement of diopter values for one meridian will be explained with reference to FIGS. 5 to 1-3.

尚、以下の説明は、投光窓21といずれか一つのスリッ
1へ孔、例えは20aとか合致し、その光10 束か遮光部材12のエッヂ状稜線25aで遮ぎられた場
合を想定する。
The following explanation assumes that a hole, for example 20a, matches the light projection window 21 and one of the slits 1, and the bundle of light 10 is blocked by the edge-like ridgeline 25a of the light blocking member 12. .

第5図(^)に示す様に、被検眼3のテイオプター値が
基準ディオプター値に比べて負のデイオプター値の場合
には、光源4の顛は眼底7の前方で結像され、この光束
により照明された眼底7上の内、光軸上の1点で反射さ
れた光束10を考えると、この光束10は遮光部材12
の前方、即ち被検眼3側で集光され、対物レンズ8によ
り受光素子9上に投影される光束の上半分(斜線部分)
が遮光される。一方、第5図(B)に示す様に、被検眼
のディオプター値が基準ディオプター値の場合には、光
束10は遮光部材12」二に集光されるもので、光束1
0は遮光部材12によって遮られない。
As shown in FIG. 5(^), when the diopter value of the eye 3 to be examined is negative compared to the reference diopter value, the image of the light source 4 is formed in front of the fundus 7, and this light beam forms an image in front of the fundus 7. Considering a light beam 10 reflected at one point on the optical axis on the illuminated fundus 7, this light beam 10 is reflected by the light shielding member 12.
The upper half (shaded area) of the light beam that is focused in front of the subject's eye 3, and projected onto the light receiving element 9 by the objective lens 8.
is shaded. On the other hand, as shown in FIG. 5(B), when the diopter value of the eye to be examined is the reference diopter value, the light beam 10 is focused on the light shielding member 12'', and the light beam 1
0 is not blocked by the light blocking member 12.

又、第5図(C)に示す様に、被検眼3のディオプター
値か基準ディオプター値より正の場合には、光源4の像
は眼底7の後方で結像するように投影され、前述と同様
に眼底7で反射された光束10は遮光部材12の後方、
即ち受光素子9以下第6図(八)〜([)に於いて、受
光面9aに形或される光束の光量分布状態を説明する。
Further, as shown in FIG. 5(C), when the diopter value of the eye 3 to be examined is more positive than the reference diopter value, the image of the light source 4 is projected so as to form behind the fundus 7, and as described above. Similarly, the light beam 10 reflected by the fundus 7 is behind the light shielding member 12,
That is, with reference to the light-receiving element 9 and FIGS. 6(8) to 6([), the distribution of the amount of light formed on the light-receiving surface 9a will be explained.

尚、第6図(ハ)〜(1])に於いて説明を簡略化する
為、光源4の光軸と受光系の光軸とを合致さぜ且遮光部
材12と対物レンズ8とを一致させている。この為、光
源4と対物レンズ8とは同一位置で重ね合わせて示して
おり、遮光部材12は省略して示している。
In addition, in order to simplify the explanation in FIGS. 6(c) to (1)), the optical axis of the light source 4 and the optical axis of the light receiving system are aligned, and the light shielding member 12 and the objective lens 8 are aligned. I'm letting you do it. Therefore, the light source 4 and the objective lens 8 are shown superimposed at the same position, and the light shielding member 12 is omitted.

第6図(八)〜([)は被検眼の屈折力Dが基準屈折力
D。に対し負の場合を示しており、以下の説明は眼底か
らの反射光束は全て対物レンズ8によって受光面9aJ
:に投影されるものとする。
In FIG. 6 (8) to ([), the refractive power D of the eye to be examined is the reference refractive power D. In the following explanation, all the reflected light flux from the fundus is reflected by the objective lens 8 on the light receiving surface 9aJ.
: shall be projected to.

光源4と被検眼瞳孔6との距離を2に設定しこの光源の
像か眼底に合焦する被検眼の屈折力を基準屈折力D。と
すると である。
The distance between the light source 4 and the pupil 6 of the eye to be examined is set to 2, and the refractive power of the eye to be examined where the image of this light source is focused on the fundus is the reference refractive power D. Then, it is.

第6図(A)は被検眼の屈折力かD (<D。)の場合
の、光軸に対し直角方向にI一の長さを有するスリット
状の光源4の軸上の一点S。から13 測で集光され、受光素子9 −lxに投影される光束1
0は第5図(八)とは逆の部分の光束(図中では上半分
)か遮光される。
FIG. 6(A) shows a point S on the axis of a slit-shaped light source 4 having a length I in the direction perpendicular to the optical axis when the refractive power of the eye to be examined is D (<D.). The luminous flux 1 is focused from 13 to 1 and projected onto the light receiving element 9 -lx.
0, a part of the light beam opposite to that shown in FIG. 5 (8) (the upper half in the figure) is blocked.

而して、受光面9aに投影される光束は基準ディオプタ
ー値に対して被検眼3のディオプター値の大小、正負に
よって光量分商状態が変化し、この光量分布状態を基に
ディオプター値が求められる。
The light flux projected onto the light-receiving surface 9a changes in its light quantity distribution state depending on the magnitude and sign/minus of the diopter value of the eye to be examined 3 with respect to the reference diopter value, and the diopter value is determined based on this light quantity distribution state. .

