JPH03233923A - Manufacture of metallized film capacitor - Google Patents
Manufacture of metallized film capacitorInfo
- Publication number
- JPH03233923A JPH03233923A JP2029027A JP2902790A JPH03233923A JP H03233923 A JPH03233923 A JP H03233923A JP 2029027 A JP2029027 A JP 2029027A JP 2902790 A JP2902790 A JP 2902790A JP H03233923 A JPH03233923 A JP H03233923A
- Authority
- JP
- Japan
- Prior art keywords
- film
- vapor
- pps
- capacitor
- metallized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 45
- 239000011104 metalized film Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000010408 film Substances 0.000 claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000010894 electron beam technology Methods 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract 4
- 229910052751 metal Inorganic materials 0.000 claims abstract 4
- 238000001704 evaporation Methods 0.000 claims description 8
- 238000001771 vacuum deposition Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920006290 polyethylene naphthalate film Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000001883 metal evaporation Methods 0.000 claims 1
- 229920006269 PPS film Polymers 0.000 abstract description 33
- 230000006866 deterioration Effects 0.000 abstract description 10
- 238000007740 vapor deposition Methods 0.000 abstract description 8
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004804 winding Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電子機器、電気機器に用いられる金属化フィル
ムコンデンサの製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing metallized film capacitors used in electronic and electrical equipment.
従来の技術
近年、金属化フィルムコンデンサの産業機器分野への進
出が進んでいる。このため金属化フィルムコンデンサの
信頼性の一つである耐湿性の向上が強く要望されている
。この要望を解決するための従来の技術としては、コン
デンサ素子への水分の浸入を押さえる方法と蒸着電極の
経時劣化を少なくする方法がある。水分の浸入を押さえ
る具体的な方法としては外装樹脂の厚みを厚くしたシ、
コンデンサ素子をケース内に埋蔵する方法がとられてい
た。また、蒸着電極の経時劣化を少なくする具体的な方
法としては蒸着電極の厚みを厚くする方法がとられてい
た。Background of the Invention In recent years, metallized film capacitors have been increasingly used in the industrial equipment field. For this reason, there is a strong demand for improvement in moisture resistance, which is one of the reliability characteristics of metallized film capacitors. Conventional techniques for solving this demand include a method of suppressing the infiltration of moisture into a capacitor element and a method of reducing deterioration of vapor-deposited electrodes over time. Specific methods to prevent moisture intrusion include increasing the thickness of the exterior resin;
The method used was to bury the capacitor element inside the case. Further, as a specific method for reducing the deterioration of the vapor deposited electrode over time, a method of increasing the thickness of the vapor deposited electrode has been used.
3 \
発明が解決しようとする課題
しかしながら、外装樹脂の厚みを厚くしたシ、コンデン
サ素子をケーヌ内に埋蔵する方法ではコンデンサの形状
が大きくなるという問題点を有していた。また、蒸着電
極の厚みを厚くする方法では金属化フィルムコンデンサ
の特徴であるセルフヒーリング性が悪くなシ、コンデン
サの耐電圧特性が低下してし1うという問題点を有して
いた。3 \ Problems to be Solved by the Invention However, the method of increasing the thickness of the exterior resin and burying the capacitor element inside the capacitor had the problem that the shape of the capacitor became large. Furthermore, the method of increasing the thickness of the vapor-deposited electrode has problems in that the self-healing property, which is a characteristic of metallized film capacitors, is poor and the withstand voltage characteristics of the capacitor are reduced.
本発明は上記問題点に鑑みコンデンサ形状を太きくする
ことなくさらに小型化し、またコンデンサの耐電圧特性
を低下させることなくコンデンサの信頼性の一つである
耐湿特性を向上させることができる金属化フィルムコン
デンサの製造方法を提供することを目的とするものであ
る。In view of the above-mentioned problems, the present invention has been developed to further miniaturize the capacitor shape without making it thicker, and to improve the moisture resistance, which is one of the reliability characteristics of the capacitor, without reducing the withstand voltage characteristics of the capacitor. The object of the present invention is to provide a method for manufacturing a film capacitor.
