[go: up one dir, main page]

JPH03237613A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH03237613A
JPH03237613A JP3213590A JP3213590A JPH03237613A JP H03237613 A JPH03237613 A JP H03237613A JP 3213590 A JP3213590 A JP 3213590A JP 3213590 A JP3213590 A JP 3213590A JP H03237613 A JPH03237613 A JP H03237613A
Authority
JP
Japan
Prior art keywords
magnetic
atomic
layer
alloy
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3213590A
Other languages
Japanese (ja)
Other versions
JP2653204B2 (en
Inventor
Minoru Yamagishi
稔 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2032135A priority Critical patent/JP2653204B2/en
Publication of JPH03237613A publication Critical patent/JPH03237613A/en
Application granted granted Critical
Publication of JP2653204B2 publication Critical patent/JP2653204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and electromagnetic conversion characteristics and to reduce medium noise by using Co(100-x-y)CrxTay (8 atomic%<=x<=20 atomic%; 2atomic%<=y<=6atomic%) as a magnetic material. CONSTITUTION:On a nonmagnetic substrate, there are successively formed a nonmagnetic metal base layer, magnetic layer, and protective layer. The magnetic layer consists of an alloy of Co(100-x-y)CrxTay (8 atomic5<=x<=20 atomic%; 2atomic%<=y<=6atomic%). Namely, by using a Co-Cr-Ta alloy, coercive force suitable for high-density recording can be obtained. By adding Ta, CoCr grains are made very small and intergranular segregation of Ta is caused, which devides individual grains well. This realizes low medium noise and high coercive force. Thereby, magnetic characteristics and electromagnetic conversion characteristics are improved and medium noise is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固定磁気ディスク装置に搭載される磁気デ
ィスクなどの磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium such as a magnetic disk mounted in a fixed magnetic disk device.

〔従来の技術〕[Conventional technology]

磁気ディスクなどの磁気記録媒体(以下、単に媒体とも
称する〉は、通常、非磁性基板上に非磁性金属下地層、
磁性層、保護層が順次積層されて構成されている。媒体
表面の潤滑性能を高めるために、保護層上にさらに液体
潤滑層を形成することも多く行われている。
A magnetic recording medium (hereinafter also simply referred to as a medium) such as a magnetic disk usually has a non-magnetic metal underlayer on a non-magnetic substrate.
A magnetic layer and a protective layer are sequentially laminated. In order to improve the lubrication performance of the medium surface, a liquid lubricant layer is often further formed on the protective layer.

このような媒体は、通常、以下のようにして製造される
。非磁性基板の材質としては、各種金属や合金、あるい
はガラス、セラミックなどが用いられる。中でも、アル
ミニウムまたはアルミニウムを主成分としこれにその他
の金属元素を加えて強度、m性、耐食性などを改良した
ものが多用されている。この基板の表面には、磁気ヘッ
ドの衝突による媒体面変形を防止するためにアルマイト
Such media are typically manufactured as follows. As the material of the non-magnetic substrate, various metals, alloys, glass, ceramics, etc. are used. Among these, aluminum or those whose main component is aluminum and which has other metal elements added thereto to improve strength, mechanical properties, corrosion resistance, etc. are often used. The surface of this substrate is anodized to prevent deformation of the medium surface due to collisions with magnetic heads.

N1−P合金無電解めっきなどにより高い硬度の強化層
が形成される。もちろん、ガラスやセラミックなどそれ
自体が十分な硬度を有する材質の基板の場合にはこのよ
うな強化層は省略されてもよい。
A reinforced layer with high hardness is formed by N1-P alloy electroless plating. Of course, in the case of a substrate made of a material that itself has sufficient hardness, such as glass or ceramic, such a reinforcing layer may be omitted.

このような基板の表面は研磨により通常中心線平均粗さ
Raで20人〜100人程度の平滑な表面とされ、続い
て、そのほぼ円層方向に沿ってテクスチャアリングと呼
ばれている微細な凹凸を形成される。
The surface of such a substrate is usually polished to a smooth surface with a centerline average roughness Ra of about 20 to 100 roughness, and then fine texturing, called texturing, is performed approximately along the circular layer direction. Irregularities are formed.