受光素子9はこの受光面9aに形成される光束の光量分
布を検出する為のものであり、前記演算器13は受光素
子9からの信号を基に、受光面9a上に形成される光束
の光量分布を検出し、基準となるディオプター値に対し
被検眼の眼屈折力か正か負かを判断ずると共にその絶対
値を演算し、演算結果を表示器14に出力し、表示器1
4は求められた結果を表示する。
The light-receiving element 9 is for detecting the light intensity distribution of the light flux formed on the light-receiving surface 9a, and the arithmetic unit 13 detects the distribution of the light flux formed on the light-receiving surface 9a based on the signal from the light-receiving element 9. It detects the light intensity distribution, determines whether the eye refractive power of the eye to be examined is positive or negative with respect to the reference diopter value, calculates its absolute value, and outputs the calculation result to the display 14.
4 displays the obtained results.

尚、上記実施例では光束分離手段としてハーフミラーを
使用したか、ビームスプリッタ−1扁光プリズム等種々
の光束分離手段を用いることは勿論である。
Incidentally, in the above embodiment, a half mirror is used as the beam separating means, or it goes without saying that various beam separating means such as a beam splitter 1 polarizing prism may be used.

?投影光束を示すもので、点S。の像は一旦、So′に
結像され、被検眼眼底7には、ぼけた像として投影され
る。D.−Dが大きくなるに従い投影される領域7aは
広くなる。
? Point S indicates the projected light flux. The image is once formed on So', and is projected onto the fundus 7 of the subject's eye as a blurred image. D. As -D becomes larger, the projected area 7a becomes wider.

第6図(B)は受光系2、及び、被検眼眼底7からの反
射光束の状態を示すものである。
FIG. 6(B) shows the state of the light flux reflected from the light receiving system 2 and the fundus 7 of the eye to be examined.

第6図(B)に示す様に、被検眼眼底7上の投影領域の
端部の点I−■からの光束を考えると、この点の像■−
1′は被検眼瞳孔から2゛の距離の位置に結像され、こ
の光束は対物レンス8を介して被検眼瞳孔6と共役位置
に配置した受光素子9」二に投影される。尚、この9′
と被検眼の屈折力Dの関係式は下記の通りである。
As shown in FIG. 6(B), considering the light flux from the point I-■ at the end of the projection area on the fundus 7 of the subject's eye, the image of this point ■-
1' is imaged at a position 2' from the pupil of the eye to be examined, and this light beam is projected via the objective lens 8 onto a light receiving element 9'2 disposed at a position conjugate with the pupil 6 of the eye to be examined. Furthermore, this 9'
The relational expression between D and the refractive power D of the eye to be examined is as follows.

一方、この眼底」二の一点から発した光束のエッチ」二
での広がり幅Δは被検眼の瞳径をUとすると、第6図(
B)から明らかな様に、てあり、第(1)式、第(2)
式より 14 となり、被検眼3の屈折力Dと基準屈折力D。
On the other hand, the spread width Δ at the etch of the light beam emitted from a single point in the fundus is shown in Figure 6 (
As is clear from B), Equation (1) and Equation (2)
From the formula, 14 is obtained, and the refractive power D of the eye 3 to be examined and the reference refractive power D.

どの差か大になるに従い遮光部材12上の広がりは大き
くなる。
The larger the difference, the larger the spread on the light shielding member 12.

次に、受光素子9」二での光束の広がりについて述べる
。受光素子9は、被検眼3の屈折力に関係なく常に、対
物レンズ8に関して被検眼瞳孔と共役に配置されており
、被検眼瞳孔6の径をU、対物レンス8の倍率をβとす
ると、受光素子9上ではβUの径の領域(被検眼の屈折
力に影響を受けない)に光束か投影される。
Next, the spread of the light beam at the light receiving element 9'2 will be described. The light receiving element 9 is always arranged in a conjugate manner with the pupil of the eye to be examined with respect to the objective lens 8, regardless of the refractive power of the eye to be examined 3. If the diameter of the pupil of the eye to be examined 6 is U, and the magnification of the objective lens 8 is β, then On the light receiving element 9, a light beam is projected onto an area having a diameter of βU (which is not affected by the refractive power of the eye to be examined).

又、光軸に対して前記I−。と対称な点I,からの光束
も同様に被検眼瞳孔6からQ′の位置に像■。′を結1
象した後、受光素子9上の同じ領域βUに投影される。
Also, the above I- with respect to the optical axis. Similarly, the light beam from point I, which is symmetrical to , forms an image ■ at the position Q' from the pupil 6 of the eye to be examined. ' Tie 1
After imaging, it is projected onto the same area βU on the light receiving element 9.

光源4を点光源として、ると全ての光束か遮断されるこ
ととなるものである。従って、エッチ状の遮光部材12
により受光素子9上には上方に行くにしたがって暗くな
り、Pnの点で光量か0となる一定傾斜の光量分布とな
るものである。
If the light source 4 is a point light source, all of the light beam will be blocked. Therefore, the etched light shielding member 12
Therefore, the light on the light receiving element 9 becomes darker as it goes upward, and the light amount becomes 0 at the point Pn, resulting in a light amount distribution with a constant slope.

以上の第6図(^)〜(C)では、光源4の光軸上の一
点から発する光束のみを示したか、光源4の端部の一点
S−。(光源の大きさをLとする第6図(D)に示すよ
うになる。この点S−1からの光束は、第6図(D)に
示す被検眼眼底7 1のI−1点からI。点の領域に投
影され、この■一。
In the above FIGS. 6(^) to (C), only the light beam emitted from one point on the optical axis of the light source 4 is shown, or one point S- at the end of the light source 4 is shown. (It becomes as shown in FIG. 6 (D) where the size of the light source is L. The light flux from this point S-1 is transmitted from point I-1 of the fundus 7 1 of the subject's eye shown in FIG. 6 (D). I. Projected onto the area of points, this ■ one.

