[go: up one dir, main page]

JPH03235371A - Method for manufacturing tandem solar cells - Google Patents

Method for manufacturing tandem solar cells

Info

Publication number
JPH03235371A
JPH03235371A JP2031204A JP3120490A JPH03235371A JP H03235371 A JPH03235371 A JP H03235371A JP 2031204 A JP2031204 A JP 2031204A JP 3120490 A JP3120490 A JP 3120490A JP H03235371 A JPH03235371 A JP H03235371A
Authority
JP
Japan
Prior art keywords
layer
silicon
solar cell
solar battery
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031204A
Other languages
Japanese (ja)
Inventor
Hiroya Kimura
浩也 木村
Mitsuru Shimazu
充 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2031204A priority Critical patent/JPH03235371A/en
Publication of JPH03235371A publication Critical patent/JPH03235371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/142Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/127The active layers comprising only Group III-V materials, e.g. GaAs or InP
    • H10F71/1276The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising growth substrates not made of Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable a solar battery of III-V group semiconductor developing less lattice defects on a silicon substrate to be formed for increasing the photoelectric conversion efficiency by making the surface of the silicon substrate porous for a silicon solar battery. CONSTITUTION:A single crystal silicon solar battery is composed of an n-silicon layer 1 and a p-silicon layer 2. Next, the substrate surface of said solar battery is anodized in fluoric acid solution making the surface porous to form a porous silicon layer 3. Next, an n-GaAs layer 4 and a p-GaAs layer 5 are formed on the layer 3 to manufacture the title tandem type solar battery. The photoelectric conversion efficiency of this solar battery is measured to be 27% so that the higher conversion efficiency than that of 24% of the solar battery formed by conventional process may be attained. That is, a compound semiconductor subject to less transposition and residual stress can be grown by making the topmost surface of a silicon substrate porous thereby enabling a high performance solar battery to be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はタンデム型太陽電池の製造方法に関するもの
であり、特にシリコン太陽電池の上に■−V族化合物半
導体の太陽電池を積み重ねたタンデム型太陽電池の製造
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a tandem solar cell, and particularly relates to a method for manufacturing a tandem solar cell, in which a solar cell of a ■-V group compound semiconductor is stacked on a silicon solar cell. The present invention relates to a method for manufacturing a solar cell.

[従来の技術] 単位面積当たり高い光電変換効率を示す太陽電池として
は、異なる禁制帯幅を有する太陽電池を積み重ねたタン
デム型太陽電池がある。このような太陽電池としては、
GaAs系太陽電池の上にAlGaAs系太陽電池を積
層したタンデム型太陽電池が知られている。
[Prior Art] As a solar cell exhibiting high photoelectric conversion efficiency per unit area, there is a tandem solar cell in which solar cells having different forbidden band widths are stacked. For such solar cells,
Tandem solar cells are known in which an AlGaAs solar cell is stacked on a GaAs solar cell.

[発明が解決しようとする課題] しかしながら、このような従来のタンデム型太陽電池は
、たとえば宇宙空間で使用する太陽電池のように単位面
積当たり非常に高い変換効率が要求される太陽電池とし
ては、変換効率が低く未だ不十分なものであった。より
高い変換効率を示すものとして、シリコン太陽電池の上
に、たとえばGaAsのようなm−v族化合物半導体太
陽電池を積み重ねたものは、予想される変換効率として
38%であることが報告されている。しかしながら、こ
のような電池構造では、シリコン基板の上に異種材料で
ある化合物半導体を成長させる必要があり、良好な結晶
を得るためには通常の成長方法と異なった条件および方
法が必要となる。たとえばGaAsをシリコン基板上に
成長させる場合には、オフアングルのシリコン基板を用
いたり、シリコン基板の温度でのサーマルクリーニング
や低温成長層を含んだ2段階成長法等が行われている。
[Problems to be Solved by the Invention] However, such conventional tandem solar cells are not suitable for solar cells that require extremely high conversion efficiency per unit area, such as solar cells used in outer space. The conversion efficiency was low and still insufficient. It has been reported that a silicon solar cell stacked with an m-v group compound semiconductor solar cell such as GaAs has an expected conversion efficiency of 38%, which shows higher conversion efficiency. There is. However, in such a battery structure, it is necessary to grow a compound semiconductor, which is a different material, on a silicon substrate, and in order to obtain good crystals, conditions and methods different from normal growth methods are required. For example, when growing GaAs on a silicon substrate, an off-angle silicon substrate is used, or a two-step growth method including thermal cleaning at the temperature of the silicon substrate and a low-temperature growth layer is used.