課題を解決するための手段
本発明は、上記問題点を解決するため、高分子mt体フ
ィルム(ホリプロピレンフィルム、ポリエチレンテレフ
タレートフィルム、ホリエチレンナフタレートフィ〃ム
、ポリフェニレンサルファイドフィルム)の表面に巻取
式真空蒸着法で電極用のアルミニウム薄膜層を形成する
のに、アルミニウムの加熱、溶解、蒸発に電子ビームを
使い、またアルミニウムの蒸着直前に高分子誘電体フィ
ルムの蒸着面全面に対し電子ビームを照射することを特
徴とするものである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a method for winding the film onto the surface of a polymeric MT film (polypropylene film, polyethylene terephthalate film, polyethylene naphthalate film, polyphenylene sulfide film). To form a thin aluminum film layer for electrodes using the vacuum evaporation method, an electron beam is used to heat, melt, and evaporate the aluminum, and the electron beam is applied to the entire surface of the polymer dielectric film immediately before the aluminum is deposited. It is characterized by irradiation.
作 用
本発明は、電子ビームを照射した後にアルミニウム薄膜
層を形成することでコンデンサ形状を大きくすることな
くさらに小型化し、またコンデンサの耐電圧特性を低下
させることなくコンデンサの信頼性の一つである耐湿特
性を向上させることができる。Function: The present invention forms an aluminum thin film layer after irradiation with an electron beam to further reduce the size of the capacitor without increasing its size, and improves the reliability of the capacitor without reducing its withstand voltage characteristics. Certain moisture resistance properties can be improved.
実施例
第1図に本発明の金属化フィルムコンデンサのアルミニ
ウム電極層を形成するための巻取式真空蒸着機を示す。EXAMPLE FIG. 1 shows a winding type vacuum evaporation machine for forming the aluminum electrode layer of the metallized film capacitor of the present invention.
真空槽1は仕切板3によりフィルムの巻出し、巻取9の
ための上室2とアルミニウムをソイlレム表面に蒸着す
るための下室23に分割されている。上室2は開閉弁4
.排気管sf、経て図示されてい々い排気ポンプにより
通常は1σ25・・−〜
(Pa)以下に減圧されている。下室23は開閉弁6、
排気管7を経て図示されていない排気ポンプにより通常
は1O−3(Pa )以下に減圧されている。The vacuum chamber 1 is divided by a partition plate 3 into an upper chamber 2 for unwinding and winding the film 9 and a lower chamber 23 for vapor depositing aluminum on the surface of the soil layer. The upper chamber 2 is an on-off valve 4
.. The exhaust pipe sf, shown in the figure, is normally reduced in pressure to 1σ25... (Pa) or less by an exhaust pump. The lower chamber 23 has an on-off valve 6,
The pressure is normally reduced to below 1O-3 (Pa) through an exhaust pipe 7 by an exhaust pump (not shown).
ポリフェニレンサルファイド(以下、ppsと記す。)
フィルムを上室2の巻出軸8にセントした。Polyphenylene sulfide (hereinafter referred to as pps)
The film was placed on the unwinding shaft 8 in the upper chamber 2.
PPSフィルム10はフリーロール11を経て約10(
ト)に冷却された蒸着用ドラム14の外周表面に添って
蒸着用ドラム14と同期して走行(矢印Aの方向)した
後、フリーロー)v12を経て巻取軸9に巻取られる。The PPS film 10 passes through the free roll 11 and has a thickness of about 10 (
After running (in the direction of arrow A) along the outer circumferential surface of the evaporation drum 14 which has been cooled (in the direction of arrow A), it is wound up on the winding shaft 9 via a free-rotation v12.
13はアルミニウム薄膜層が形成されたPPSフィルム
を示す。アルミニウム17はアルミナ(A42o3)ル
ツボ16に入れ、電子銃21から放出された電子ビーム
22によシ加熱、溶解されてアルミニウム蒸気18とな
って蒸発する。な釦、電子ビーム22は図示されていな
い偏向器によシアルミニウム上部でほぼ90度偏向シタ
。アルミニウムのPPSフィルム10への蒸着はPPS
フィルム1oが蒸着用ドラム14に入った直後に電子銃
19から放出された電子ビム20をPPSフィルム1o
の蒸着面側の全面に6・\ 。13 shows a PPS film on which an aluminum thin film layer is formed. Aluminum 17 is placed in an alumina (A42o3) crucible 16, heated and melted by an electron beam 22 emitted from an electron gun 21, and evaporated into aluminum vapor 18. The electron beam 22 is deflected approximately 90 degrees above the aluminum by a deflector (not shown). The vapor deposition of aluminum onto the PPS film 10 is performed using PPS.
