JPH0323116B2 - - Google Patents
Info
- Publication number
- JPH0323116B2 JPH0323116B2 JP18251283A JP18251283A JPH0323116B2 JP H0323116 B2 JPH0323116 B2 JP H0323116B2 JP 18251283 A JP18251283 A JP 18251283A JP 18251283 A JP18251283 A JP 18251283A JP H0323116 B2 JPH0323116 B2 JP H0323116B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- slurry
- mill
- additives
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000654 additive Substances 0.000 claims description 55
- 239000003245 coal Substances 0.000 claims description 52
- 239000002002 slurry Substances 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 230000000996 additive effect Effects 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 29
- 239000002245 particle Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- 238000011084 recovery Methods 0.000 description 8
- 239000011362 coarse particle Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Description
【発明の詳細な説明】
本発明は高濃度石炭−水スラリの製造方法に係
り、特に多段給液法により安定なスラリを製造す
る方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly concentrated coal-water slurry, and particularly to a method for producing a stable slurry using a multi-stage liquid feeding method.
最近、火力発電所を中心に、石油に代り石炭の
利用が活発になつている。しかし、固定燃料であ
る石炭はハンドリングが困難であり、輸送費が石
炭の価格に及ぼす影響も大きい。そこで、石炭を
スラリ化し、流体として取扱えるようにする技術
の開発が盛んに行なわれている。 Recently, coal has been increasingly used in place of oil, mainly in thermal power plants. However, coal, which is a fixed fuel, is difficult to handle, and transportation costs have a large impact on coal prices. Therefore, efforts are being made to actively develop technologies to turn coal into a slurry so that it can be handled as a fluid.
そのひとつに重油と石炭との混合物である
COM(Coal and Oil Mixture)がある。しかし
COMの場合、重油と石炭の重量比が約1:1で
あり、完全な脱石油燃料とは言えず、価格の点で
もメリツトが少ない。また、メタノールと石炭と
の混合物であるメタコールも価格が高く、実用段
階には到つていない。 One of them is a mixture of heavy oil and coal.
There is COM (Coal and Oil Mixture). but
In the case of COM, the weight ratio of heavy oil to coal is approximately 1:1, so it cannot be said to be a completely oil-free fuel, and there are few advantages in terms of price. Furthermore, methacol, which is a mixture of methanol and coal, is expensive and has not yet reached the practical stage.
これに対し、石炭と水との混合物であるCWM
(Coal and Water Mixture)は価格の点でも十
分実用的であり、最近注目を集めている。この
CWMを製造するには一般に石炭に水を加えて湿
式粉砕する方法が用いられている。しかし、
CWM中の水分の水分の割合が高いと燃焼時の熱
効率が低下し、また水分が低いとCWMの粘度が
上昇し輸送時の圧力損失が大きくなるという問題
がある。また、CWMは石炭粒子と水から構成さ
れているため、時間とともに石炭粒子が沈降して
水と分離するという貯蔵上の問題もある。これら
の欠点をなくするため、石炭粒子の粒径分布を調
整することによつて、分添加剤を加えることによ
り高石炭濃度で低粘度かつ安定性の良いCWMを
製造することができるが、給炭量が多くなりコス
トが高くなる欠点がある。 In contrast, CWM, which is a mixture of coal and water,
(Coal and Water Mixture) is quite practical in terms of price and has been attracting attention recently. this
CWM is generally produced by adding water to coal and wet-pulverizing it. but,
If the water content in CWM is high, the thermal efficiency during combustion will be reduced, and if the water content is low, the viscosity of CWM will increase, resulting in a large pressure loss during transportation. Additionally, since CWM is composed of coal particles and water, there is a storage problem in that the coal particles settle and separate from the water over time. In order to eliminate these drawbacks, CWM with high coal concentration, low viscosity, and good stability can be produced by adjusting the particle size distribution of coal particles and adding additives. The disadvantage is that the amount of charcoal is large and the cost is high.