さらに、中間緩衝層の導入や歪超光子層の導入、成長中
における熱サイクル法、および成長後における熱アニー
ル法等の方法が検討されており、これらの方法によって
結晶性は若干改善されてきてはいるが、やはり未だ不十
分である。たとえば、転位密度を例にとると、LEC法
のGaAs基板はIQ’cm−2程度であるのに対し、
シリコン基板上に成長したGaAsの場合には、1×1
06cm−2であり、かなり高い値を示している。
Furthermore, methods such as introduction of an intermediate buffer layer, introduction of a strained superphoton layer, thermal cycling during growth, and thermal annealing after growth are being investigated, and these methods have slightly improved crystallinity. However, it is still insufficient. For example, taking the dislocation density as an example, a GaAs substrate using the LEC method has a density of about IQ'cm-2;
In the case of GaAs grown on a silicon substrate, 1×1
06 cm-2, which is a fairly high value.

この発明の目的は、このような従来の問題点を解消し、
シリコン太陽電池となるシリコン基板上に、格子欠陥の
少ないm−v族化合物半導体の太陽電池を形成すること
のできる方法を提供することにある。
The purpose of this invention is to solve such conventional problems,
An object of the present invention is to provide a method for forming a solar cell of an m-v group compound semiconductor with few lattice defects on a silicon substrate, which becomes a silicon solar cell.

[課題を解決するための手段] この発明のタンデム型太陽電池の製造方法は、シリコン
太陽電池として機能するn層およびp層が形成されたシ
リコン基板の表面を多孔質化する工程と、多孔質化した
シリコン基板の表面上に■−V族化合物半導体の太陽電
池を形成する工程とを備えている。
[Means for Solving the Problems] A method for manufacturing a tandem solar cell of the present invention includes a step of making the surface of a silicon substrate on which an n-layer and a p-layer functioning as a silicon solar cell are formed porous; (1) Forming a solar cell of a group V compound semiconductor on the surface of the silicon substrate.

シリコン基板の表面を多孔質化する方法としては、たと
えばフッ酸溶液中で陽極化成法により多孔質化する方法
がある。多孔質化する層の厚みは、特に限定されるもの
ではないが、たとえばO6数μmから数百μmの厚みで
行なうことができる。
As a method for making the surface of a silicon substrate porous, for example, there is a method of making the surface porous by anodization in a hydrofluoric acid solution. The thickness of the layer to be made porous is not particularly limited, but it can be made, for example, from several μm to several hundred μm.

また多孔質化した部分の孔径は、たとえば20〜300
人程度の大きさとなる。
The pore diameter of the porous portion is, for example, 20 to 300.
It is about the size of a person.

シリコン基板の上に積み重ねる■−v族化合物半導体と
しては、たとえば、GaAs、およびGaPおよびIn
Pなどのような2元系の化合物半導体や、A/GaAs
、AA’GaP、InAlAs5 InAAP、GaA
、sPおよびGaInPなどのような3元系の化合物半
導体などを選ぶことができる。またこれらの複数を積層
させたものでもよい。
Examples of the ■-v group compound semiconductor stacked on a silicon substrate include GaAs, GaP, and In.
Binary compound semiconductors such as P, A/GaAs
, AA'GaP, InAlAs5 InAAP, GaA
, sP, GaInP, and other ternary compound semiconductors can be selected. Alternatively, a plurality of these may be laminated.

[発明の作用効果コ 多孔質化されたシリコン基板の表面には、たとえば20
〜300人の無数の孔が形成されており、この上に成長
する化合物半導体は、孔に架橋した形態で成長し、格子
定数が異なっても、格子不整合による歪みを緩和しなが
ら成長させることができるので、ミスフィツト転位の導
入を防止することができる。このような多孔質化された
シリコン基板表面上での成長は、たとえば伊藤利道、加
藤剛久、応用物理57 (1988)1710に報告さ
れている。
[Operations and Effects of the Invention] The surface of the porous silicon substrate has, for example, 20
~300 innumerable pores are formed, and the compound semiconductor that grows on these pores grows in a form that bridges the pores, and even if the lattice constants are different, it can grow while alleviating the distortion caused by lattice mismatch. Therefore, the introduction of misfit dislocations can be prevented. Growth on such a porous silicon substrate surface is reported, for example, in Toshimichi Ito and Takehisa Kato, Oyoi Jitsu 57 (1988) 1710.