Immediately after the film 1o enters the deposition drum 14, the electron beam 20 emitted from the electron gun 19 is transferred to the PPS film 1o.
6・\ on the entire surface of the vapor deposition side.
連続して照射しなからPPSフィルム10を走行させる
とともに、アルミニウム蒸気18を蒸発させながらシャ
ッター16を開けることによシ行われる。PPSフィル
ムは蒸着の直前に蒸着ドラム14外周表面上でPPSフ
ィルムの蒸着面側に電子ビーム20を照射することによ
りPPSフィルム10の表面処理を行うと同時に、蒸発
源の加熱。This is done by running the PPS film 10 without continuous irradiation and opening the shutter 16 while evaporating the aluminum vapor 18. Immediately before vapor deposition, the PPS film 10 is surface-treated by irradiating the vapor deposition surface side of the PPS film with an electron beam 20 on the outer peripheral surface of the vapor deposition drum 14, and at the same time, the evaporation source is heated.
溶解、蒸発用の電子銃21から放出された電子ビーム2
2からの散乱電子や、2次電子と共にPPSフィルム1
0に電子を打ちこんでPPSフィルム1oを帯電させP
PSフィルム10が蒸着用ドラム14の外周表面への密
着力を強くしてアルミニウム蒸着時のPPSフィlレム
10の熱をすばやく蒸着用ドラム14で取シ除くことに
よりPPSフィ7レム1oの温度上昇を抑えてPPSフ
ィlレム10に熱ダメージの少ないアルミニウム薄膜層
を形成した。玄た、電子ビーム20を照射することで行
われるPPSフィルムの表面処理によシ、PPSフィル
ム10とアルミニウム薄膜層の付着力が向上した。これ
は、電子ビーム20をPPSフィル7 ・
ム10の表面に照射することでPPSフィルム10の表
面の洗浄作用でPPSフィルム10とアルミニウム薄膜
層の付着力が向上するもので、電子ビーム20の代わシ
にイオンビームをppsフィlレム10の表面に照射し
ても同じ効果があった。付着力の向上は、アルミニウム
薄膜層の酸化防止に非常に有効であり、したがって、本
発明の巻取シ式真空蒸着法を用いた金属化PPSフィル
ムによる金属化フィルムコンデンサは外装なしの素子単
体だけでも耐湿負荷寿命試験での経時劣化を十分小さく
できる金属化フィルムコンデンサが提供できる。本実施
例では金属化PPSフィルムの形成に当たって、アルミ
ニウム薄膜層の表面抵抗は2.5〜4.0(Ω/口)の
範囲でPPSフィルム10の輻5oo(+g)にアルミ
ニウム蒸着を行うと共に、図示されていない通常のマー
ジン形成方法にょシ幅方向10(MM)毎に140 (
mm )のマージンを形成した。第2図、第3図に金属
化フィルムコンデンサの構成例を示す。第2図に訟いて
、マージン34が左のアルミニウム電極33を形成した
金属化PPSフィルムト、マージン32が右のアルミニ
ウム電極31を形成した金属化PPSフィルムとを交互
にアルミニウム(Ann電極トルp sフィルムが接す
るように積層30した後、第3図に示すごとく積層30
した金属化PPSフィルムのマシンがある端部に外部引
き出し用の電極35をメタリコンで形成し、電極35と
直角の両断面には樹脂シート36によシ簡易外装をした
。このような構造で、縦×横×高さがそれぞれ4.8X
3.3X1.8(朋)の金属化PPSフィルムによる簡
易外装タイプのチップフィルムコンデンサを作った。な
か、チップフィルムコンデンサを作るに当たっては通常
の処理工程を行った。表−1に前述した本発明巻き取り
式真空蒸着法による金属化ppsフィルムを誘電体に使
用した簡易外装タイプのチップフィルムコンデンサと他
の真空蒸着法による金属化PPSフィルムを使用した簡
易外装タイプ釦よびモールド外装タイプのチップフィル
ムコンデンサとの比較を示す。Electron beam 2 emitted from electron gun 21 for melting and evaporation
PPS film 1 along with scattered electrons from 2 and secondary electrons.
