[go: up one dir, main page]

JPH03231460A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH03231460A
JPH03231460A JP2027602A JP2760290A JPH03231460A JP H03231460 A JPH03231460 A JP H03231460A JP 2027602 A JP2027602 A JP 2027602A JP 2760290 A JP2760290 A JP 2760290A JP H03231460 A JPH03231460 A JP H03231460A
Authority
JP
Japan
Prior art keywords
layer
oxide film
film
diffusion layer
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2027602A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2027602A priority Critical patent/JPH03231460A/en
Publication of JPH03231460A publication Critical patent/JPH03231460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce a cell size, to make a resistance high, to make a density high and to make a power consumption low by installing the following: a diffusion layer, of an opposite conductivity type, which is connected to a gate electrode of a MOS transistor; a plurality of insulating films; and a resistance layer for load element use. CONSTITUTION:A field oxide film 2 and a gate oxide film 3 are formed on a P-type silicon substrate 1; a contact hole 4 is made in the film 3. Then, an N-type diffusion layer 7 is formed; after that, a gate electrode 5 which has been connected to the layer 7 and a silicon oxide film 6 are formed. Then, an N<-> type diffusion layer 8 connected to the layer 7 is formed; after that, a silicon oxide film 9 is deposited on the whole surface; a sidewall part 9a is formed. Then, an N<+> type diffusion layer 10 is formed; only a silicon oxide film 11 is removed by making use of a photoresist film 12 as a mask; a contact hole 13 is made. The film 12 is removed; after that, a high-resistance layer 14 and a power-supply interconnection 14a which is connected to the layer 14 are formed; an interlayer insulating film 15 is deposited on their surface; a contact hole 16 is made; a digit line 17 is formed. Thereby, a cell size is reduced, a resistance is made high, a density is made high and a power consumption is made low.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に関し、特にスタティックメモ
リ素子を有する半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a semiconductor memory device having a static memory element.

〔従来の技術〕[Conventional technology]

従来の半導体記憶装置は第3図(a)、(b)に示すよ
うに、P型シリコン基板1の上に選択的に設けて素子形
成領域を区画するフィールド酸化膜2と、素子形成領域
の表面に設けたゲート酸化!113と、ゲート酸化膜3
を開孔して設けたコンタクトホール4と、ゲート酸化膜
3の上に設けたゲート電極5及びゲート酸化膜3の上に
設けてコンタクトホール4のP型シリコン基板1の表面
に設けたN型拡散層7と接続するゲート電極5aと、ゲ
ート電極5,5aに整合して素子形成領域内に設けたN
”型拡散層10と、ゲート電極5,5aを含む表面に設
けた酸化シリコン膜18と、酸化シリコン膜18を開孔
してN1型拡散層10及びゲート電極5aの端部を露出
させるコンタクトホール19と、コンタクトホール19
のN3型拡散層10及びゲート電極5aと接続して酸化
シリコン膜18の上に延在する高抵抗多結晶シリコン膜
からなる高抵抗層4と、高抵抗層4と接続して設けた電
源配置i 14 aとを有する。
As shown in FIGS. 3(a) and 3(b), a conventional semiconductor memory device includes a field oxide film 2 that is selectively provided on a P-type silicon substrate 1 to partition an element formation area, and a field oxide film 2 that is selectively provided on a P-type silicon substrate 1 to partition an element formation area. Gate oxidation on the surface! 113 and gate oxide film 3
A contact hole 4 provided by opening, a gate electrode 5 provided on the gate oxide film 3, and an N-type electrode provided on the surface of the P-type silicon substrate 1 in the contact hole 4 provided on the gate oxide film 3. A gate electrode 5a connected to the diffusion layer 7 and an N
``The silicon oxide film 18 provided on the surface including the type diffusion layer 10 and the gate electrodes 5 and 5a, and the contact hole for opening the silicon oxide film 18 to expose the ends of the N1 type diffusion layer 10 and the gate electrode 5a. 19 and contact hole 19
A high-resistance layer 4 made of a high-resistance polycrystalline silicon film connected to the N3 type diffusion layer 10 and the gate electrode 5a and extending over the silicon oxide film 18, and a power source arrangement provided in connection with the high-resistance layer 4. i 14 a.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