さらに、多孔質化されたシリコンは通常のシリコンに比
べ、ヤング率が約10分の1というように柔軟性に富ん
でいる。このことはに、Barla、R,Herino
、G、Bomchil、J。
Furthermore, porous silicon has a Young's modulus that is approximately one-tenth that of normal silicon, making it highly flexible. Regarding this, Barla, R. Herino
, G., Bomchil, J.

C,PfisterおよびA、Freund、J。C, Pfister and A, Freund, J.

Crys t、Growth  68 (1984)7
27に報告されている。このため■−v族化合物半導体
とシリコンという熱膨脹係数が大きく異なる組合せであ
っても、2つの物質量の歪みを多孔質層の部分で吸収す
ることができるため、化合物半導体層の転位や残留応力
を大幅に低減することができる。
Cryst, Growth 68 (1984) 7
It has been reported on 27. For this reason, even if the combination of ■-V group compound semiconductor and silicon have significantly different coefficients of thermal expansion, the strain in the two materials can be absorbed by the porous layer, preventing dislocations and residual stress in the compound semiconductor layer. can be significantly reduced.

したがって、シリコン基板の最表面を多孔質化しておく
ことにより、転位や残留応力の少な(1化合物半導体を
成長させることができるので、より高性能な太陽電池を
作製することができる。
Therefore, by making the outermost surface of the silicon substrate porous, it is possible to grow a single compound semiconductor with less dislocations and residual stress, thereby making it possible to produce a solar cell with higher performance.

[実施例] 第1図は、この発明の一実施例を示す断面図である。第
1図を参照して、単結晶シリコン太陽電池は、n−シリ
コン層1およびp−シリコン層2から構成されている。
[Embodiment] FIG. 1 is a sectional view showing an embodiment of the present invention. Referring to FIG. 1, a single crystal silicon solar cell is composed of an n-silicon layer 1 and a p-silicon layer 2.

この単結晶シリコン太陽電池の基板の表面をフッ酸溶液
中で陽極化成法により多孔質化し、多孔質シリコン層3
を形成した。
The surface of the substrate of this single-crystal silicon solar cell is made porous by anodization in a hydrofluoric acid solution, and a porous silicon layer 3 is formed.
was formed.

この多孔質シリコン層3の上にn −G a A s 
N 4およびp−GaAs層5を形成した。このように
して得られた太陽電池について光電変換効率を測定した
ところ、27%であった。一方従来の方法に従い、多孔
質シリコン層3を形成させずに直接シリコン基板上にG
aAs層を成長させた太陽電池の光電変換効率は24%
であった。
n-GaAs on this porous silicon layer 3
A N4 and p-GaAs layer 5 was formed. When the photoelectric conversion efficiency of the solar cell thus obtained was measured, it was 27%. On the other hand, according to the conventional method, G is directly applied onto the silicon substrate without forming the porous silicon layer 3.
The photoelectric conversion efficiency of a solar cell grown with an aAs layer is 24%.
Met.

第2図は、この発明の他の実施例を示す断面図である。FIG. 2 is a sectional view showing another embodiment of the invention.

第2図を参照して、単結晶シリコン太陽電池となるシリ
コン基板はn−シリコン層11およびpニシリコン層1
2から構成されている。p−シリコン層12の表面を、
上記の実施例と同様にフッ酸溶液中で陽極化成法により
多孔質化し、多孔質シリコン層13を形成した。この多
孔質シリコン層13の上に順次n−GaAs層14、p
−GaAs層15、n−AA”0.3 Gao7As層
16、p  AA’o、i Gao7As層17、n−
AA’L1.6 Gao4As層18、pAlo、t、
Ga(34As層19を成長させ、単結晶シリコン太陽
電池の上に3つの太陽電池を積み重ねた。この太陽電池
の光電変換率を測定したところ32%であった。
Referring to FIG. 2, a silicon substrate that becomes a single-crystal silicon solar cell includes an n-silicon layer 11 and a p-silicon layer 1.
It is composed of 2. The surface of the p-silicon layer 12 is
Similar to the above example, the silicon layer 13 was made porous by anodizing in a hydrofluoric acid solution to form a porous silicon layer 13. On this porous silicon layer 13, an n-GaAs layer 14, a p-GaAs layer 14, a
-GaAs layer 15, n-AA"0.3 Gao7As layer 16, p AA'o,i Gao7As layer 17, n-
AA'L1.6 Gao4As layer 18, pAlo,t,
A Ga(34As layer 19) was grown and three solar cells were stacked on top of the single crystal silicon solar cell. The photoelectric conversion rate of this solar cell was measured and was 32%.