Charge the PPS film 1o by injecting electrons into P
By strengthening the adhesion of the PS film 10 to the outer circumferential surface of the deposition drum 14 and quickly removing the heat of the PPS film 10 during aluminum deposition with the deposition drum 14, the temperature of the PPS film 7 rem 1o increases. An aluminum thin film layer with little heat damage was formed on the PPS film 10 by suppressing the heat damage. Additionally, the surface treatment of the PPS film performed by irradiating it with the electron beam 20 improved the adhesion between the PPS film 10 and the aluminum thin film layer. This is because by irradiating the surface of the PPS film 7 and film 10 with the electron beam 20, the surface cleaning action of the PPS film 10 improves the adhesion between the PPS film 10 and the aluminum thin film layer. The same effect was obtained when the surface of the PPS film 10 was irradiated with an ion beam. Improving adhesion is very effective in preventing oxidation of the aluminum thin film layer. Therefore, the metallized film capacitor made of metalized PPS film using the winding type vacuum evaporation method of the present invention can be used as a single element without an exterior. However, it is possible to provide a metallized film capacitor that can sufficiently reduce deterioration over time in a humidity load life test. In this example, in forming the metallized PPS film, aluminum was deposited on the edge 5oo (+g) of the PPS film 10 so that the surface resistance of the aluminum thin film layer was in the range of 2.5 to 4.0 (Ω/mouth), and In the normal margin forming method (not shown), 140 (
A margin of mm) was formed. FIGS. 2 and 3 show examples of the structure of metallized film capacitors. As shown in FIG. 2, the margin 34 is a metalized PPS film forming the left aluminum electrode 33, and the margin 32 is an aluminum (Ann electrode torque ps) alternately with a metalized PPS film forming the right aluminum electrode 31. After laminating 30 so that the films are in contact, lamination 30 is performed as shown in FIG.
An electrode 35 for external extraction was formed of metallicon at the end of the metallized PPS film where the machine was located, and both cross sections perpendicular to the electrode 35 were simply covered with resin sheets 36. With this structure, the length x width x height is 4.8X each.
I made a simple exterior type chip film capacitor using 3.3 x 1.8 (tomo) metallized PPS film. Among them, normal processing steps were used to make chip film capacitors. Table 1 shows a simple exterior type chip film capacitor using a metalized PPS film produced by the roll-up vacuum deposition method of the present invention as a dielectric material and a simple exterior type button using a metalized PPS film produced by another vacuum deposition method as described above. Comparison between the capacitor and the molded exterior type chip film capacitor is shown.
9 ・\ 10−・ 。9 ・\ 10-.
第4図に耐湿負荷寿命試験の試験結果を示す。Figure 4 shows the test results of the humidity load life test.
耐湿負荷寿命試験の条件は以下の通りである。The conditions for the humidity load life test are as follows.
条件 温 度:60(ト)
湿 度: 9tsfA
印加電圧:定格電圧
直 流=25■
第4図に示すごとく耐湿負荷寿命試験において、100
時間後では実施例1.比較例1.比較例2とも静電容量
、誘電正接、絶縁抵抗の特性値は初期に比べて変化が少
なかった。しかし、500時間後での静電容量変化は比
較例1で初期に対して3〜6%の容量減少であったのに
、本発明の実施例1ふ・よび外装タイプの比較例2では
ほとんど変化しなかった。また、誘電正接においても比
較例1で0.04〜0.05%から500時間後に0.
6〜O,S%に増加したのに比べて、実施例1.比較例
2では0.1%に増加したのみであった。絶縁抵抗に訟
いては実施例1.比較例1.比較例2の差は小さかった
。さらに1000時間後において実施例1の特性変化は
500時間のときと比較しては11 ・ −
とんど変化しなかった。比較例2の静電容量変化は−2
〜−4%、誘電正接02%、絶縁抵抗1011〜1o1
2Ωであシ若干の経時劣化があった。なむ、比較例1は
経時劣化が大きく第4図の範囲外であった。Conditions Temperature: 60 (T) Humidity: 9tsfA Applied voltage: Rated voltage DC = 25■ In the humidity load life test as shown in Figure 4, 100
Example 1 after hours. Comparative example 1. In both Comparative Example 2, the characteristic values of capacitance, dielectric loss tangent, and insulation resistance showed little change compared to the initial values. However, although the capacitance change after 500 hours was 3-6% decrease compared to the initial capacity in Comparative Example 1, in Comparative Example 2 of Example 1 of the present invention and exterior type, there was almost no change in capacitance. It didn't change. Furthermore, the dielectric loss tangent ranged from 0.04 to 0.05% in Comparative Example 1 to 0.00% after 500 hours.