点、■1点からの反射光は、前述と同様に被検眼瞳孔6
からQ′の距離の位置でI.  、I。
The reflected light from one point is the pupil 6 of the eye to be examined, as described above.
At a distance of Q' from I. ,I.

の像を結像した後、受光素子9上のβUの径の領域に投
影されるものである。ここで、光源4の端部の点S−、
から発する光束のうち、受光素子9上の光束投影の端部
位置P−1に入射する光束は第6図(D)のBの斜線領
域の光束となるものである。
After forming an image, it is projected onto a region having a diameter of βU on the light receiving element 9. Here, the point S- at the end of the light source 4,
Of the light beams emitted from the light receiving element 9, the light beams incident on the end position P-1 of the light beam projection on the light receiving element 9 are the light beams in the shaded area B in FIG. 6(D).

17 遮光部材12が無いものとした時、これら眼底7からの
各点■−。、・・・Io、・・・し、からの光束の積分
か受光素子9上の光量分布を決めるものである。
17 Each point ■- from the fundus 7 when the light shielding member 12 is not provided. , . . . Io, .

ここで、受光素子9上での光量分布について考察するた
め、受光素子9上の光束投影位置の端部位置P−。、す
なわち、光軸を中心とした座?の位置に入射する光束は
第6図(C)での斜線Aの範囲の光束に限られることと
なる。又、同様に、光軸に対して、前記のP−。位置と
対称な位Hp■に入射する光束を考えると斜線A′範囲
の光束に限られることになる。してみると、被検眼瞳孔
6からQの距離(光源4と共役位置)の位置に光軸の一
方の光束A′を遮断するエッチ状の遮光部材12を配置
すると受光素子9上のP−。の位置に入射する光束は遮
光部材12により遮断されず、このP−。の位置から上
方の位置にいくに従って光束は徐々に遮光され、中心P
Here, in order to consider the light quantity distribution on the light receiving element 9, the end position P- of the light beam projection position on the light receiving element 9. , that is, a locus centered on the optical axis? The luminous flux incident on the position is limited to the luminous flux within the range indicated by the diagonal line A in FIG. 6(C). Similarly, the above-mentioned P- with respect to the optical axis. Considering the luminous flux incident on the position Hp2 which is symmetrical to the position, the luminous flux is limited to the range of the diagonal line A'. As a result, if an etched light shielding member 12 is placed at a distance Q from the pupil 6 of the eye to be examined (a position conjugate with the light source 4), P- on the light receiving element 9 is placed. . The light flux incident on the position P- is not blocked by the light shielding member 12. The light beam is gradually blocked as it moves upward from the position of P.
.

位置て光束の半分か遮光され、P9の位置にな又、前記
S−。の点と対称な光源4の一点Soからの光束を考え
、そのうち受光素子9上のP−7の点に入射する光束を
考えると第6図([)のCの斜線領域の光束となる。こ
の様に、光源4かある大きさを有ずるものとして考えた
場合、受光素子9上の一点の光量は、光源4の各点から
の光束の総和として考えなければならない。
At the position P9, half of the luminous flux is blocked, and at the position P9, the S-. Considering the light flux from one point So of the light source 4 which is symmetrical to the point , and considering the light flux incident on the point P-7 on the light receiving element 9, it becomes the light flux in the shaded area C in FIG. 6([). In this way, when considering the light source 4 as having a certain size, the amount of light at one point on the light receiving element 9 must be considered as the sum of the luminous fluxes from each point of the light source 4.

第7図(^)は、この考え方に基づき、受光素子9上の
P−。の位置に入射する各光束を重ね合わせて示したも
のであり、光源上のS−1の位置から発する光束のうち
P−。の位置に入射する光束はBの領域であり(第6図
(D)参照)、光源上での位置か上方に行くにしたかっ
てその光束も上方に移動し、軸上の光源位置SoではA
の領域の光束となり(第6図(C)参照)、光源上ての
S。の位置ではCの領域の光束となる(第6図([)参
照)。従って、受光素子9上のP−1の点での光量は、
これらの光束の総和として考えられる。
FIG. 7 (^) shows P- on the light receiving element 9 based on this idea. The light beams incident on the position S-1 are shown superimposed, and P- is the light beam emitted from the position S-1 on the light source. The light flux incident on the position So is in the area B (see Fig. 6 (D)), and as the position on the light source goes upward, the light flux also moves upward, and at the light source position So on the axis,
(see Figure 6(C)), and S on the light source. At the position , the light beam is in the area C (see FIG. 6 ([)). Therefore, the amount of light at point P-1 on the light receiving element 9 is:
It can be considered as the sum of these luminous fluxes.

ここで、被検眼瞳孔6からQの距離の位置に18 遮光部材12を配置した時の受光素子9上の点P−1の
光量を示す模式図を第7図(八)に示す。
Here, a schematic diagram showing the amount of light at a point P-1 on the light receiving element 9 when the light shielding member 12 is placed at a distance Q from the pupil 6 of the eye to be examined is shown in FIG. 7 (8).

