JPH0323266A - Production of silicon carbide-based starting material for sintering - Google Patents
Production of silicon carbide-based starting material for sinteringInfo
- Publication number
- JPH0323266A JPH0323266A JP1158750A JP15875089A JPH0323266A JP H0323266 A JPH0323266 A JP H0323266A JP 1158750 A JP1158750 A JP 1158750A JP 15875089 A JP15875089 A JP 15875089A JP H0323266 A JPH0323266 A JP H0323266A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- silicon carbide
- sintering
- particle size
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高密度でかつ高強度の炭化ケイ素焼結体を得
るための焼結原料の製造法に関する.[従来技術]
炭化ケイ素は、極めて優れた化学的および物理的性質を
有しており、苛酷な条件下で使用される高41構造材等
の用途に対して好適な材料である.従来、炭化ケイ素の
焼結方法としては加圧焼結法、反応焼結法、無加圧焼結
法が広く知られておる.このうち、加圧焼結法は複雑な
焼結体の製造が困難であり、生産性も悪いという問題点
がある.また、反応焼結法では高強度の焼結体が得難い
等の問題点がある.無加圧焼結法は所望の形状に常温で
或形し、生戒形体を得、ついでこの生成形体を無加圧下
で焼結する方法であり、焼結助剤として炭素、ホウ素等
を添加することによりこれらの欠点を解消できるもので
ある.
無加圧焼結法における生或形体の戒形手段としては、例
えば、泥漿鋳込み戒形、押し出し戒形、乾式加圧戚形等
が知られている.これらの戒形手段は戒形時の含液量に
より湿式、乾式に大きく分けられるが、湿式の或形手段
によれば戒形後十分に生或形体を乾燥することが必要で
あり、乾燥による収縮を考慮しなければならない上、乾
燥により、反りや亀裂等の欠陥を生しやすい.これに対
して乾式の戒形法は、寸法精度に優れており有利な成形
手段であるが、微細な粉末を使用する場合、粉末の流動
性が悪いため型の中へ均一に充填して加圧することが困
難であり、生或形体の嵩密度等が不均一となり、このも
のを用いて焼結した焼結体はこの不均一さに起因する欠
陥が残存することとなり、焼結体の物性特に、ll械的
強度を低下させるものである.従って、従来微細な粉末
原料を使用して生或形体を威形する場合にはその流動性
を向上させるため、この粉末を予め顆粒状に調製して使
用することがおこなわれている.この粉末を顆粒状にa
rmする手段としてはタブレット法、直接顆粒化法、噴
霧乾燥法等が知られているが、タブレット法は、いった
ん加圧戚形したのちこれを粉砕して篩分けするものであ
るが、角ばったものとなり、流動性に劣るものである.
また、直接顆粒化法では粒径のコントロールが困難で粒
径分布もばらつく等の問題がある.噴霧乾燥法はスラリ
ー状の懸濁液を高温雰囲気中に噴霧し、乾燥と同時に顆
粒化をおこなうものであり、粒径分布が狭く、球状で流
動性に優れた顆粒を得ることができるものである.
高強度の炭化ケイ素焼結体を得るためには、炭素、ホウ
素を含有せしめることが有効であることが提案されてお
り、炭素源としてはカーボンブランク、タール、各種合
戒樹脂等が挙げられる.またホウ素源としてはホウ素、
炭化ホウ素、ホウ酸、ホウ酸化合物が適用されるが、こ
れらは原料の炭化ケイ素粉末と均一に混合されることが
必要であり、従来、特に炭素源として特に優れているフ
ェノール樹脂等の合威樹脂を溶解せしめるためにアルコ
ール、ベンゼン、シクロヘキサン等の有its剤を用い
るのが一般的であった.
しかし、これら有mt’ip剤をもちいて!濁させて噴
霧乾燥を行う場合には、防煽対策等を考慮する必要があ
り、取扱上問題があるとともに、除臭等の環境対策が必
要であり、また使用溶剤の回収等の付帯設備が必要であ
る等の各種の問題を有するものであった.
[問題点を解決するための手段J
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討
の結果本発明に到達した.