また従来、高石炭濃度で低粘度かつ安定性の良
いスラリを製造するためには、供給する石炭と水
に添加剤を加えて石炭の充填率が最も高くなるよ
うな粒径に粉砕することが好ましいと言われてい
る。このような方法としては、第1図に示したよ
うに、湿式チユーブミル5に対し、石炭ホツパー
1および給液タンク3から供給管2および4を通
して石炭と添加剤液を同時に供給し、高石炭濃度
(一般に60〜80%、重量基準、以下同じ)で粉砕
する方法(高濃度湿式粉砕法)があるが、一度に
添加剤を加えると、石炭表面に余分の添加剤が吸
着して添加剤の消費量が多くなり、まさ添加剤は
高価であるため、多量に加えると製品スラリのコ
ストが高くなるという欠点がある。なお、図中、
6はスラリ排出管、7はスラリ調整タンクであ
る。そのため、できるだけ添加剤の量を少く供給
し、しかも安定で高濃度のスラリを製造すること
が大きな課題となる。 Conventionally, in order to produce a slurry with high coal concentration, low viscosity, and good stability, it has been necessary to add additives to the supplied coal and water and to grind the coal to a particle size that maximizes the coal filling rate. It is said to be desirable. As shown in Fig. 1, such a method involves simultaneously supplying coal and additive liquid to the wet tube mill 5 from the coal hopper 1 and the liquid supply tank 3 through the supply pipes 2 and 4 to achieve a high coal concentration. There is a method of pulverizing (generally 60 to 80%, based on weight, the same applies hereinafter) (high concentration wet pulverization method), but if additives are added all at once, excess additives will be adsorbed to the coal surface and the additives will be The disadvantage is that the amount of consumption is high and the additive is expensive, so adding a large amount will increase the cost of the product slurry. In addition, in the figure,
6 is a slurry discharge pipe, and 7 is a slurry adjustment tank. Therefore, it is a major challenge to supply as little amount of additive as possible and to produce a stable and highly concentrated slurry.
本発明の目的は、上記した従来技術の欠点をな
くし、高石炭濃度および低粘度で、かつ安価な石
炭−水スラリを少ない添加剤量で製造する方法を
提供することにある。 An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method for producing an inexpensive coal-water slurry with high coal concentration, low viscosity, and a small amount of additives.
本発明は、湿式チユーブミル内に石炭と添加剤
を供給して湿式粉砕する高濃度石炭−水スラリの
製造方法において、該チユーブミル内の石炭の粉
砕方向に沿つて添加剤を多段に供給することを特
徴とする。 The present invention provides a method for producing a highly concentrated coal-water slurry in which coal and additives are supplied into a wet tube mill and wet-pulverized, in which the additives are supplied in multiple stages along the direction of pulverization of coal in the tube mill. Features.
以下、本発明を図面によりさらに詳細に説明す
る。 Hereinafter, the present invention will be explained in more detail with reference to the drawings.
第2図は、本発明の一実施例を示す石炭−水ス
ラリ製造装置の概念図である。図において、石炭
ホツパ1に貯蔵された石炭は、定量石炭供給管2
から湿式チユーブミル5内に供給され、同時に給
液タンク3から水と添加剤が給液供給管4を通し
て同じ湿式チユーブミル5内に供給される。この
時の石炭濃度は50〜80%(好ましくは60〜70%)
であり、添加剤を含んだ液はチユーブミル内の石
炭の粉砕方向(進行方向)に沿つて設けられた三
箇の給液ノズル8から三分割して湿式チユーブミ
ル内に供給される。湿式チユーブミル内で生成し
た石炭−水スラリ(CWM)はスラリ排出管6を
通つてスラリ調整タンク7に送られ、ここからス
ラリーポンプ等により必要に応じて燃焼器等に輸
送される。 FIG. 2 is a conceptual diagram of a coal-water slurry manufacturing apparatus showing an embodiment of the present invention. In the figure, the coal stored in the coal hopper 1 is transferred to the fixed quantity coal supply pipe 2.
At the same time, water and additives are supplied from the liquid supply tank 3 to the same wet tube mill 5 through the liquid supply pipe 4. The coal concentration at this time is 50-80% (preferably 60-70%)
The liquid containing additives is divided into three parts and supplied into the wet tube mill from three liquid supply nozzles 8 provided along the pulverizing direction (progressing direction) of coal in the tube mill. The coal-water slurry (CWM) produced in the wet tube mill is sent to a slurry adjustment tank 7 through a slurry discharge pipe 6, and from there is transported to a combustor or the like by a slurry pump or the like as required.