6~O,S% compared to Example 1. In Comparative Example 2, it increased only to 0.1%. Regarding insulation resistance, Example 1. Comparative example 1. The difference in Comparative Example 2 was small. Further, after 1,000 hours, the characteristics of Example 1 did not change by 11.-- compared to 500 hours. The capacitance change in Comparative Example 2 is -2
~-4%, dielectric loss tangent 02%, insulation resistance 1011~1o1
At 2Ω, there was some deterioration over time. In Comparative Example 1, the deterioration over time was large and was outside the range shown in FIG. 4.
第6図に高温負荷寿命試験結果を示す。Figure 6 shows the high temperature load life test results.
高温負荷寿命試験条件
温度:126℃
印加電圧:定格電圧X1.25倍−31,25V第6図
に示すごとく本発明の実施例1は、比較例1.比較例2
と同様に高温負荷寿命試験1000時間後の静電容量、
誘電正接、絶縁抵抗の経時劣化はきわめて僅かであった
。High temperature load life test conditions Temperature: 126°C Applied voltage: 1.25 times the rated voltage - 31,25V As shown in FIG. Comparative example 2
Similarly, the capacitance after 1000 hours of high temperature load life test,
Deterioration of dielectric loss tangent and insulation resistance over time was extremely slight.
以上の結果より従来から行われている真空蒸着による金
属化PPSフィルムを使用したチップフィルムコンデン
サは外装があるタイプのもので、耐湿負荷寿命試験の経
時劣化は小さいが、簡易外装タイプのものでは、耐湿負
荷寿命試験の経時劣化は大であった。一方、本発明の巻
取り式真空蒸着法による金属化PPSフィルムを使用し
た簡易外装タイプのチップフィルムコンデンサは、耐湿
負荷寿命試験、高温負荷寿命試験での耐久劣化はほとん
どなく信頼性の高い金属化フィルムコンデンサであるこ
とがわかった。From the above results, chip film capacitors using metallized PPS film by vacuum evaporation, which have been conventionally done, are of the type with an exterior, and the deterioration over time in the humidity load life test is small, but with the simple exterior type, Deterioration over time in the humidity load life test was significant. On the other hand, the simple exterior type chip film capacitor using the metallized PPS film produced by the winding vacuum evaporation method of the present invention shows almost no durability deterioration in the humidity load life test and the high temperature load life test, and has a highly reliable metallization. It turned out to be a film capacitor.
なか、本実施例の詳細な説明に当たって具体的な形状や
寸法をあげて説明したが、本発明はこれらに制限される
ものではない。また、本実施例では高分子誘電体フィル
ムにPPSフィルムを用−たが、PPSフィルムに限る
ものでなく、ポリプロピレンフィルム、ホリエチレンテ
レフタレートフィルム、ホリエチレンナフタレートフィ
7レムを用いても同様の効果を得ることができる。さた
、本実施例では片面金属化フィルムを用いたがこれに限
るものでなく、両面金属化フィルム、両面゛金属化コー
ティングフィlレムを用いても同様の効果を得ることが
できる。In the detailed description of this embodiment, specific shapes and dimensions have been cited, but the present invention is not limited to these. In addition, although a PPS film was used as the polymer dielectric film in this example, the same effect can be achieved by using a polypropylene film, a polyethylene terephthalate film, a polyethylene naphthalate film, etc. can be obtained. Furthermore, although a single-sided metalized film is used in this embodiment, the present invention is not limited to this, and the same effect can be obtained by using a double-sided metalized film or a double-sided metalized coating film.