すなわち本発明は平均粒径!μm以下の炭化ケイ素粉末
と水溶性含炭素化合物およびホウ素またはホウ素化合物
を水系溶媒中で混合後、噴霧乾燥することを特徴とする
炭化ケイ素焼結原料の製造法であり、特に水溶性含炭素
化合物として水溶性フェノール樹脂を用いる炭化ケイ素
焼結原料の製造法である.
本発明においては炭化ケイ素粉末として平均粒径1μm
以下の微細な粉末を用いるものである.平均粒径が1μ
mを越える場合には緻密な焼結体を得ることが困難であ
り、高強度焼結体を得るための原料の調製という本発明
の目的にかなわないものである.本発明においては炭化
ケイf/I:粉末と炭素源、ホウ素源を混合スラリー化
するための媒体として水を用いるものであり、炭素源と
して水溶性の含炭素化合物を用いるものである.水溶性
の含炭素化合物としては水溶性フェノール樹脂、シツ糖
、デンブン等が挙げられるが、固定炭素量および炭素の
均一分散性等の点から水溶性フェノール樹脂が最も好ま
しい.フェノール樹脂には大別してノボラックとレゾー
ルの2種類があり、レゾールのうちでも特に製造時アル
カリ過剰での反応で生或するものは水溶性を示し、通常
樹脂分40〜60%の水溶液として市販されており、本
発明においてはこの水溶液を用いるものである.ホウ素
源としてはホウ素、炭化ホウ素、ホウ酸等を用いること
ができるが、このうち不揮発性等の点でホウ素、炭化ホ
ウ素が最も好ましい.これら炭素源、ホウ素源の添加量
は、特に制限はないが、一般的には炭化ケイ素1003
131部に対して固定炭素量とてして1〜3重量部とな
るように、またホウ素が0.1〜0,5重量部の範囲と
なるように予め設定して、添加される.
これらの添加剤と炭化ケイ素粉末を水に懸濁スラリー化
する条件は特に特定的ではないが、スラリー濃度30〜
60%の範囲が好ましい.この範囲未満では乾燥能力を
大とする必要があるとともに顆粒の密度が小さくなりや
すい.また、この範囲を越えると顆粒粒子径が大きくな
りやすい。このほか熱風温度、噴霧手段等効率を考慮し
て通宜選沢すればよい.
スラリー化に当たってはより均一に分散させることが好
ましく、ボールミル等による混合攪拌がt1t奨される
.分散媒体として有411溶剤を使用する場合には微細
な粉末でも溶剤を選択することで均一分散は容易である
が、本発明の水分散系においては、微細粒子が凝集する
ことがあるが、分散体のpHを調整することで容易に均
一分散が可能であり、具体的にはアンモニア等によりp
H10程度に調整することが好ましい.
このようにして均一に分散したスラリーを噴霧乾燥する
ものであるが、本発明においては分散媒が水であるため
、特に乾燥条件に制限はなく、通常おこなわれる噴雷乾
燥条件を適用し得る.このようにして、平均粒径40〜
90μmの範囲の顆粒を得ることができ、このものは炭
素、ホウ素を均一に含み粒径分布の狭い顆粒であり、そ
の形状も球形で流動性に優れたものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a sintered raw material for obtaining a high-density and high-strength silicon carbide sintered body. [Prior Art] Silicon carbide has extremely excellent chemical and physical properties and is a suitable material for applications such as high-41 structural materials used under severe conditions. Pressure sintering, reaction sintering, and pressureless sintering are widely known methods for sintering silicon carbide. Among these methods, the pressure sintering method has problems in that it is difficult to manufacture complex sintered bodies and productivity is also poor. In addition, the reaction sintering method has problems such as difficulty in obtaining high-strength sintered bodies. The pressureless sintering method is a method in which a desired shape is formed at room temperature to obtain a raw shape, and then this formed body is sintered under no pressure. Carbon, boron, etc. are added as sintering aids. By doing so, these drawbacks can be overcome. For example, slurry casting, extrusion, dry pressurization, etc. are known as methods for forming a raw material in the pressureless sintering method. These forms of precepts are broadly divided into wet and dry methods depending on the liquid content during preforms, but wet methods require sufficient drying of the raw material after forming prefectures; Shrinkage must be taken into consideration, and defects such as warping and cracking are likely to occur due to drying. On the other hand, the dry method has excellent dimensional accuracy and is an advantageous molding method, but when using fine powder, the fluidity of the powder is poor, so it must be uniformly filled into the mold and processed. It is difficult to press, and the bulk density etc. of the raw or shaped body becomes non-uniform, and the sintered body sintered using this material will have defects due to this non-uniformity, and the physical properties of the sintered body will deteriorate. In particular, it reduces mechanical strength. Therefore, conventionally, when using fine powder raw materials to form raw or shaped objects, the powder is prepared in advance into granules in order to improve its fluidity. Make this powder into granules a
The tablet method, direct granulation method, spray drying method, etc. are known as means for rms, but the tablet method involves pressurizing and forming the mold, then crushing it and sieving it. It becomes liquid and has poor liquidity.