このようにして所要の表面形状に加工された非磁性基板
を精密洗浄した後、その表面に、スパッタ法により、磁
性層の磁気特性を高め、また基板との密着性を改善する
ための非磁性金属下地層3例えばCr、 Cr合金、W
あるいはMoからなる層が形成され、続いてC0合金か
らなる磁性層が形成され、さらにその上に、磁性層を外
部環境から保護し、かつ、媒体表面の潤滑性能を高める
ための保護層。
After precision cleaning the nonmagnetic substrate processed into the desired surface shape in this way, a sputtering method is applied to the surface to enhance the magnetic properties of the magnetic layer and to improve adhesion to the substrate. Metal base layer 3 such as Cr, Cr alloy, W
Alternatively, a layer made of Mo is formed, then a magnetic layer made of a C0 alloy is formed, and a protective layer is further formed thereon to protect the magnetic layer from the external environment and to improve the lubricating performance of the medium surface.

例えばa−C層が形成されて媒体とされる。For example, a-C layers are formed and used as a medium.

近年、コンピュータなどの情報処理システムの処理能力
の増大、小型化に伴い、その補助記憶装置として用いら
れる固定磁気ディスク装置の大容量化、小型化が要望さ
れ、それに搭載される磁気ディスクも、高密度記録化の
ために、磁気特性の向上、磁性層の薄膜化、電磁変換特
性の向上が強く要求されてきている。
In recent years, with the increase in processing power and miniaturization of information processing systems such as computers, there has been a demand for larger capacity and smaller fixed magnetic disk devices used as auxiliary storage devices. For density recording, there is a strong demand for improved magnetic properties, thinner magnetic layers, and improved electromagnetic conversion characteristics.

媒体の磁気特性、電磁変換特性は磁性層に用いられる磁
性材料に大きく左右され、また、成膜時のスパッタ条件
〔基板温度、スパッタパワー、雰囲気ガス(例えばAr
ガス)圧など〕により変動する。
The magnetic properties and electromagnetic conversion properties of the medium are greatly affected by the magnetic material used for the magnetic layer, and the sputtering conditions during film formation [substrate temperature, sputtering power, atmospheric gas (e.g. Ar
It varies depending on the gas pressure, etc.).

現在、磁性材料としてはCo −Ni−Cr系合金が一
般的に使用されているが、その他にCo−Ni系合金。
Currently, Co-Ni-Cr alloys are generally used as magnetic materials, but Co-Ni alloys are also used.

Co −Ni −Pt系合金、 Co−Cr系合金など
が提案され、一部実用化されている。また、これら磁性
材料に対応した好適なスパッタ条件の検討が鋭意進めら
れている。
Co-Ni-Pt alloys, Co-Cr alloys, etc. have been proposed, and some of them have been put into practical use. In addition, studies are being made to find suitable sputtering conditions for these magnetic materials.

〔発明が解決しようとする!l!i) 上述のように、媒体の磁気特性、電磁変換特性の向上を
図って、磁性材料の成分およびその組成比の研究、成膜
時のスパッタ条件の検討が種々進められているが、市場
の要求を充分に満足する特性を有する媒体は現在まだ得
られていない。
[Invention tries to solve it! l! i) As mentioned above, with the aim of improving the magnetic properties and electromagnetic conversion properties of the medium, various studies are underway on the components of magnetic materials and their composition ratios, as well as on the sputtering conditions during film formation. At present, a medium with characteristics that fully satisfies the requirements has not yet been obtained.

従来多用されているCo −Ni−Cr系合金を磁性材
料とする媒体は、分解能、耐食性などの点で優れテイル
が、媒体ノイズについてはいまひとつ良くないのが現状
である。特に、高密度記録達成のために、より高い周波
数で記録した場合には、再生時の出力信号が低下し、そ
の分だけS/N比が悪化するので、その対策として媒体
ノイズの改善が強く望まれる。
Media using Co--Ni--Cr alloys as magnetic materials, which have been widely used in the past, have excellent tails in terms of resolution, corrosion resistance, etc., but are currently not very good in terms of media noise. In particular, when recording at a higher frequency in order to achieve high-density recording, the output signal during playback decreases and the S/N ratio deteriorates accordingly, so as a countermeasure, it is strongly recommended to improve media noise. desired.