一方比較として、p−シリコン層120表面を多孔質化
することなく、直接GaAs太陽電池、A10,3 G
ao、7 As太陽電池およびAI。、6Gao4As
太陽電池を積層した太陽電池の光電変換率を測定したと
ころ29%であった。
On the other hand, as a comparison, without making the surface of the p-silicon layer 120 porous, a GaAs solar cell, A10,3G
ao, 7 As solar cells and AI. ,6Gao4As
When the photoelectric conversion rate of the solar cell in which the solar cells were stacked was measured, it was 29%.

以上のことから明らかなようにこの発明に従う実施例の
太陽電池は、いずれも高い光電変換効率を示し、高性能
な太陽電池であることが明らかとなった。
As is clear from the above, the solar cells of the Examples according to the present invention all exhibited high photoelectric conversion efficiency, and were found to be high-performance solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す断面図である。 第2図は、この発明の他の実施例を示す断面図である。 図において、1.11はn−シリコン層、2゜12はp
−シリコン層、3.13は多孔質シリコン層、4,14
はn−GaAs層、5.15はp−GaAs層、16は
n−AA’o3Gao7As層、17はp−AIo3G
a、7As層、18はn−AIo6Gao4As層、1
9はpAI。 6Gao、4As層を示す。 第1図
FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is a sectional view showing another embodiment of the invention. In the figure, 1.11 is the n-silicon layer, and 2°12 is the p-silicon layer.
-Silicon layer, 3.13 is porous silicon layer, 4,14
is n-GaAs layer, 5.15 is p-GaAs layer, 16 is n-AA'o3Gao7As layer, 17 is p-AIo3G
a, 7As layer, 18 is n-AIo6Gao4As layer, 1
9 is pAI. 6Gao, 4As layers are shown. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)シリコン太陽電池として機能するn層およびp層
が形成されたシリコン基板の表面を多孔質化する工程と
、 前記多孔質化したシリコン基板の表面上にIII−V族化
合物半導体の太陽電池を形成する工程とを備える、タン
デム型太陽電池の製造方法。
(1) A step of making the surface of a silicon substrate on which an n-layer and a p-layer are formed to function as a silicon solar cell porous, and forming a solar cell of a group III-V compound semiconductor on the surface of the porous silicon substrate. A method for manufacturing a tandem solar cell, comprising a step of forming a tandem solar cell.
(2)前記多孔質化する工程が、フッ酸溶液中で陽極化
成法により多孔質化する工程を含む、請求項1に記載の
タンデム型太陽電池の製造方法。
(2) The method for manufacturing a tandem solar cell according to claim 1, wherein the step of making it porous includes making it porous by an anodization method in a hydrofluoric acid solution.
(3)前記III−V族化合物半導体の太陽電池がGaA
s層を含む、請求項1に記載のタンデム型太陽電池の製
造方法。
(3) The III-V compound semiconductor solar cell is made of GaA
The method for manufacturing a tandem solar cell according to claim 1, comprising an s-layer.
(4)前記III−V族化合物半導体の太陽電池がGaA
s層およびAlGaAs層を含む、請求項1に記載のタ
ンデム型太陽電池の製造方法。
(4) The III-V compound semiconductor solar cell is made of GaA
The method for manufacturing a tandem solar cell according to claim 1, comprising an s-layer and an AlGaAs layer.
(5)前記III−V化合物半導体の太陽電池が、GaA
s層および2種以上のAl組成を有するAlGaAs層
を含む、請求項1に記載のタンデム型太陽電池の製造方
法。
(5) The III-V compound semiconductor solar cell is made of GaA
The method for manufacturing a tandem solar cell according to claim 1, comprising an s-layer and an AlGaAs layer having two or more types of Al compositions.
JP2031204A 1990-02-10 1990-02-10 Method for manufacturing tandem solar cells Pending JPH03235371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031204A JPH03235371A (en) 1990-02-10 1990-02-10 Method for manufacturing tandem solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031204A JPH03235371A (en) 1990-02-10 1990-02-10 Method for manufacturing tandem solar cells

Publications (1)

Publication Number Publication Date
JPH03235371A true JPH03235371A (en) 1991-10-21

Family

ID=12324889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031204A Pending JPH03235371A (en) 1990-02-10 1990-02-10 Method for manufacturing tandem solar cells

Country Status (1)