In addition, the direct granulation method has problems such as difficulty in controlling particle size and variation in particle size distribution. Spray drying is a method in which a slurry-like suspension is sprayed into a high-temperature atmosphere and granulated at the same time as drying, making it possible to obtain granules with a narrow particle size distribution, spherical shape, and excellent fluidity. be. In order to obtain a high-strength silicon carbide sintered body, it has been proposed that it is effective to include carbon and boron, and examples of carbon sources include carbon blank, tar, and various types of resin. In addition, as a boron source, boron,
Boron carbide, boric acid, and boric acid compounds are applied, but these need to be uniformly mixed with the raw material silicon carbide powder. It was common to use ITS agents such as alcohol, benzene, and cyclohexane to dissolve the resin. However, using these mt'ip agents! When carrying out spray drying using cloudy water, it is necessary to take measures to prevent agitation, which poses handling problems, requires environmental measures such as deodorization, and requires additional equipment such as collecting the solvent used. It had various problems such as necessity. [Means for Solving the Problems J The present inventors have arrived at the present invention as a result of intensive studies in view of the problems of the prior art. In other words, the present invention focuses on the average particle size! A method for producing a silicon carbide sintering raw material, which is characterized by mixing silicon carbide powder of μm or less, a water-soluble carbon-containing compound, and boron or a boron compound in an aqueous solvent, and then spray-drying the mixture. This is a method for producing a silicon carbide sintering raw material using water-soluble phenolic resin. In the present invention, silicon carbide powder has an average particle size of 1 μm.
The following fine powder is used. Average particle size is 1μ
If it exceeds m, it is difficult to obtain a dense sintered body, and the object of the present invention, which is to prepare a raw material for obtaining a high-strength sintered body, is not achieved. In the present invention, water is used as a medium for mixing and slurrying silicon carbide f/I: powder, a carbon source, and a boron source, and a water-soluble carbon-containing compound is used as a carbon source. Examples of water-soluble carbon-containing compounds include water-soluble phenolic resins, sucrose, starch, etc., but water-soluble phenolic resins are most preferred from the viewpoint of fixed carbon content and uniform dispersibility of carbon. There are two main types of phenolic resins: novolacs and resols. Among resols, those produced by reaction with excess alkali during production are water-soluble and are usually commercially available as aqueous solutions with a resin content of 40 to 60%. This aqueous solution is used in the present invention. As the boron source, boron, boron carbide, boric acid, etc. can be used, but among these, boron and boron carbide are most preferred from the viewpoint of non-volatility. The amounts of these carbon sources and boron sources are not particularly limited, but generally silicon carbide 1003
The amount of fixed carbon is set in the range of 1 to 3 parts by weight based on 131 parts, and the amount of boron is set in the range of 0.1 to 0.5 parts by weight. The conditions for slurrying these additives and silicon carbide powder in water are not particularly specific, but the slurry concentration is between 30 and 30.