発明の効果
以上のように本発明の高分子誘電体フィルムに電子ビー
ム照射及び電子ビーム加熱蒸着法を用いてアルミニウム
薄膜を形成した金属化フィルムを13・\
使用した金属化フィルムコンデンサは、0)耐電圧特性
を劣化させずに耐湿前、命特性を大幅に向上させた信頼
性の高い金属化フィルムコンデンサである。Effects of the Invention As described above, a metallized film capacitor using a metallized film in which a thin aluminum film is formed on the polymer dielectric film of the present invention using electron beam irradiation and electron beam heating evaporation method is 0). This is a highly reliable metallized film capacitor with significantly improved moisture resistance and life characteristics without degrading withstand voltage characteristics.
(2) コンデンサ素子単体だけでも耐湿寿命特性を
大幅に向上させているので、水分の浸入を抑制するため
の外装厚みを厚くしたり、ケース外装をする必要がなく
、さらに簡易的な外装で良いため大幅な小形化が可能な
金属化フィルムコンデンサである。(2) Since the capacitor element alone has significantly improved moisture resistance and life characteristics, there is no need to increase the thickness of the exterior to prevent moisture intrusion or use an exterior case, and even a simple exterior is sufficient. This is a metallized film capacitor that can be significantly downsized.
(3)巻取式真空蒸着法は生産性が高い方法でちゃ、し
たがって低コストのコンデンサを提供でき、工業性が大
である。(3) The winding vacuum evaporation method is a highly productive method, and therefore can provide low-cost capacitors, and is highly industrially viable.
第1図に本発明の金属化フィルムコンデンサの誘電体フ
ィルムのアルラミニウム薄膜層形戒に用いた巻取式真空
蒸着機を示す概要図、第2図は金属化フィルムコンデン
サのコンデンサ素子を示す構成斜視図、第3図は簡易外
装タイプの金属化フィルムコンデンザ□示す構成斜視図
、第4図は耐湿14 \
負荷寿命試験に卦ける各特性の変化を示す特性図、第5
図は高温負荷寿命試験に釦ける各特性の変化を示す特性
図、第6図は外装タイプの金属化フィルムコンデンサを
示す一部切欠斜視図である。
1o・・・・・・フィルム、14・・・・・・Z 着用
ドラム15・・・・・・シャッター、16・・・・・・
ルツボ、18・・・・・・アルミニウム蒸気、20.2
2・・・・・・電子ヒーム19 、21・・・・・・電
子銃。Fig. 1 is a schematic diagram showing a winding type vacuum evaporation machine used for forming aluminum thin film layered dielectric films of metallized film capacitors of the present invention, and Fig. 2 is a perspective view of the configuration showing the capacitor element of the metallized film capacitors. Fig. 3 is a perspective view of the structure of a simple exterior type metallized film capacitor □ Fig. 4 is a characteristic diagram showing changes in each characteristic in the humidity resistance 14 \ load life test, Fig. 5
The figure is a characteristic diagram showing changes in each characteristic during a high-temperature load life test, and FIG. 6 is a partially cutaway perspective view showing an exterior type metallized film capacitor. 1o...Film, 14...Z Wearing drum 15...Shutter, 16...
Crucible, 18... Aluminum vapor, 20.2
2...Electron beam 19, 21...Electron gun.
Claims (3)
してなる金属化フィルムを用いた蒸着電極型のフィルム
コンデンサの製造方法において、高分子誘電体フィルム
表面に蒸発源の加熱に電子ビームを用いた巻取式真空蒸
着法により金属薄膜層を形成する際に、金属蒸着を行う
ための蒸着ドラムの同一外周表面上でその蒸着工程直前
に電子ビーム照射することを特徴とする金属化フィルム
コンデンサの製造方法。(1) In a method for manufacturing a vapor-deposited electrode type film capacitor using a metallized film formed by forming a metal thin film layer on the surface of a polymer dielectric film, an electron beam is used to heat the evaporation source on the surface of the polymer dielectric film. A metallized film characterized in that when a metal thin film layer is formed by a roll-up vacuum evaporation method using a metallized film, electron beam irradiation is performed on the same outer peripheral surface of a evaporation drum for metal evaporation immediately before the evaporation process. Method of manufacturing capacitors.
,ポリエチレンテレフタレートフィルム,ポリエチレン
ナフタレートフィルム,ポリフェニレンサルファイドフ
ィルムより選択されることを特徴とする特許請求の範囲
第1項記載の金属化フィルムコンデンサの製造方法。(2) The method for manufacturing a metallized film capacitor according to claim 1, wherein the polymer dielectric film is selected from polypropylene film, polyethylene terephthalate film, polyethylene naphthalate film, and polyphenylene sulfide film.