第7図(八)は光源上の位置か変化するにしたかって遮
光部材12により光束かどの様に遮光されるかを示すも
のである。第7図(B)の横軸は光源」二の座標位置、
縦軸は光量を示すものであり、光源上での各点からの光
束を考えると、座標位の光束は遮光部材12により遮光
されず、座標位置の0点を過き゛ると徐々に遮光され、
Δ(前述の光束の広がり)の位置で全ての光束か遮断さ
れる事になるものである。ここで遮光されない場合の光
源上の各点からの光量をkとして光源上での各点からの
光量の寄与を示したものか第7図(B)であり、斜線部
の面積が受光素子上のP−。の点の光量値に対応ずるも
のである。この面積値Tは下記の様になる。
FIG. 7(8) shows how the light beam is blocked by the light blocking member 12 as the position on the light source changes. The horizontal axis of Fig. 7 (B) is the coordinate position of the light source,
The vertical axis indicates the amount of light, and considering the light flux from each point on the light source, the light flux at the coordinate position is not blocked by the light shielding member 12, and when it passes the 0 point of the coordinate position, it is gradually blocked,
All of the light flux is blocked at the position Δ (the above-mentioned spread of the light flux). Figure 7 (B) shows the contribution of the amount of light from each point on the light source, where k is the amount of light from each point on the light source when the light is not blocked. P-. This corresponds to the light amount value at the point. This area value T is as follows.

同様にして、受光素子上での他の点についても考察する
。第8図(八)は受光素子上での中心?oの点からはA
”の斜線領域、光源上のP−■の点からの光束はC″の
斜線領域の光束として示す。この場合には、第9図(B
)に示すように、光源の各点から受光素子のPゎの点に
入射ずるの位置までは光束は遮光されず、一Δ位置を過
き゛ると徐々に光束か遮られ、0の位置で全ての光束が
遮断されることになり、この面積値を計算すると下記値
になる。
Similarly, other points on the light receiving element will also be considered. Is Fig. 8 (8) the center on the light receiving element? A from the point o
The light flux from the point P-■ on the light source in the shaded area "C" is shown as the light flux in the shaded area C''. In this case, Fig. 9 (B
), the light beam is not blocked from each point of the light source to the point Pゎ of the light receiving element, and after passing the 1∆ position, the light beam is gradually blocked, and at the 0 position, all the light beams are blocked. The light beam will be blocked, and the area value will be calculated as follows.

これらの式(6)、(7)、(8)の結果からわかるよ
うに、受光素子9上の光M値は下方から上方にいくにし
たかって、光量値は徐々に低くなるものであり、その受
光素子上での光量分布を図示すると第10図に示すよう
に直線的に変化する。
As can be seen from the results of these equations (6), (7), and (8), the light M value on the light receiving element 9 gradually decreases from the bottom to the top. When the light intensity distribution on the light receiving element is illustrated, it changes linearly as shown in FIG.

前述の説明に於いては、眼底の一点から発する光束を考
えた場合の遮光部材12上での広がり定して説明を行っ
たものである。
In the above description, the spread on the light shielding member 12 was explained based on the light beam emitted from one point on the fundus of the eye.

21 点P。に入射する光束を第7図(八)と同様に示したも
のであり、光源」二のS−oの点からの光束の内P。の
点に入射ずる光束はB。の斜線領域、光源−Lの中心S
。の点からはA。の斜線領域、光源上の87の点からの
光束はC。の斜線領域の光束となるものであり、受光素
子9の中心に入射する光量砒第8図(B)の斜線領域の
面積Toに対応することになる。すなわち、光源の各点
からの受光素子の中心点に入射する光束をの光束が遮断
されることになり、この面積値を前述と同様に計算する
と下記値になる。
21 points P. The light flux incident on the light source is shown in the same way as in FIG. The luminous flux incident on the point is B. Shaded area, center S of light source-L
. A from the point of view. In the shaded area, the luminous flux from 87 points on the light source is C. The amount of light incident on the center of the light receiving element 9 corresponds to the area To of the shaded area in FIG. 8(B). In other words, the light beams incident on the center point of the light receiving element from each point of the light source are blocked, and when the area value is calculated in the same manner as described above, it becomes the following value.

同様にして、受光素子上での点p.に入射する光束の状
態、及びこの点ての光量値を第9図(八)、第9図(8
)に示す。第9図(A)において、光源上のS−1の点
からの光束の内P5、の点に入射ずる光束はB′の斜線
領域、光源上の中心ー値D。に対ずる被検眼のディオプ
ター値の偏差ΔDか所定量以」二の場合には、第13図
に示すような直線変化は示さない。これを第7図ないし
第8図にしたかって説明を行う。前述のよ(B)、第9
図(B)はそれぞれ第14図、第15図、第16図、に
示ず様になり、この光量変化は第10図に示す様な直線
変化を示さないことになる。
Similarly, point p on the light receiving element. Figure 9 (8) and Figure 9 (8) show the state of the luminous flux incident on the point and the light amount value at this point.
). In FIG. 9(A), among the light fluxes from point S-1 on the light source, the light flux incident on point P5 is in the shaded area B', the center value D on the light source. If the deviation ΔD of the diopter value of the eye to be examined with respect to is more than a predetermined amount, a linear change as shown in FIG. 13 is not shown. This will be explained as shown in FIGS. 7 and 8. As mentioned above (B), No. 9
14, FIG. 15, and FIG. 16, respectively, and this light amount change does not show a linear change as shown in FIG. 10.

次に、第5図(B)で示す被検眼の屈折力が蘂準値であ
る場合、第5図(C)で示す被検眼の屈折力か基準値よ
り正の場合も、前記したと同様に受光素子9上の光量分
布を考察することができ、その場合被検眼の屈折力か基
準値である場合は、第11図に示す如く、均一分布、被
検眼の屈折力か正の場合は第10図で示したものと逆な
分布状態となる。
Next, if the refractive power of the eye to be examined is the standard value as shown in FIG. 5(B), and if the refractive power of the eye to be examined is more positive than the standard value as shown in FIG. 5(C), the same applies as above. In this case, if the refractive power of the eye to be examined is the reference value, it will be a uniform distribution, as shown in Figure 11, and if the refractive power of the eye to be examined is positive, it will be The distribution state is opposite to that shown in FIG.