A range of 60% is preferable. Below this range, it is necessary to increase the drying capacity and the density of the granules tends to decrease. Moreover, when this range is exceeded, the granule particle size tends to become large. In addition, the temperature of the hot air, the efficiency of the spraying method, etc. may be taken into consideration when selecting the appropriate amount. When making a slurry, it is preferable to disperse it more uniformly, and mixing and stirring using a ball mill or the like is recommended. When using a 411 solvent as a dispersion medium, it is easy to uniformly disperse even fine powders by selecting a suitable solvent.However, in the aqueous dispersion system of the present invention, fine particles may aggregate, but dispersion Uniform dispersion is easily possible by adjusting the pH of the body, and specifically, ammonia etc.
It is preferable to adjust it to about H10. The slurry uniformly dispersed in this way is spray-dried, but since the dispersion medium in the present invention is water, there are no particular restrictions on the drying conditions, and commonly used lightning drying conditions can be applied. In this way, the average particle size is 40~
Granules in the range of 90 μm can be obtained, and these granules uniformly contain carbon and boron, have a narrow particle size distribution, are spherical in shape, and have excellent fluidity.
以下、実施例により本発明を具体的に説明する.実施例
I
平均粒径0.6μm(比表面積14.2rrl/g)の
β炭化ケイ素粉末100重量部に明和化威社製水溶性フ
ェノール樹脂( MWR一改,樹脂分58%)を固定炭
素として2重量部、ホウ素0.3重量部、蒸留水をスラ
リー濃度が50重置%となるように添加し、スラリーの
PHが10となるようにアンモニア水を添加したのちボ
ールミルを使用して20時間分散処理をおこなった.こ
のスラリーを回転円板型のスプレードライヤーで熱風入
口温度220゜C、出口温度120゜Cで噴霧乾燥をお
こなった.得られた顆粒は平均粒径47μm、見掛け比
重1.05g/一であった.この顆粒を150Kg/一
の圧力で金型或形し、さらに1.5 t/一でラバープ
レスをおこない生戒形体を得た.この生或形体の密度は
2.03g/一であった.このものを2000’C,
1時間、常圧焼結をおこなった.焼結体の密度は3.
1.5g/cj (1論密度の98.1%に相当)を示
した.この焼結体をJIS−R−1601 1604に
て3点曲げ強度を測定した.この結果、常温で67Kg
/ 一、1500゜Cにおいて79Kg/一の平均強度
を有していた.
実施例2〜9
実施例1と同様にして各種条件をかえて噴霧乾燥、生戒
形体の成形、焼結をおこなった.この結果を第1表に示
した.
比較例1. 2
炭素源としてカーボンブラックを用い、バインダーとし
て炭化ケイ素100重量部に対して0.6重盪部のPV
Aを添加(比較例1)、水溶性を示さないフェノール樹
脂として大日本インキ化学工業社製(J−325 )を
用いる(比較例2)ほかは実施例lと同欅にして噴霧乾
燥、生威形体の威形、焼結をおこなった.この結果を第
1表に示した.第1表から明らかな通り、本発明の方法
により得られた焼結原料粉末を用いた焼結体は高密度、
高強度を示すものである.
[発明の効果]The present invention will be specifically explained below with reference to Examples. Example I 100 parts by weight of β-silicon carbide powder with an average particle size of 0.6 μm (specific surface area 14.2 rrl/g) was mixed with a water-soluble phenol resin manufactured by Meiwa Kaei Co., Ltd. (MWR Ichikai, resin content 58%) as fixed carbon. 2 parts by weight, 0.3 parts by weight of boron, and distilled water were added so that the slurry concentration was 50% by weight, and after adding ammonia water so that the pH of the slurry was 10, it was heated using a ball mill for 20 hours. We performed distributed processing. This slurry was spray-dried using a rotating disk type spray dryer at a hot air inlet temperature of 220°C and an outlet temperature of 120°C. The obtained granules had an average particle size of 47 μm and an apparent specific gravity of 1.05 g/1. The granules were formed into a mold at a pressure of 150 kg/unit, and then rubber pressed at a pressure of 1.5 t/unit to obtain a raw material shape. The density of this raw material was 2.03 g/1. This one at 2000'C,
Pressureless sintering was performed for 1 hour. The density of the sintered body is 3.