る特許請求の範囲第1項記載の金属化フィルムコンデン
サの製造方法。(3) The method for manufacturing a metallized film capacitor according to claim 1, wherein the vapor-deposited metal layer is aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2029027A JPH03233923A (en) | 1990-02-08 | 1990-02-08 | Manufacture of metallized film capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2029027A JPH03233923A (en) | 1990-02-08 | 1990-02-08 | Manufacture of metallized film capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03233923A true JPH03233923A (en) | 1991-10-17 |
Family
ID=12264930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2029027A Pending JPH03233923A (en) | 1990-02-08 | 1990-02-08 | Manufacture of metallized film capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03233923A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020124905A (en) * | 2018-09-05 | 2020-08-20 | 王子ホールディングス株式会社 | Metal layer integrated polypropylene film, film capacitor, and method for manufacturing metal layer integrated polypropylene film |
JP2020124906A (en) * | 2018-08-29 | 2020-08-20 | 王子ホールディングス株式会社 | Metal layer integrated polypropylene film, film capacitor, and method for manufacturing metal layer integrated polypropylene film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128639A (en) * | 1974-03-29 | 1975-10-09 | ||
JPS5784115A (en) * | 1980-11-14 | 1982-05-26 | Tdk Corp | Manufacture of magnetic thin film |
JPS6315737A (en) * | 1986-07-08 | 1988-01-22 | Hitachi Constr Mach Co Ltd | Rod-like body made of fiber reinforced resin |
-
1990
- 1990-02-08 JP JP2029027A patent/JPH03233923A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128639A (en) * | 1974-03-29 | 1975-10-09 | ||
JPS5784115A (en) * | 1980-11-14 | 1982-05-26 | Tdk Corp | Manufacture of magnetic thin film |
JPS6315737A (en) * | 1986-07-08 | 1988-01-22 | Hitachi Constr Mach Co Ltd | Rod-like body made of fiber reinforced resin |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020124906A (en) * | 2018-08-29 | 2020-08-20 | 王子ホールディングス株式会社 | Metal layer integrated polypropylene film, film capacitor, and method for manufacturing metal layer integrated polypropylene film |
JP2020124905A (en) * | 2018-09-05 | 2020-08-20 | 王子ホールディングス株式会社 | Metal layer integrated polypropylene film, film capacitor, and method for manufacturing metal layer integrated polypropylene film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019186391A (en) | Metalization film and film capacitor using the same | |
JPH03233923A (en) | Manufacture of metallized film capacitor | |
US3179862A (en) | Dual-film metallized condensers | |
US20170178816A1 (en) | Winding-type stacked body for condenser with high electrostatic capacitance and stacked winding-type condenser using the same | |
JP2002367847A (en) | Manufacturing method of double-sided deposition polypropylene film, and capacitor using the film | |
JPH04356910A (en) | Manufacture of metallized film capacitor | |
JP2003077753A (en) | Metallized film capacitor | |
WO2007080757A1 (en) | Metalized film for capacitor and capacitor using such film | |
JP2018157055A (en) | Metallized film for capacitor and capacitor using the same | |
CN219658555U (en) | Multi-string dampproof metallized film | |
EP3091546B1 (en) | Winding-type stacked body for condenser with high electrostatic capacitance and stacked winding-type condenser using same | |
KR19980066056A (en) | Aluminum metal deposited film for condenser with reinforced spray surface and manufacturing method | |
JPS5867017A (en) | Method of producing metallized film condenser | |
JPH01158714A (en) | Deposition film for capacitor | |
CN107887161A (en) | Antidamping capacitor film | |
JP2018107273A (en) | Metalization film capacitor and manufacturing method thereof | |
WO2011039957A1 (en) | Film capacitor | |
JPS5897823A (en) | Method of producing metallized film condenser | |
JPH03241803A (en) | Film capacitor | |
JPH03178111A (en) | Metallized film capacitor | |
JPH0765171B2 (en) | Method for producing metallized film | |
JPH0584049B2 (en) | ||
JP3447307B2 (en) | Film capacitor and film for manufacturing the same | |
JPH0141260B2 (en) | ||
JPS6337506A (en) | Manufacture of thin film dielectric material for capacitor |