上記した光量分布の傾斜かディオプター値(屈折力)を
そして、傾ネ:]の方向かディオプタ22 ー値の正負を表わす。以下第13図を参照して説明する
The slope of the above-mentioned light quantity distribution or diopter value (refractive power) is expressed, and the direction of the slope: ] or the positive or negative value of the diopter value is expressed. This will be explained below with reference to FIG.

前記した光束の広がりΔ、即ちボケ量ΔGよ、前記(5
)式より、 よって(7)式より ΔfuΔD 而して、(11)式は基準ディオプター値D。に対する
被検眼のディオプター値の儲差ΔDとにより被検眼のデ
ィオプター値の靖差ΔDを求めることか可能となる。従
って、被検眼のディオプター値Dは下記式で求めること
かてきる。
The spread Δ of the luminous flux described above, that is, the amount of blur ΔG,
) From equation (7), ΔfuΔD Therefore, equation (11) is the reference diopter value D. It is possible to determine the difference ΔD in diopter value of the eye to be examined from the difference ΔD in diopter value of the eye to be examined. Therefore, the diopter value D of the eye to be examined can be calculated using the following formula.

D=D.十ΔD      =−(12)て行われ、各
走査は走査開示の同J9J (g号(以下ビデオ信号)
により開始される。従って、1画面(1−フレーム)分
の信号を得る為に2つのビデオ信号か発せられ、これら
ビデオ信号は時間的に等間隔である。
D=D. 1 ΔD = - (12), and each scan is performed using the same J9J (No. g (hereinafter referred to as video signal)
is started by. Therefore, in order to obtain a signal for one screen (one frame), two video signals are generated, and these video signals are equidistant in time.

以下に述べるモータの速度制御は、このビデオ信号を基
準として、前記ポール素子31からの速度検出信号の発
信数か所定の値となる様にするものである。
The speed control of the motor described below is performed using this video signal as a reference so that the number of speed detection signals transmitted from the pole element 31 becomes a predetermined value.

第l7図FA)(B)(C)に於いて」二段かビデオ信
号、下段が速度検出パルス信号を示す。
In Figures 17 (FA), (B), and (C), the two stages show the video signal, and the lower stage shows the speed detection pulse signal.

モータ22が回転し始めた状態では、回転数か遅く、速
度検出パルスは1フレームに対応ずるビデオ信号に対し
て、所定の値より小さい(図では1パルスに対して8フ
レーム)。従って、演算器13は駆動部29に対し、速
度を増加する指令を発する。駆動部29は該指令により
モータ22を増速し、モータ22の速度か該指令と合致
するか否かをエンコーダ30からの信号を基に監視する
When the motor 22 starts rotating, the rotation speed is low and the speed detection pulse is smaller than a predetermined value for a video signal corresponding to one frame (in the figure, eight frames per pulse). Therefore, the computing unit 13 issues a command to the drive unit 29 to increase the speed. The drive unit 29 increases the speed of the motor 22 based on the command, and monitors based on the signal from the encoder 30 whether the speed of the motor 22 matches the command.

25 上記の如くして1経線についてのデイオプター値を求め
ることかできるか、他の2経線についてのティオプター
値は、マスク板を回転させマスク板の位置が例えば60
°次に1206となった時、光源4からの光束か遮光部
材12のエッチ状稜線25b, 25c・・・で順次遮
光される様にして求めればよい。
25 Is it possible to obtain the deopter value for one meridian as described above? The deopter value for the other two meridians can be determined by rotating the mask plate and adjusting the position of the mask plate to, for example, 60 degrees.
° Next, when 1206 is reached, the light flux from the light source 4 may be obtained by being sequentially blocked by the etched ridge lines 25b, 25c, . . . of the light blocking member 12.

即ち、スリット板20の3箇所のスリット孔及ひ遮光部
材12の3箇所のエッチ状稜線を選び、各位置のディオ
プター値を測定すれば、前記第(1)式により球面度数
S、乱視度数C、乱視軸角度Aか直ちに求められる。
That is, by selecting the three slit holes of the slit plate 20 and the three etched ridge lines of the light shielding member 12 and measuring the diopter value at each position, the spherical power S and the astigmatic power C can be determined by the above equation (1). , the astigmatic axis angle A can be immediately determined.

次に、第17図(A) (B) (C)を併用して、モ
ータ22の速度制御について説明する。
Next, speed control of the motor 22 will be explained using FIGS. 17(A), 17(B), and 17(C).

ここで、モータ22はパルスモー夕として説明する。Here, the motor 22 will be explained as a pulse motor.

受光素子9の、画像信号或は受光状態、受光面9aJ:
を走査し、各点での光/電変化された信号を、各点の位
置と対応させることで得られ、通常走査は走査線の奇数
番号、偶数番号に分けモータ22の速度が所定の値とな
るとビデオ信号とマスク板20との回転位置の同期をと
る。これは、画像信号を取込時に、取込んだ画像信号が
、遮光部材12により光束の一部か正確に遮光された状
態であることを保証する為のものである。
Image signal or light receiving state of light receiving element 9, light receiving surface 9aJ:
It is obtained by scanning the optical/electronic signal at each point and making it correspond to the position of each point. Normal scanning is divided into odd numbered and even numbered scanning lines and the speed of the motor 22 is set to a predetermined value. Then, the video signal and the rotational position of the mask plate 20 are synchronized. This is to ensure that a portion of the light beam of the captured image signal is accurately blocked by the light blocking member 12 when the image signal is captured.

速度の同期をとった場合にビデオ信号と速度検出パルス
との間にΔtの時間差かあったとする(第l7図(B)
)。
Assume that there is a time difference of Δt between the video signal and the speed detection pulse when the speeds are synchronized (Figure 17 (B)
).