上述した従来の半導体記憶装置は、拡散層及び拡散層に
接続するゲート電極の端部を含んなコンタクトホールを
設け、拡散層及びゲート電極に接続する抵抗層を設けて
いたため、コンタクトホールを開孔するためにフォトレ
ジスト膜の加工及びドライエツチングを用いた微小コン
タクトホールが開孔しにくいという欠点があった。
In the conventional semiconductor memory device described above, a contact hole including the diffusion layer and the end of the gate electrode connected to the diffusion layer was provided, and a resistance layer was provided connected to the diffusion layer and the gate electrode, so it was not necessary to open the contact hole. In order to do this, there is a drawback that it is difficult to form micro contact holes using photoresist film processing and dry etching.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体記憶装置は、−導電型半導体基板上に設
けたMOSトランジスタと、前記MOSトランジスタに
接続して負荷素子とする抵抗層とを有する抵抗負荷型の
スタティックメモリ素子を有する半導体記憶装置におい
て、前記MOSトランジスタのゲート電極に接続して前
記半導体基板に設けた逆導電型の拡散層と、前記ゲート
電極の表面を被覆する第1の絶縁膜と、前記第1の絶縁
膜を含む全面に設けた第2の絶縁膜と、前記第2の絶縁
膜に設けたコンタクトホールの前記拡散層に接続して前
記第2の絶縁膜の上に延在した前記負荷素子用の抵抗層
とを有する。
The semiconductor memory device of the present invention is a semiconductor memory device having a resistive load type static memory element having a MOS transistor provided on a conductive type semiconductor substrate and a resistive layer connected to the MOS transistor and serving as a load element. , a diffusion layer of an opposite conductivity type provided on the semiconductor substrate connected to the gate electrode of the MOS transistor, a first insulating film covering the surface of the gate electrode, and an entire surface including the first insulating film. a second insulating film provided, and a resistance layer for the load element connected to the diffusion layer of the contact hole provided in the second insulating film and extending over the second insulating film. .

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f>は本発明の一実施例の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 1A to 1F are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

ます、第1図(a)に示すように、P型シリコン基板1
の上に選択的にフィールド酸化膜2を設けて素子形成領
域を区画し、素子形成領域の表面にゲート酸化膜3を形
成する。次に、ゲート酸化膜を選択的に開孔してコンタ
クトホール4を設け、コンタクトホール4を含む表面に
多結晶シリコン膜を0.3μmの厚さに堆積し、多結晶
シリコン膜の中にリン原子を導入して多結晶シリコン膜
の導電率を高めると共にコンタクトホール4を介して多
結晶シリコン膜よりP型シリコン基板1内表面にリンを
拡散してN型拡散層7を形成し、多結晶シリコン膜とオ
ーミックコンタクトを形成し、多結晶シリコン膜の上に
酸化シリコン膜を0.2μmの厚さに堆積する。次に、
酸化シリコン膜及び多結晶シリコン膜を選択的に順次エ
ツチングしてゲート電極5及びN型拡散層7と接続した
多結晶シリコン膜からなるゲート電極5a及びゲート電
極5,5a上にゲート電極5,5aのパターンに整合し
た酸化シリコン膜6を形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
A field oxide film 2 is selectively provided thereon to define an element formation region, and a gate oxide film 3 is formed on the surface of the element formation region. Next, a contact hole 4 is formed by selectively opening the gate oxide film, a polycrystalline silicon film is deposited to a thickness of 0.3 μm on the surface including the contact hole 4, and phosphor is formed in the polycrystalline silicon film. Atoms are introduced to increase the electrical conductivity of the polycrystalline silicon film, and phosphorus is diffused from the polycrystalline silicon film to the inner surface of the P-type silicon substrate 1 through the contact hole 4 to form an N-type diffusion layer 7. An ohmic contact is formed with the silicon film, and a silicon oxide film is deposited to a thickness of 0.2 μm on the polycrystalline silicon film. next,
A gate electrode 5a made of a polycrystalline silicon film is connected to the gate electrode 5 and the N-type diffusion layer 7 by selectively sequentially etching the silicon oxide film and the polycrystalline silicon film, and gate electrodes 5, 5a are formed on the gate electrodes 5, 5a. A silicon oxide film 6 matching the pattern is formed.