It showed 1.5 g/cj (corresponding to 98.1% of the theoretical density). The three-point bending strength of this sintered body was measured in accordance with JIS-R-1601 1604. As a result, it weighs 67Kg at room temperature.
/1, It had an average strength of 79 kg/1 at 1500°C. Examples 2 to 9 Spray drying, molding and sintering of raw materials were carried out in the same manner as in Example 1 while changing various conditions. The results are shown in Table 1. Comparative example 1. 2 Using carbon black as a carbon source, 0.6 parts by weight of PV per 100 parts by weight of silicon carbide as a binder.
A was added (Comparative Example 1), and Dainippon Ink & Chemicals Co., Ltd. (J-325) was used as the non-water-soluble phenolic resin (Comparative Example 2). The shape of the body was shaped and sintered. The results are shown in Table 1. As is clear from Table 1, the sintered body using the sintered raw material powder obtained by the method of the present invention has a high density,
It shows high strength. [Effect of the invention]
Claims (2)
炭素化合物およびホウ素またはホウ素化合物を水系溶媒
中で混合後、噴霧乾燥することを特徴とする炭化ケイ素
焼結原料の製造法。(1) A method for producing a silicon carbide sintering raw material, which comprises mixing silicon carbide powder with an average particle size of 1 μm or less, a water-soluble carbon-containing compound, and boron or a boron compound in an aqueous solvent, and then spray-drying the mixture.
ることを特徴とする請求項(1)記載の炭化ケイ素焼結
原料の製造法。(2) The method for producing a silicon carbide sintering raw material according to claim (1), wherein the water-soluble carbon-containing compound is a water-soluble phenol resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158750A JPH0323266A (en) | 1989-06-21 | 1989-06-21 | Production of silicon carbide-based starting material for sintering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158750A JPH0323266A (en) | 1989-06-21 | 1989-06-21 | Production of silicon carbide-based starting material for sintering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0323266A true JPH0323266A (en) | 1991-01-31 |
Family
ID=15678514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1158750A Pending JPH0323266A (en) | 1989-06-21 | 1989-06-21 | Production of silicon carbide-based starting material for sintering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0323266A (en) |
-
1989
- 1989-06-21 JP JP1158750A patent/JPH0323266A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104150883B (en) | A kind of preparation method of aluminum oxide pelletizing | |
US3532473A (en) | Process for producing a spherical granulated silica material | |
CN107459357A (en) | Silicon carbide composite powder body and its preparation method and application | |
JPH0159995B2 (en) | ||
US3284369A (en) | Silica supported catalysts and method of preparation thereof | |
JP3279128B2 (en) | Silicon nitride powder | |
JPH101376A (en) | Silica compact and method for producing the same | |
JPH10194743A (en) | Zirconia-alumina granules and method for producing the same | |
JPH0323266A (en) | Production of silicon carbide-based starting material for sintering | |
JPH0717460B2 (en) | Method for producing ceramic granules | |
CN108218433A (en) | A kind of Spray granulation method of silicon carbide powder | |
JP4047956B2 (en) | Method for forming silicon carbide powder | |
CN110467440B (en) | Preparation method of large-size tubular alumina ceramic | |
CN109111232A (en) | A kind of Spray granulation method of silicon carbide powder | |
JPH03135453A (en) | Manufacture of inorganic powder | |
JP2000169213A (en) | Ceramic granule molding method | |
JPH1160215A (en) | Highly fillable boron nitride powder-aggregated material, production thereof and production of isotropic boron nitride formed material | |
JP2003063874A (en) | Method for manufacturing ceramic spherical body | |
JPS6350313B2 (en) | ||
JPS6140724B2 (en) | ||
JPH0462774B2 (en) | ||
JP3672598B2 (en) | Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body | |
JPH05246721A (en) | Zirconia powder agglomerate for rolling granulation | |
JPS63225580A (en) | Method for manufacturing silicon carbide sintered body | |
JPH0725593B2 (en) | Method for producing composition for producing silicon carbide sintered body |