前記演算器13はΔ1,の時間差を演算し、ΔLか解消
される様に速度制御を行う。速度制御の仕方は種々考え
られるか、例えば同期をかけた時点から、所定の時間だ
けモータ駆動の為のパルス間隔を小さくシく速度を上げ
)、次のビデオ信号、或はその次のしデオ信号の時点で
前記Δtを零にする。
The arithmetic unit 13 calculates the time difference Δ1, and performs speed control so that ΔL is eliminated. There are various ways to control the speed. For example, from the time when synchronization is applied, the pulse interval for driving the motor is decreased for a predetermined period of time (increasing the speed), the next video signal, or the next video signal. The Δt is set to zero at the time of the signal.

ビデオ信号とマスク板20の速度及び回転位置の同期か
とれると、前記ホール素子31から位置検出用マグネッ
ト32の検出信号か入力されると、その時時での1フレ
ーム分の画@信号を取込み、26 該画像信号より前記した光量分布を求め、更に眼屈折力
、乱視状態を測定する。
When the video signal and the speed and rotational position of the mask plate 20 are synchronized, when the detection signal of the position detection magnet 32 is input from the Hall element 31, the image signal for one frame at that time is captured. 26 The above-mentioned light amount distribution is obtained from the image signal, and the eye refractive power and astigmatism state are further measured.

ホール素子31からの位置検出信号は、各スリット孔2
0a, 20b, 20c・・・に対応して発せられる
ので、3経線、6箇所のデータを測定することかできる
The position detection signal from the Hall element 31 is transmitted to each slit hole 2.
Since it is emitted corresponding to 0a, 20b, 20c, etc., it is possible to measure data at 3 meridians and 6 locations.

尚、前記スリット孔20a, 20b, 20c・・・
、投光窓21はいわば細長い台形形状(各端面は曲線の
方かよい)であるか、これは、前記測定か光量分布を測
定することから、中心側と周辺側の光量を均一化する為
のものてある。
Note that the slit holes 20a, 20b, 20c...
The light projection window 21 has a so-called elongated trapezoidal shape (each end face should be curved).This is because the light intensity distribution is measured in the above measurement, so that the light intensity on the center side and the peripheral side is made uniform. There are things.

次に、第18図〜第20図に於いて第2の実方也例を説
明する。
Next, a second practical example will be explained with reference to FIGS. 18 to 20.

尚、第18図中第1図中で示したものと同一のものには
同符号を付してある。
In FIG. 18, the same parts as those shown in FIG. 1 are given the same reference numerals.

第2の実施例ては光源4を発光体15、拡散板19、波
長選択フィルタを兼ねるスリッ1〜板35て楕或する。
In the second embodiment, the light source 4 is formed into an ellipse including a light emitting body 15, a diffusion plate 19, and a slit 1 to a plate 35 which also serve as wavelength selection filters.

該スリット板35はガラス等の透明板に前記スリッlヘ
孔に相当ずるスリット窓部35a, 35+), 35
Cラー9yで反射された光を、受光素子9Zはタイクロ
イックミラ−92で反射された光をそれぞれ受光し得る
様に配設し、且これら受光素子9x,9y9Zはその受
光面か対物レンス8に関して被検眼3の瞳孔6と共役位
置に配置してあることは言うまでもない。
The slit plate 35 has slit window portions 35a, 35+), 35 corresponding to the slit holes in a transparent plate such as glass.
The light receiving element 9Z is arranged so as to be able to receive the light reflected by the C mirror 9y, and the light reflected by the tychroic mirror 92, respectively, and these light receiving elements 9x, 9y9Z are arranged so that they can receive the light reflected by the mirror 9y, and the light receiving element 9Z receives the light reflected by the mirror 9y. Needless to say, it is arranged at a position conjugate with the pupil 6 of the eye 3 to be examined.

該実施例に於いて、受光素子9xはエッチ状稜線25a
に遮光された800〜840nmのみの反射光束を受光
し、該光束による光量分布が求められ、受光素子9yは
エッチ状稜線25bに遮光された840〜880nmの
みの反射光束を受光し、受光素子9lはエッチ状稜線2
5cに遮光された8130〜920nmの波長のみを受
光しそれぞれ経線位置の異なった光量分布が求められる
In this embodiment, the light receiving element 9x has an etched ridge line 25a.
The light receiving element 9y receives the reflected light beam of only 800 to 840 nm that is blocked by the etched ridge line 25b, and the light intensity distribution of the light beam is determined. is the etch-like ridge line 2
Only the wavelengths of 8130 to 920 nm, which are blocked by 5c, are received, and light intensity distributions at different meridian positions are obtained.

演算器13はこれら3種の光量分布により3経線方向の
眼屈折力を求めることかてき、更に乱視状態を測定する
ことかできる。
The computing unit 13 can determine the eye refractive power in the three meridian directions based on these three kinds of light intensity distributions, and can also measure the astigmatism state.

尚、前記した波長の選択は一例であり、干渉しない範囲
のものであれば種々選択か可能であ2つ を中心を3等分した経線上に設け、他の部分は不透明と
する。次に、各スリッ1〜窓部35a, 35b,35
cにコーティングをし、スリット窓部35cは880〜
920nmの波長を透過するフィルタ、スリット窓部3
5bは840〜880n.m波長のみを透過するフィル
タ、スリッl−窓部35a 4i800〜840nm波
長のみを透過するフィルタとする。
Note that the selection of the wavelengths described above is just an example, and various selections may be made as long as they do not interfere.Two wavelengths are provided on a meridian dividing the center into three equal parts, and the other portions are made opaque. Next, each slit 1 to window portion 35a, 35b, 35
c is coated, and the slit window portion 35c is 880~
Filter that transmits a wavelength of 920 nm, slit window part 3
5b is 840-880n. A filter that transmits only m wavelengths, and a filter that transmits only wavelengths of 800 to 840 nm.