次に、ゲート電極5,5a及び酸化シリコン膜6をマス
クとしてリンイオンを加速エネルギー40keV、ドー
ズ量1×1013CII−2ノ条件ティオン注入し、N
型拡散層7と接続するN−型拡散層8を形成する。
Next, using the gate electrodes 5, 5a and the silicon oxide film 6 as masks, phosphorus ions were implanted at an acceleration energy of 40 keV and a dose of 1×10 CII-2.
An N- type diffusion layer 8 connected to the type diffusion layer 7 is formed.

次に、第1図<b>に示すように、全面に酸化シリコン
M9を0.3μmの厚さに堆積する。
Next, as shown in FIG. 1<b>, silicon oxide M9 is deposited on the entire surface to a thickness of 0.3 μm.

次に、第1図(c)に示すように、異方性プラズマエツ
チングにより酸化シリコン膜9の膜厚分だけエッチバッ
クしてゲート電極5の側面にのみ酸化シリコン膜9を残
して側壁部9aを形成する。次に、ゲート電極及び側壁
部9aをマスクとしてヒ素原子を加速エネルギー70k
eV、ドーズ量5 X I Q 15cv−2の条件で
イオン注入し、N+型型数散層10形成する。
Next, as shown in FIG. 1(c), the silicon oxide film 9 is etched back by the thickness of the silicon oxide film 9 by anisotropic plasma etching, leaving the silicon oxide film 9 only on the side walls of the gate electrode 5 and the side wall portions 9a. form. Next, using the gate electrode and side wall portion 9a as a mask, arsenic atoms are accelerated with an energy of 70k.
Ion implantation is performed under the conditions of eV and a dose of 5×IQ 15cv−2 to form an N+ type scattering layer 10.

次に、第1図(d)に示すように、全面に酸化シリコン
膜11を0.2μmの厚さに堆積し、フォトレジスト膜
12を塗布してパターニングし、フォトレジスト膜12
をマスクとして酸化シリコン膜11のみをバッフアート
弗酸によりエツチングして除去しコンタクトホール13
を形成する。
Next, as shown in FIG. 1(d), a silicon oxide film 11 is deposited on the entire surface to a thickness of 0.2 μm, and a photoresist film 12 is applied and patterned.
Using this as a mask, only the silicon oxide film 11 is removed by etching with buffered hydrofluoric acid to form a contact hole 13.
form.

次に、第1図(e)に示すように、フォトレジスト膜1
2を除去した後、コンタクトホール13を含む表面に高
抵抗多結晶シリコン膜を0. 1μmの厚さに堆積して
、これを選択的にエツチングして高抵抗層14を形成す
ると共に高抵抗多結晶シリコン膜の一部にリン原子を選
択的にイオン注入して高抵抗層14に接続する電源配線
14aを形成する。
Next, as shown in FIG. 1(e), the photoresist film 1
2, a high resistance polycrystalline silicon film is deposited on the surface including the contact hole 13. It is deposited to a thickness of 1 μm and selectively etched to form the high resistance layer 14. Phosphorus atoms are selectively ion-implanted into a part of the high resistance polycrystalline silicon film to form the high resistance layer 14. A power supply wiring 14a to be connected is formed.

次に、第1図(f)に示すように、高抵抗層14及び電
源配線14aを含む表面に眉間絶縁膜15を1μmの厚
さに堆積し、これを選択的にエツチングしてコンタクト
ホール16を形成する。
Next, as shown in FIG. 1(f), a glabellar insulating film 15 is deposited to a thickness of 1 μm on the surface including the high resistance layer 14 and the power supply wiring 14a, and this is selectively etched to form contact holes 16. form.