この発明は、上述の点に鑑みてなされたものであって、
磁気特性、電磁変換特性が優れ、かつ、媒体ノイズの低
減された磁気記録媒体およびその製造方法を提供するこ
とを解決すべき課題とする。
This invention was made in view of the above points, and
The problem to be solved is to provide a magnetic recording medium with excellent magnetic properties and electromagnetic conversion properties and reduced media noise, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、非磁性基板上に順次
形成された非磁性金属下地層、磁性層。
According to the present invention, the above problem is solved by providing a non-magnetic metal underlayer and a magnetic layer that are sequentially formed on a non-magnetic substrate.

保護層を備えてなる磁気記録媒体において、前記磁性層
がCO(+oo−x−v)CrxT1v合金(8原子%
≦X<20原子%;2原子%≦Y≦6原子%)からなる
磁気記録媒体とすることによって解決される。そして、
この発明の磁気記録媒体の製造方法では、非磁性基板を
280℃以上320℃以下の範囲内の温度に加熱した後
、その基板上にスパッタ法により非磁性金属下地層、 
Co −Cr−Ta合金からなる磁性層。
In the magnetic recording medium comprising a protective layer, the magnetic layer is made of CO(+oo-x-v)CrxT1v alloy (8 atomic %
This problem can be solved by creating a magnetic recording medium with the following relationship: ≦X<20 atomic %; 2 atomic %≦Y≦6 atomic %). and,
In the method for manufacturing a magnetic recording medium of the present invention, a nonmagnetic substrate is heated to a temperature within a range of 280°C or more and 320°C or less, and then a nonmagnetic metal underlayer is deposited on the substrate by sputtering.
A magnetic layer made of a Co-Cr-Ta alloy.

保護層を順次形成する工程によって磁気記録媒体を製造
する。
A magnetic recording medium is manufactured by sequentially forming protective layers.

〔作用〕[Effect]

媒体の磁性材料としてCo−Cr系合金を用いると、従
来のCo−Ni系合金を用いた媒体よりも媒体ノイズが
小さくなる。しかし、Co−Cr2元系合金を用いた場
合には高保磁力が得られない。これに第3元素としてT
aを添加したCo−Cr−Ta系を用いると、33kP
CI程度以上の高密度記録に適した120006以上の
保磁力が得られるようになる。これはTaを添加するこ
とによりCoCrの結晶粒の大きさくダレインサイズ〉
が非常に小さくなり、かつ、Taが結晶粒界(グレイン
バウンダリ)に偏析することにより各結晶粒(グレイン
)の分離性が良くなり、低媒体ノイズ、高保磁力が実現
できるものと推定される。
When a Co--Cr alloy is used as the magnetic material of the medium, the medium noise becomes smaller than that of a conventional medium using a Co--Ni alloy. However, when a Co-Cr binary alloy is used, a high coercive force cannot be obtained. In addition, T as a third element
When using the Co-Cr-Ta system added with a, 33kP
A coercive force of 120006 or more, which is suitable for high-density recording of CI or higher, can be obtained. This is due to the addition of Ta, which increases the grain size of CoCr.
It is presumed that the separability of each crystal grain (grain) is improved due to the very small amount of Ta and Ta is segregated at the grain boundaries, and low medium noise and high coercive force can be achieved.

市場で要求される低媒体ノイズを実現するためにはCr
添加量は8原子%以上必要であるが、20原子%を超え
ると磁化量が小さくなる傾向がでてくるので好ましくな
い。また、高保磁力を得るためには2原子%以上のTa
を添加することが必要であるが、6原子%を超えると磁
化量が小さくなってくるので好ましくない。
In order to achieve the low media noise required in the market, Cr
The amount added must be 8 at % or more, but if it exceeds 20 at %, the amount of magnetization tends to decrease, which is not preferable. In addition, in order to obtain a high coercive force, Ta of 2 atomic % or more is required.
However, if it exceeds 6 at %, the amount of magnetization decreases, which is not preferable.