湿式チユーブミル内で石炭が粉砕される場合、
入口付近の石炭粒径は大きいため、石炭の表面積
は小さいので、表面に付着される添加剤の量は少
ないが、ミル出口付近の石炭粒径は非常に細かく
なつており、表面積は大きいので表面に付着する
添加剤の量も多くなる。すなわち石炭粒径に応じ
て添加剤の量を加減すること、つまり多段給液す
ることにより添加剤の量を大幅に低減することが
できる。 When coal is crushed in a wet tube mill,
The coal particle size near the inlet is large and the surface area of the coal is small, so the amount of additives attached to the surface is small, but the coal particle size near the mill outlet is very fine and the surface area is large, so the amount of additives attached to the surface is small. The amount of additives that adhere to the surface also increases. That is, the amount of additive can be significantly reduced by adjusting the amount of additive depending on the coal particle size, that is, by performing multistage liquid supply.
なお、第1図に示した従来法においては、添加
剤を1段で供給するため、ミル入口付近では添加
剤が大過剰の状態となり、余分の添加剤が多層に
石炭表面に吸着したり、石炭の細孔内に入り込む
ため、必要以上の添加剤が消費される。第2図に
おいては三分割の給液例を示したが、石炭性状あ
るいはミルの大きさに応じて二分割あるいは多段
分割して給液したり、また多段供給する場合、添
加剤量を粒子表面積の増大に応じて段階的に増加
させてもよい。 In addition, in the conventional method shown in Fig. 1, since the additive is supplied in one stage, there is a large excess of additive near the mill entrance, and the excess additive is adsorbed on the coal surface in multiple layers. Because it gets into the pores of the coal, more additive than necessary is consumed. Figure 2 shows an example of liquid feeding in three parts, but if the liquid is fed in two parts or in multiple stages depending on the coal properties or the size of the mill, or if the liquid is supplied in multiple stages, the amount of additive can be adjusted by adjusting the particle surface area. It may be increased in stages according to the increase in the amount.
第3図は、添加剤液を広く散布することができ
る1本の給液ノズル8′を用いてミル内に添加剤
液を分散させて給液する方法を示す。この方法に
よれば給液ノズルの数を減少させ、装置を簡単に
することができる。 FIG. 3 shows a method of dispersing and supplying the additive liquid into the mill using one liquid supply nozzle 8' which can widely disperse the additive liquid. According to this method, the number of liquid supply nozzles can be reduced and the apparatus can be simplified.
第4図は添加剤を粉末で供給する方法を示す
が、添加剤タンク9から添加剤を添加剤供給管1
0によりミル5内に供給し、添加剤ノズル13か
ら噴霧するが、この時、輸送用ガスとして空気供
給管11の空気を用いる。また水供給管12から
水をミル内に供給する。この方法は添加剤と水を
別々に供給するため、ミル内の水分濃度を一定に
することができる。 Figure 4 shows a method of supplying additives in the form of powder.
0 into the mill 5 and sprayed from the additive nozzle 13. At this time, air from the air supply pipe 11 is used as the transport gas. Also, water is supplied into the mill from the water supply pipe 12. Since this method supplies additives and water separately, it is possible to maintain a constant moisture concentration within the mill.
第5図は、本発明を多室化ミルへ適用した例を
示すが、この場合、給液ノズル8をミルの入口側
と出口側の2ケ所から供給に設置している。 FIG. 5 shows an example in which the present invention is applied to a multi-chamber mill; in this case, liquid supply nozzles 8 are installed at two locations, one on the inlet side and one on the outlet side of the mill.
第6図は、多段湿式粉砕プロセスへの本発明の
適用例を示したものである。石炭は1段目のミル
5に供給し、それに応じてタンク3から添加剤液
が供給される。ここでできたスラリは2次湿式チ
ユーブミル14に送られ、更に2次給液タンク1
7から添加剤を加えて粉砕される。ここでできた
スラリは更に2次製品スラリ排出管19から3次湿
式チユーブミル15に送られ、3次給液タンク1
8から添加剤を供給して最終製品のCWMが製品
スラリ排出管16から取出される。 FIG. 6 shows an example of application of the present invention to a multi-stage wet grinding process. Coal is supplied to the first stage mill 5, and additive liquid is supplied from the tank 3 accordingly. The slurry made here is sent to the secondary wet tube mill 14, and further to the secondary liquid supply tank 1.
From step 7, additives are added and crushed. The slurry produced here is further sent to the tertiary wet tube mill 15 from the secondary product slurry discharge pipe 19, and the tertiary liquid supply tank 1
Additives are supplied from 8 and the final product CWM is removed from the product slurry discharge pipe 16.