次にコンタクトホール16を含む表面にアルミニウム層
を堆積して選択的にエツチングし、N+型型数散層10
接続するデイジット線17を設ける。
Next, an aluminum layer is deposited on the surface including the contact hole 16 and selectively etched to form the N+ type scattered layer 10.
A digit line 17 for connection is provided.

第2図は第1図(f)の平面図である。但し、デイジッ
ト線17は図を簡略化するなめ省略している。
FIG. 2 is a plan view of FIG. 1(f). However, the digit line 17 is omitted to simplify the drawing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は抵抗負荷型のスタティック
メモリ素子を有する半導体記憶装置において、電源配線
層より高抵抗素子を介してセル・フリップフロップのノ
ート電極へ接続するコンタクトホールが高抵抗素子を負
荷とするトランジスタのゲート電極と接続してセルノー
ド電極を構成している拡散層の表面に開孔され、高抵抗
素子は拡散層を介在させてゲート電極と接続することに
より、コンタク1〜ホール形成用のフォトL・シスト膜
の加工においてゲート電極の目合せマージンを気にする
ことなく、また、従来は使用されていなかった下地配線
層間の拡散層領域を利用することかできるため、セルサ
イズを縮小することができる。高抵抗層についても、電
源配線部からより遠いところでセルノード電極へのコン
タクトをとることにより、より高抵抗にすることができ
、より高密度で低消費電力のスタティックメモリ素子を
有する半導体記憶装置を実現することができる。
As explained above, the present invention provides a semiconductor memory device having a resistive load type static memory element, in which a contact hole connected from a power wiring layer to a note electrode of a cell flip-flop via a high resistance element loads the high resistance element. A hole is formed in the surface of the diffusion layer that is connected to the gate electrode of the transistor to form the cell node electrode, and the high resistance element is connected to the gate electrode through the diffusion layer to form contact 1 to hole formation. In the processing of photo-L/cyst film, the cell size can be reduced because there is no need to worry about the alignment margin of the gate electrode, and the diffusion layer region between the underlying wiring layers, which was not used in the past, can be used. can do. Regarding the high resistance layer, by making contact with the cell node electrode at a location farther from the power wiring section, the resistance can be made higher, realizing a semiconductor memory device with a static memory element with higher density and lower power consumption. can do.