また、磁性層材料としてCo −Cr−Ta系合金を用
いた場合、従来のCo −Ni−Cr系合金を用いた場
合と同様のスパッタ条件で磁性層を底膜すると必ずしも
充分な角形比が得られない。角形比が悪い場合には、た
とえ高い保磁力を実現しても分解能が落ち信号出力が低
下するために結局SN比が悪くなり、Co −Cr−T
a系合金の優れた低媒体ノイズ性が生かされないことに
なる。Co −Cr−Ta系合金を用い、良好な角形比
を実現するためには、磁性層をスパッタ法で底膜すると
きの基板温度を280℃以上320℃以下とすることが
必要である。
Furthermore, when a Co-Cr-Ta alloy is used as the magnetic layer material, it is not always possible to obtain a sufficient squareness ratio if the magnetic layer is formed under the same sputtering conditions as when using a conventional Co-Ni-Cr alloy. I can't. If the squareness ratio is poor, even if a high coercive force is achieved, the resolution will drop and the signal output will decrease, resulting in a poor signal-to-noise ratio.
The excellent low medium noise properties of the a-based alloys will not be utilized. In order to achieve a good squareness ratio using a Co-Cr-Ta alloy, it is necessary to set the substrate temperature at 280° C. or higher and 320° C. or lower when forming the bottom magnetic layer by sputtering.

〔実施例〕〔Example〕

Mgを4%含むAA−Mg合金からなる外径95mm、
内径25+n+n、  厚さ1.27mmの板の表面に
無電解めっき法により膜厚15μmのN1−P合金層を
形成し、その表面を4μm程度研磨して平滑にし、さら
に研磨テープによりテープテクスチャアリングを施して
表面粗さが中心線平均粗さRaで70人の非磁性基板と
した。これらの基板を第2図に示したようなホルダーに
セットした。第2図(a)は基板1を複数個(図では6
個の場合を示す〉セットされたホルダー2の正面図であ
り、第2図(b)は第2図(a)のX−X断面図である
Made of AA-Mg alloy containing 4% Mg, outer diameter 95 mm,
An N1-P alloy layer with a thickness of 15 μm was formed on the surface of a plate with an inner diameter of 25 + n + n and a thickness of 1.27 mm by electroless plating, and the surface was polished by about 4 μm to make it smooth, and then tape textured with a polishing tape. A non-magnetic substrate having a center line average roughness Ra of 70 people was prepared by applying the test. These substrates were set in a holder as shown in FIG. FIG. 2(a) shows a plurality of substrates 1 (6 in the figure).
FIG. 2(b) is a sectional view taken along line XX in FIG. 2(a).

このようにホルダー2にセットされた基板1の両面に第
3図の概念図に示すようなスパッタ装置により底膜を行
う。基板のセットされたホルダー2は仕込み室11に搬
入され、ここで、I X 10−@Torrの真空に排
気して(真空排気系は図示せず〉充分に脱ガスを行う。
A bottom film is formed on both sides of the substrate 1 set in the holder 2 using a sputtering apparatus as shown in the conceptual diagram of FIG. The holder 2 with the substrate set thereon is carried into the preparation chamber 11, where it is evacuated to a vacuum of I.times.10-@Torr (the evacuation system is not shown) for sufficient degassing.

続いてドア12を通ってスパッタ室13の奥の加熱ゾー
ン14にまで高速搬送される(搬送機構は図示せず)。
Subsequently, it is transported at high speed through the door 12 to the heating zone 14 at the back of the sputtering chamber 13 (the transport mechanism is not shown).

ここで、シースヒータ15により両側から加熱される。Here, the sheath heater 15 heats from both sides.