第7図は、製品スラリを分級器20で大きな粒
子を分級してリサイクル管21よりミル入口に循
環するプロセスへの適用例を示す。この場合、最
終製品は製品スラリ排出管22から系外に抜き出
される。 FIG. 7 shows an example of application to a process in which large particles are classified from a product slurry using a classifier 20 and then circulated through a recycling pipe 21 to the mill inlet. In this case, the final product is extracted from the system through the product slurry discharge pipe 22.
第8図は、950mmφ×1900mm長の湿式チユーブ
ミルで、原料石炭として三池炭を用い、添加剤の
トータル量は一定にして1段で添加(添加剤0.4
%)した場合と3段で添加(ミル入口からの各段
の添加剤濃度は0.1%,0.2%,0.1%)した場合の
実験結果を示したものである。図中、30は1段
添加、31は3段添加の場合を示す。この結果か
ら、同じスラリ粘度の場合には3段添加にした方
が石炭濃度が高いことが明らかである。すなわち
同じ石炭濃度、同じ粘度のCWMを製造する場合
には、添加剤を多段添加した方が添加剤量が少量
ですむことが分かる。 Figure 8 shows a wet tube mill with a diameter of 950 mm and a length of 1900 mm. Miike charcoal is used as the raw material coal, and the total amount of additives is kept constant and added in one stage (additives 0.4
%) and when the additive was added in three stages (the additive concentration in each stage from the mill inlet was 0.1%, 0.2%, and 0.1%). In the figure, 30 indicates one-stage addition, and 31 indicates three-stage addition. From this result, it is clear that when the slurry viscosity is the same, the coal concentration is higher when the slurry is added in three stages. In other words, when producing CWM with the same coal concentration and viscosity, it can be seen that adding additives in multiple stages requires a smaller amount of additives.
第9図は、多室ミルを用いた本発明のさらに他
の一実施例を示す説明図である。図において、石
炭Aは石炭ホツパー1から給炭機52を経てミル
5内に供給される。水Bおよび添加剤液Cは、そ
れぞれのタンク54および55からそれぞれのポ
ンプ56および57によつて回収タンク65に定
量供給され、粗粒分離装置60で分離された粗粒
と撹拌機66で混合され、回収タンク65から粗
粒スラリ回収管64を経てミル5に注入される。
ミル5はスクリーン等の仲仕切板71を設置して
2室化され、各室にはそれぞれ径のことなるボー
ルが充填されている。すなわち、この場合、第1
室には約75〜40mmの大径ボールが、また第2室に
は約40〜12mmの小径ボールが充填されている。仕
切板71を通過したスラリは第2室において小径
ボールにより効率よく粉砕され、また新たに給液
供給管70から添加される添加剤により効率よく
粒子表面が濡らされ、低粘度化される。ミル5か
ら排出されたスラリはタンク58で、別に供給さ
れる添加剤または添加剤粒子と撹拌機により混合
され、さらに粘度が低下する。このように粒子の
粉砕によつて表面が生成されるのに対応して、ミ
ル内部および外部で添加剤または添加剤液を多段
に少量ずつ添加し、効果的に粒子と混合すること
により、添加剤の無駄がなくなり、その使用量を
低減することができる。次にミル5内で製造され
たCWMは、スラリタンク58に入り、ここで供
給管80、管81から必要に応じて添加剤液およ
び水等を添加して調整された後、ポンプ59によ
り粗粒分離装置60に入る。粗粒分離装置60に
は、スクリーン61に振動または超音波を与える
振動発生装置72が設けられている。振動発生装
置からの振動または超音波は、スクリーン61近
傍に存在するスラリの粘度を低下させ、スラリガ
ススクリーン61を通過することを容易にする。
また該振動により、スクリーン61を通過しない
粗粒は、スクリーン61をオーバーフローしやす
くなる。振動発生装置22は、独立に設けてもよ
いが、ミル5の振動を利用することも可能であ
る。スクリーン61を通過し、排出孔62から製
品として系外へ輸送される一方、スクリーン61
を通過しない粗粒はスクリーン61上をオーバー
フローし、排出孔63から回収タンク65に入
り、前述のように水Bおよび添加剤液Cと混合さ
れ、粗粒スラリ回収管64を経てミル5に注入さ
れる。 FIG. 9 is an explanatory diagram showing still another embodiment of the present invention using a multi-chamber mill. In the figure, coal A is supplied from a coal hopper 1 into a mill 5 via a coal feeder 52. Water B and additive liquid C are quantitatively supplied from the respective tanks 54 and 55 to the recovery tank 65 by the respective pumps 56 and 57, and are mixed with the coarse particles separated by the coarse particle separator 60 by the agitator 66. The slurry is then injected into the mill 5 from the recovery tank 65 via the coarse slurry recovery pipe 64.