遮光部材12に穿設される透過孔25の形状は、前記ス
リッ1へ窓部35a, 35b, 35cの配置に対応
して例えば3角形状とする。
The shape of the transmission hole 25 formed in the light shielding member 12 is, for example, triangular, corresponding to the arrangement of the windows 35a, 35b, and 35c in the slit 1.

次に、対物レンズ8の反遮光部材12測に2つのタイク
ロイックミラ−36y, 36zを反射する方向を変え
て配設する。1つのダイクロイックミラー36Vは88
0 〜920nmの波長のみを反射する様に、又他のグ
イクロイックミラ−362は840〜880nmの波長
のみを反射する様にする。
Next, two tychroic mirrors 36y and 36z are disposed on the anti-light-shielding member 12 of the objective lens 8 with their reflecting directions changed. One dichroic mirror 36V is 88
The mirror 362 is configured to reflect only wavelengths from 0 to 920 nm, and the other guichroic mirror 362 is configured to reflect only wavelengths from 840 to 880 nm.

受光素子9×はタイクロイックミラ−9y,9zを透過
した光を、受光素予9■はタイクロイックミることは言
うまでもない。
It goes without saying that the light receiving element 9x receives the light transmitted through the tychroic mirrors 9y and 9z, and the light receiving element 92 receives the tichroic light.

[発明の効果] 以上述べた如く本発明によれば、複数の経線についての
ディオプター値か測定でき、乱視についての測定を実現
化すると共に受光系は受光素子を用いているので測定結
果は瞬時に得られるという優れた効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, it is possible to measure diopter values for a plurality of meridians, it is possible to measure astigmatism, and since the light receiving system uses a light receiving element, the measurement results are instantaneously obtained. It exhibits excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す基本構成図、第2
図は第1図のA−A矢視図、第3図は第1図のB−B矢
視図、第4図は第1図のC−C矢視図、第5図(A)(
B) (C)は該実施例に於ける被検眼のディオプター
値の相違による光束の状態の相違を示す説明図、第6図
(^)(B) TC)(D)(E)は受光系及び被検眼
眼底からの反射光束の状態を示す説明図、第7図(八)
、第8図(A)、第9図(A)は受光素子に到達する光
源各点の反射光束の状態を示す説明図、第7図(B)、
第8図CB)、第9図(B)は遮光部材によって遮られ
た場合の各光束の光量変化を示す説明図、第30 10図、第11図、第12図はディオプター値に対応し
た受光面での光量分布状態を示ず説明図、第13図は光
量分布状態よりディオプター値を求める場合の説明[2
I.第14図、第15図、第16図は遮光部材上での広
がり幅Δが光源の1/2の大きさより大きな場合の遮光
部材によって遮光された場合の各光束の光量変化を示す
説明図、第17図(^)(B)(C)はモータ制御を説
1り]ずるタイミング線図、第18図は第2の実施例を
示す基本横成図、第19図は第18図のDD矢視図、第
20図は第18図のE−E矢視図である。 1は投影系、2は受光系、3は被検眼、4は光源、5は
ハーフミラー、8は対物レンズ、9は受光素子、12は
遮光部材、17はマスク板、2035はスリット板、3
6y, 36zはダイクロイックミラーを示す, 31 2 2 2 2 2 2 第14図 光量 第15図 光量 ↑
Fig. 1 is a basic configuration diagram showing the first embodiment of the present invention;
The figure is a view taken along the line A-A in Figure 1, Figure 3 is a view taken along the line B-B in Figure 1, Figure 4 is a view taken along the line C-C in Figure 1, and Figure 5 (A) (
B) (C) is an explanatory diagram showing the difference in the state of the light flux due to the difference in the diopter value of the eye to be examined in this example, and Figure 6 (^) (B) TC) (D) (E) is the light receiving system. and an explanatory diagram showing the state of the reflected light flux from the fundus of the eye to be examined, FIG. 7 (8)
, FIG. 8(A), FIG. 9(A) is an explanatory diagram showing the state of the reflected light flux at each point of the light source reaching the light receiving element, FIG. 7(B),
Fig. 8 CB) and Fig. 9 (B) are explanatory diagrams showing changes in the light intensity of each luminous flux when blocked by a light shielding member, Fig. 30 Fig. 10, Fig. 11, and Fig. 12 are light reception corresponding to diopter values. Fig. 13 is an explanatory diagram that does not show the light intensity distribution state on the surface, and is an explanation of the case where the diopter value is determined from the light intensity distribution state [2
I. FIGS. 14, 15, and 16 are explanatory diagrams showing changes in the amount of light of each light beam when blocked by the light shielding member when the spread width Δ on the light shielding member is larger than 1/2 the size of the light source, Figure 17 (^) (B) (C) is a timing diagram for explaining motor control, Figure 18 is a basic horizontal diagram showing the second embodiment, Figure 19 is the DD of Figure 18. 20 is a view taken along the line E--E in FIG. 18. 1 is a projection system, 2 is a light receiving system, 3 is an eye to be examined, 4 is a light source, 5 is a half mirror, 8 is an objective lens, 9 is a light receiving element, 12 is a light shielding member, 17 is a mask plate, 2035 is a slit plate, 3
6y, 36z indicate dichroic mirrors, 31 2 2 2 2 2 2 Figure 14 Light amount Figure 15 Light amount ↑