加熱ゾーン14の雰囲気温度は熱電対16によりモニタ
ーし所要温度に制御され、また、加熱ゾーン14でのホ
ルダー2の滞留時間も制御可能とされている。雰囲気温
度を320℃とし、3分間滞留させて基板温度を300
℃とした。続いて、ホルダー2を^rガス圧2 Xl0
−’の雰囲気に調整されたスパッタ室13内を矢印への
方向に搬送しながら、DCマグネトロン方式で、Crタ
ーゲット17によりCr層下地層(膜厚1500A) 
、 Co−Cru2Ta2合金ターゲット18により磁
性層(膜厚500人)、Cターゲット19によりC保護
層(膜厚250人)を基板両面にそれぞれ順次成膜した
後、ドア12を通って仕込み室11へ送り取り出し、ホ
ルダー2より作製された媒体を取りはずす。スパッタ時
の^rガス圧を低くすると、角形比は良くなるが搬送方
向に依存する磁気異方性が現れ、媒体面内で均一な磁気
特性が得られなくなる傾向が現れるのでこの点を考慮し
て^rガスを適切に決めることが必要である。
The ambient temperature in the heating zone 14 is monitored by a thermocouple 16 and controlled to a required temperature, and the residence time of the holder 2 in the heating zone 14 can also be controlled. The ambient temperature was set to 320°C, and the substrate temperature was increased to 300°C by staying for 3 minutes.
℃. Next, set the holder 2 to ^r gas pressure 2 Xl0
While transporting in the direction of the arrow in the sputtering chamber 13 adjusted to an atmosphere of −', a Cr target 17 is used to form a Cr layer base layer (film thickness 1500A) using a DC magnetron method.
After sequentially forming a magnetic layer (thickness: 500 layers) using the Co-Cru2Ta2 alloy target 18 and a C protective layer (thickness: 250 layers) using the C target 19 on both sides of the substrate, the process passes through the door 12 to the preparation chamber 11. The prepared medium is removed from the holder 2. When the gas pressure during sputtering is lowered, the squareness ratio improves, but magnetic anisotropy that depends on the transport direction appears, making it difficult to obtain uniform magnetic properties within the medium plane, so take this into account. Therefore, it is necessary to appropriately determine the gas.

以上の製造方法において、加熱ゾーンの雰囲気温度およ
びホルダーの滞留時間を変化させ、種々の基板温度で媒
体を作製した。
In the above manufacturing method, the atmospheric temperature of the heating zone and the residence time of the holder were varied to produce media at various substrate temperatures.

このようにして得られた媒体について、VSMにより磁
気特性を測定した。その結果、得られた媒体の保磁力お
よび角形比の温度依存性を第1図の線図に示す。第1図
より、基板温度が高くなるにつれて保磁力、角形比とも
に向上し、280℃以上で保磁力14000e以上、角
形比0.9以上の優れた媒体を得ることができる。一方
、基板温度が320℃を超えると、基板のN1−P合金
が磁化してしまい好ましくないことが別途確認されてお
り、基板温度は280℃以上320℃以下の範囲内とす
ることが必要である。
The magnetic properties of the medium thus obtained were measured by VSM. As a result, the temperature dependence of the coercive force and squareness ratio of the obtained medium is shown in the diagram of FIG. From FIG. 1, as the substrate temperature increases, both the coercive force and the squareness ratio improve, and an excellent medium having a coercive force of 14000e or more and a squareness ratio of 0.9 or more can be obtained at 280° C. or higher. On the other hand, it has been separately confirmed that if the substrate temperature exceeds 320℃, the N1-P alloy of the substrate will become magnetized, which is not desirable. be.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、磁性材料としてCo(too−Xy
) CrxTav (8原子%≦X≦20原子%;2原
子%≦Y≦6原子%〉を用い、基板温度を280℃以上
320℃以下の範囲内としてスパッタ法で磁性層を底膜
することにより、磁気特性、電磁変換特性が優れ、媒体
ノイズの低減された磁気記録媒体を得ることができる。
According to this invention, Co(too-Xy
) By using CrxTav (8 atomic % ≦ A magnetic recording medium with excellent magnetic properties and electromagnetic conversion properties and reduced media noise can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の磁気記録媒体の保磁力、角形比と製
造時の基板温度との関係を示すIIi図、第2図はこの
発明の製造方法を実施するために用いるホルダーの一例
を示すもので、第2図(a)は正面図、第2図(b)は
第2図(a)のX−X断面図、第3図はこの発明の媒体
の製造方法を実施するためのスパッタ装置の一例の概念
図である。 1 基板、 2 ホルダー、 3 スパッタ室、 4 加熱ゾーン、 5 シースヒータ、18 0 r 一 基板温度(”C) 第 ] 図
Fig. 1 is a diagram IIi showing the relationship between the coercive force and squareness ratio of the magnetic recording medium of the present invention and the substrate temperature during manufacturing, and Fig. 2 shows an example of a holder used to carry out the manufacturing method of the present invention. 2(a) is a front view, FIG. 2(b) is a sectional view taken along line XX in FIG. 2(a), and FIG. 3 is a sputtering diagram for carrying out the method for manufacturing a medium of the present invention. It is a conceptual diagram of an example of a device. 1 Substrate, 2 Holder, 3 Sputtering chamber, 4 Heating zone, 5 Sheath heater, 180 r 1 Substrate temperature ("C)" Figure