Country Link
JP (1) JPH03235371A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969522A1 (en) * 1998-07-03 2000-01-05 Interuniversitair Microelektronica Centrum Vzw A thin-film opto-electronic device and a method of making it
WO2000002259A1 (en) * 1998-07-03 2000-01-13 Interuniversitair Micro-Elektronica Centrum A thin-film opto-electronic device and a method of making it
EP1398837A1 (en) * 2002-09-09 2004-03-17 Interuniversitair Microelektronica Centrum ( Imec) Photovoltaic device
EP1398838A1 (en) * 2002-09-09 2004-03-17 Imec (Interuniversity Microelectronics Center) VZW Photovoltaic device
EP2012367A1 (en) * 2007-07-02 2009-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi solar cell
JP2010287607A (en) * 2009-06-09 2010-12-24 Hitachi Ltd Tandem thin film solar cell
CN103426496A (en) * 2012-05-25 2013-12-04 比亚迪股份有限公司 Aluminum back field slurry applied to solar battery, preparation method thereof, preparation method of solar battery piece and solar battery piece
JP2015513518A (en) * 2012-02-29 2015-05-14 ソレクセル、インコーポレイテッド Structures and methods for efficient compound semiconductor solar cells
CN105789026A (en) * 2014-12-25 2016-07-20 中国科学院微电子研究所 Substrate structure and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969522A1 (en) * 1998-07-03 2000-01-05 Interuniversitair Microelektronica Centrum Vzw A thin-film opto-electronic device and a method of making it
WO2000002259A1 (en) * 1998-07-03 2000-01-13 Interuniversitair Micro-Elektronica Centrum A thin-film opto-electronic device and a method of making it
US6683367B1 (en) 1998-07-03 2004-01-27 Imec Vzw Thin-film opto-electronic device and a method of making it
US6815247B2 (en) 1998-07-03 2004-11-09 Interuniversitair Microelektronica Centrum (Imec) Thin-film opto-electronic device and a method of making it
EP1398837A1 (en) * 2002-09-09 2004-03-17 Interuniversitair Microelektronica Centrum ( Imec) Photovoltaic device
EP1398838A1 (en) * 2002-09-09 2004-03-17 Imec (Interuniversity Microelectronics Center) VZW Photovoltaic device
US7705235B2 (en) 2002-09-09 2010-04-27 Imec Photovoltaic device
EP2012367A1 (en) * 2007-07-02 2009-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi solar cell
JP2010287607A (en) * 2009-06-09 2010-12-24 Hitachi Ltd Tandem thin film solar cell
JP2015513518A (en) * 2012-02-29 2015-05-14 ソレクセル、インコーポレイテッド Structures and methods for efficient compound semiconductor solar cells
CN103426496A (en) * 2012-05-25 2013-12-04 比亚迪股份有限公司 Aluminum back field slurry applied to solar battery, preparation method thereof, preparation method of solar battery piece and solar battery piece
CN105789026A (en) * 2014-12-25 2016-07-20 中国科学院微电子研究所 Substrate structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5091333A (en) Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth
US4632712A (en) Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth
US20020017642A1 (en) Semiconductor substrate, field effect transistor, method of forming SiGe layer and method of forming strained Si layer using same, and method of manufacturing field effect transistor
US5011550A (en) Laminated structure of compound semiconductors
JP3114809B2 (en) Semiconductor device
JPH03503946A (en) high efficiency solar cells
JPH073814B2 (en) Method for manufacturing semiconductor substrate
JPH03235371A (en) Method for manufacturing tandem solar cells
JP2570646B2 (en) Si-based semiconductor crystal substrate and method of manufacturing the same
Lin et al. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
JPS62283675A (en) Semiconductor device and manufacture thereof
CN111584657B (en) Semiconductor material, preparation method and application thereof, laser and photoelectric detector
JPS61189621A (en) Compound semiconductor device
JPH11298039A (en) Method of growing gan layer ad buffer layer and structure thereof
Seki et al. Epitaxial growth of InP on Si by OMVPE—defect reduction in epitaxial InP using InAsxP1− xInP superlattices
JP4559586B2 (en) Single crystal thin film material
JPH0412092A (en) Compound semiconductor and method for growing the same
CN113097057A (en) Epitaxial growth method, epitaxial structure and photoelectric device
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP3224118B2 (en) Epitaxial growth method
JPS6066811A (en) Manufacture of compound semiconductor device
JP2791900B2 (en) Semiconductor substrate and method of manufacturing the same
JP2838121B2 (en) Semiconductor substrate
TWI431666B (en) A method of forming a semiconductor structure