なお、多結晶シリコン膜の代りにポリサイド層を用いて
も良い。
Note that a polycide layer may be used instead of the polycrystalline silicon film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(’f)は本発明の一実施例の製造方法
を説明するための工程順に示した半導体チップの平面図
、第2図は第1図(f>の平面図、第3図(a>、(b
)は従来の半導体記憶装置の平面図及びA−A′線断面
図である。 1・・P型シリコン基板、2・・・フィールド酸化膜、
3・・・ゲート酸化膜、4・・・コンタクトホール、5
.5a・・・ゲート電極、6・・・酸化シリコン膜、7
・・・N型拡散層、8・・・N−型拡散層、9・・・酸
化シリコン膜、9a・・・側壁部、1o・・・N+型型
数散層11・・・酸化シリコン膜、12・・・フォトレ
ジスト膜、13・・・コンタクトホール、14・・・高
抵抗層、14a電源配線、15・・・層間絶縁膜、16
・・・コンタクトホール、17・・・デイジット線、1
8−、、酸化シリコン膜、19・・・コンタクトホール
1(a) to ('f) are plan views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1(f>), Figure 3 (a>, (b)
) is a plan view and a sectional view taken along the line A-A' of a conventional semiconductor memory device. 1...P-type silicon substrate, 2...field oxide film,
3... Gate oxide film, 4... Contact hole, 5
.. 5a... Gate electrode, 6... Silicon oxide film, 7
...N type diffusion layer, 8...N- type diffusion layer, 9...Silicon oxide film, 9a...Side wall portion, 1o...N+ type scattering layer 11...Silicon oxide film , 12... Photoresist film, 13... Contact hole, 14... High resistance layer, 14a power supply wiring, 15... Interlayer insulating film, 16
...Contact hole, 17...Digital line, 1
8-, silicon oxide film, 19... contact hole.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に設けたMOSトランジスタと、
前記MOSトランジスタに接続して負荷素子とする抵抗
層とを有する抵抗負荷型のスタティックメモリ素子を有
する半導体記憶装置において、前記MOSトランジスタ
のゲート電極に接続して前記半導体基板に設けた逆導電
型の拡散層と、前記ゲート電極の表面を被覆する第1の
絶縁膜と、前記第1の絶縁膜を含む全面に設けた第2の
絶縁膜と、前記第2の絶縁膜に設けたコンタクトホール
の前記拡散層に接続して前記第2の絶縁膜の上に延在し
た前記負荷素子用の抵抗層とを有することを特徴とする
半導体記憶装置。
a MOS transistor provided on a semiconductor substrate of one conductivity type;
In a semiconductor memory device having a resistive load type static memory element having a resistive layer connected to the MOS transistor and used as a load element, an opposite conductivity type static memory element connected to the gate electrode of the MOS transistor and provided on the semiconductor substrate. a diffusion layer, a first insulating film covering the surface of the gate electrode, a second insulating film provided on the entire surface including the first insulating film, and a contact hole provided in the second insulating film. A semiconductor memory device comprising: a resistance layer for the load element connected to the diffusion layer and extending over the second insulating film.
JP2027602A 1990-02-06 1990-02-06 Semiconductor memory device Pending JPH03231460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2027602A JPH03231460A (en) 1990-02-06 1990-02-06 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027602A JPH03231460A (en) 1990-02-06 1990-02-06 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH03231460A true JPH03231460A (en) 1991-10-15

Family

ID=12225474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027602A Pending JPH03231460A (en) 1990-02-06 1990-02-06 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH03231460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622431A1 (en) * 1995-12-07 1997-06-12 Mitsubishi Electric Corp Semiconductor memory device with static memory cell, e.g. SRAM
JP2009081377A (en) * 2007-09-27 2009-04-16 Elpida Memory Inc Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622431A1 (en) * 1995-12-07 1997-06-12 Mitsubishi Electric Corp Semiconductor memory device with static memory cell, e.g. SRAM
JP2009081377A (en) * 2007-09-27 2009-04-16 Elpida Memory Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US5913114A (en) Method of manufacturing a semiconductor device
JPH0648719B2 (en) Semiconductor memory device
US8063439B2 (en) Semiconductor device and fabrication method thereof
JPH03231460A (en) Semiconductor memory device
JPH02143456A (en) Manufacture of lamination type memory cell
EP0087472A4 (en) Process for making electrical contact to semiconductor substrate regions.
JPH01101664A (en) Semiconductor integrated circuit device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH05343413A (en) Bipolar transistor and manufacture thereof
JPH07130898A (en) Semiconductor device and manufacturing method thereof
JPS6058662A (en) Memory device for temporary storage of charge
EP0032016B1 (en) Method of manufacturing a semiconductor device
JPH01154552A (en) Semiconductor storage integrated circuit device and manufacture thereof
JPH05343419A (en) Semiconductor device
JPH01133354A (en) Semiconductor integrated circuit and manufacture thereof
CN114284211A (en) Manufacturing method of semiconductor device and manufacturing method of memory
JPH03293759A (en) Capacitor to be incorporated into mos integrated circuit device
JP3259439B2 (en) Method for manufacturing semiconductor device
JPS62128542A (en) Manufacture of semiconductor device
JPH0451528A (en) Semiconductor device and its manufacturing method
JPS61184872A (en) Manufacture of semiconductor device
JPH0294636A (en) Manufacture of semiconductor device
JPH01278773A (en) Manufacture of semiconductor integrated circuit
JPH02237151A (en) Semiconductor memory device
JPH1022375A (en) Semiconductor device and manufacturing method thereof