Claims (1)

【特許請求の範囲】 1)非磁性基板上に順次形成された非磁性金属下地層、
磁性層、保護層を備えてなる磁気記録媒体において、前
記磁性層がCo_(_1_0_0_−_X_−_Y_)
Cr_XTa_Y合金(8原子%≦X≦20原子%;2
原子%≦Y≦6原子%)からなることを特徴とする磁気
記録媒体。 2)非磁性基板を280℃以上320℃以下の範囲内の
温度に加熱した後、その基板上にスパッタ法により非磁
性金属下地層、Co−Cr−Ta合金からなる磁性層、
保護層を順次形成する工程を含むことを特徴とする磁気
記録媒体の製造方法。
[Claims] 1) a non-magnetic metal underlayer sequentially formed on a non-magnetic substrate;
In a magnetic recording medium comprising a magnetic layer and a protective layer, the magnetic layer is Co_(_1_0_0_-_X_-_Y_)
Cr_XTa_Y alloy (8 atomic%≦X≦20 atomic%; 2
A magnetic recording medium characterized in that the magnetic recording medium is composed of atomic %≦Y≦6 atomic %. 2) After heating the non-magnetic substrate to a temperature in the range of 280° C. or higher and 320° C. or lower, a non-magnetic metal base layer, a magnetic layer made of a Co-Cr-Ta alloy, and
A method for manufacturing a magnetic recording medium, comprising the steps of sequentially forming protective layers.
JP2032135A 1990-02-13 1990-02-13 Method for manufacturing in-plane magnetic recording medium Expired - Lifetime JP2653204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032135A JP2653204B2 (en) 1990-02-13 1990-02-13 Method for manufacturing in-plane magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032135A JP2653204B2 (en) 1990-02-13 1990-02-13 Method for manufacturing in-plane magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH03237613A true JPH03237613A (en) 1991-10-23
JP2653204B2 JP2653204B2 (en) 1997-09-17

Family

ID=12350454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032135A Expired - Lifetime JP2653204B2 (en) 1990-02-13 1990-02-13 Method for manufacturing in-plane magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2653204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89324A1 (en) * 1999-04-13 2002-06-18 Mitsui Mining & Smelting Co Target on sputtering for forming protective film on optical recording media and process for preparing the target

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133217A (en) * 1987-11-18 1989-05-25 Victor Co Of Japan Ltd Magnetic recording body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133217A (en) * 1987-11-18 1989-05-25 Victor Co Of Japan Ltd Magnetic recording body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89324A1 (en) * 1999-04-13 2002-06-18 Mitsui Mining & Smelting Co Target on sputtering for forming protective film on optical recording media and process for preparing the target

Also Published As

Publication number Publication date
JP2653204B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US5993956A (en) Manganese containing layer for magnetic recording media
JP3018762B2 (en) Magnetic recording medium and method of manufacturing the same
US6844046B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target
EP0710949A1 (en) Magnetic recording medium and its manufacture
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JPS61253622A (en) Magnetic recording medium and its manufacturing method
US6242086B1 (en) High coercivity, low noise magnetic recording medium comprising an intermediate cocrtaox layer
JPH03237613A (en) Magnetic recording medium and its production
JP3657344B2 (en) Method for manufacturing magnetic recording medium
EP0971340B1 (en) Magnetic recording medium
US5891514A (en) Method for manufacturing magnetic recording medium
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
JPH09265619A (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
JPH03273525A (en) Production of magnetic recording medium
US5766756A (en) Magnetic recording medium for longitudinal recording and method of manufacturing the same
JPH10289437A (en) Magnetic recording medium and magnetic storage device
EP0971341A1 (en) Magnetic recording medium
JP2856258B2 (en) Thin film magnetic disk
JP3962415B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2593590B2 (en) Manufacturing method of magnetic recording media
JP2001331934A (en) Magnetic recording medium, method for producing the same, magnetic recording and reproducing unit and sputtering target
JPS61216125A (en) Production of magnetic recording medium
JP2000030234A (en) Magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device