Claims (1)

【特許請求の範囲】 1)測定光源を有し、被検眼眼底に測定光源像を投影す
る為の投影系と、被検眼瞳孔と略共役位置に配置した受
光素子上に眼底からの反射光束を導く為の受光系とを有
し、受光素子上に形成された被検眼の瞳孔像の光量分布
より被検眼の眼屈折力を測定する眼屈折力測定装置に於
いて、前記光源が複数経線上より光束を投影する様に構
成されると共に該複数の光束を選択して透過するマスク
板を設け、前記受光系の光路中に前記各選択された光束
の反射光束の一部を遮光する遮光部材を設けたことを特
徴とする眼屈折力測定装置。 2)測定光源を有し、被検眼眼底に測定光源像を投影す
る為の投影系と、被検眼瞳孔と略共役位置に配置した受
光素子上に眼底からの反射光束を導く為の受光系とを有
し、受光素子上に形成された被検眼の瞳孔像の光量分布
より被検眼の眼屈折力を測定する眼屈折力測定装置に於
いて、前記光源が複数経線上の位置よりそれぞれ異なる
波長帯の測定光を発する様にし、前記受光系の光路中に
各波長帯の反射光束の一部を遮光する遮光部材を設ける
と共に該遮光部材を通過した反射光束を波長帯毎に分離
するダイクロイックミラーを設けたことを特徴とする眼
屈折力測定装置。
[Scope of Claims] 1) A projection system that includes a measurement light source and projects an image of the measurement light source onto the fundus of the eye to be examined, and a light flux reflected from the fundus onto a light-receiving element disposed at a substantially conjugate position with the pupil of the eye to be examined. In an eye refractive power measuring device that has a light receiving system for guiding the eye and measures the eye refractive power of the eye to be examined based on the light intensity distribution of the pupil image of the eye to be examined formed on the light receiving element, the light source is located on a plurality of meridians. a light shielding member configured to project a plurality of light beams and selectively transmitting the plurality of light beams, and providing a mask plate for selectively transmitting the plurality of light beams, and blocking a part of the reflected light beam of each of the selected light beams in the optical path of the light receiving system; An eye refractive power measuring device characterized by being provided with. 2) A projection system that includes a measurement light source and projects an image of the measurement light source onto the fundus of the eye to be examined, and a light receiving system that guides the reflected light flux from the fundus onto a light receiving element placed at a position approximately conjugate with the pupil of the eye to be examined. In an eye refractive power measuring device that measures the eye refractive power of the eye to be examined based on the light intensity distribution of the pupil image of the eye to be examined formed on the light receiving element, the light source has different wavelengths from positions on multiple meridians. a dichroic mirror configured to emit measurement light of a band, a light shielding member for blocking a part of the reflected light flux of each wavelength band in the optical path of the light receiving system, and separating the reflected light flux passing through the light shielding member into each wavelength band; An eye refractive power measuring device characterized by being provided with.
JP1160085A 1989-06-22 1989-06-22 Eye refractive power measuring device Expired - Lifetime JP2817798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160085A JP2817798B2 (en) 1989-06-22 1989-06-22 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160085A JP2817798B2 (en) 1989-06-22 1989-06-22 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JPH0323835A true JPH0323835A (en) 1991-01-31
JP2817798B2 JP2817798B2 (en) 1998-10-30

Family

ID=15707543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160085A Expired - Lifetime JP2817798B2 (en) 1989-06-22 1989-06-22 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP2817798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724818B1 (en) * 2003-10-31 2007-06-04 인터내셔널 비지네스 머신즈 코포레이션 Plasma Enhanced ALD of Tantalum Nitride Double Layer
KR100750825B1 (en) * 2005-12-14 2007-08-23 주식회사 휴비츠 Slit lamp microscope with corneal radius measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724818B1 (en) * 2003-10-31 2007-06-04 인터내셔널 비지네스 머신즈 코포레이션 Plasma Enhanced ALD of Tantalum Nitride Double Layer
KR100750825B1 (en) * 2005-12-14 2007-08-23 주식회사 휴비츠 Slit lamp microscope with corneal radius measurement

Also Published As

Publication number Publication date
JP2817798B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPS6328614B2 (en)
JPS61280543A (en) Apparatus for measuring refractive power of optical system
JP2000066113A (en) Binoculars
US4405215A (en) Working position locating means for ophthalmologic apparatus
JP2749818B2 (en) Eye gaze detection device
JPH05220113A (en) Eye refracting power measuring instrument
JPH0323835A (en) Apparatus for measuring eye refractive force
JP2001340299A (en) Eye optical characteristics measuring device
JPH035810B2 (en)
JP2775276B2 (en) Eye refractive power measuring device
SU935072A1 (en) Method of registering operator eye motions
JP2775285B2 (en) Eye refractive power measuring device
JP2775269B2 (en) Eye refractive power measuring device
JP2817791B2 (en) Eye refractive power measuring device
JP2806433B2 (en) Eye refractive power measuring device
JP2806435B2 (en) Eye refractive power measuring device
JP2817790B2 (en) Eye refractive power measuring device
JPH02252435A (en) Eye refractivity measuring apparatus
JP3046062B2 (en) Eye refractive power measuring device
JPH04114629A (en) Cornea shape measuring apparatus
JPS6051897B2 (en) Alignment device for crystalline lens cross-section imaging device
JPH067299A (en) Ophthalmologic refractometer
JP2002336200A (en) Ophthalmoscopic equipment
JP3510312B2 (en) Eye refractive power measuring device
JP2817795B2 (en) Eye refractive power measuring device