The mill 5 is divided into two chambers by installing a partition plate 71 such as a screen, and each chamber is filled with balls of different diameters. That is, in this case, the first
The chamber is filled with large diameter balls of about 75 to 40 mm, and the second chamber is filled with small diameter balls of about 40 to 12 mm. The slurry that has passed through the partition plate 71 is efficiently crushed by small-diameter balls in the second chamber, and the particle surfaces are efficiently wetted by the additive newly added from the liquid supply pipe 70, thereby reducing the viscosity. The slurry discharged from the mill 5 is mixed in a tank 58 with separately supplied additives or additive particles by a stirrer to further reduce the viscosity. In this way, as the surface is generated by pulverizing the particles, additives or additive liquid are added in small amounts in multiple stages inside and outside the mill, and by effectively mixing them with the particles, There is no waste of the agent, and the amount used can be reduced. Next, the CWM produced in the mill 5 enters a slurry tank 58, where it is adjusted by adding additive liquid, water, etc. as necessary from supply pipes 80 and 81, and then roughened by a pump 59. Enter grain separator 60. The coarse particle separator 60 is provided with a vibration generator 72 that applies vibration or ultrasonic waves to the screen 61. The vibrations or ultrasonic waves from the vibration generator reduce the viscosity of the slurry present near the screen 61, making it easier for the slurry gas to pass through the screen 61.
Further, due to the vibration, coarse particles that do not pass through the screen 61 tend to overflow the screen 61. The vibration generator 22 may be provided independently, but it is also possible to utilize the vibration of the mill 5. The product passes through the screen 61 and is transported to the outside of the system through the discharge hole 62.
Coarse particles that do not pass through overflow on the screen 61, enter the recovery tank 65 through the discharge hole 63, are mixed with water B and additive liquid C as described above, and are injected into the mill 5 via the coarse particle slurry recovery pipe 64. be done.
上記実施例によれば、ミルへの水および添加剤
液が先ず回収タンク65に供給されて粗粒スラリ
と混合されるため、粗粒スラリの固体濃度が約35
%以下に低減でき、ほぼ水並の粘度とすることが
でき、また回収管64を通してスラリを重力流動
によりミル5内に循環させるので、品質の均一な
CWMを、連続的に製造することができる。また
前述のように添加剤をミル内部、すなわち入口部
の供給管64、出口部の供給管70、およびスラ
リタンク58の供給管80からそれぞれ供給して
調整することにより、添加剤を合理的に添加し、
その使用量を低減することができる。 According to the above embodiment, the water and additive liquid to the mill are first supplied to the recovery tank 65 and mixed with the coarse slurry, so that the solids concentration of the coarse slurry is approximately 35
% or less, resulting in a viscosity almost equal to that of water.Also, since the slurry is circulated through the recovery pipe 64 into the mill 5 by gravity flow, uniform quality can be achieved.
CWM can be manufactured continuously. In addition, as described above, the additives can be supplied and adjusted from inside the mill, that is, from the supply pipe 64 at the inlet, the supply pipe 70 at the outlet, and the supply pipe 80 of the slurry tank 58, so that the additives can be adjusted in a rational manner. Add,
The amount used can be reduced.
上記実施例においては、回収タンク65からの
粗粒スラリは重力によりミル5に戻されるが、こ
れは、途中にポンプを設け粗粒スラリを定量供給
するようにしてもよい。このようにすれば、循環
粗粒スラリは添加剤液と同様にポンプによつてミ
ルに定量供給されるため、粉粋システムの変動が
より少なくなり、より安定に運転することができ
る。 In the above embodiment, the coarse slurry from the recovery tank 65 is returned to the mill 5 by gravity, but a pump may be provided midway to supply the coarse slurry in a fixed amount. In this way, the circulating coarse slurry is quantitatively supplied to the mill by the pump in the same way as the additive liquid, so fluctuations in the milling system are reduced and more stable operation can be achieved.
以上に述べたように、本発明によれば、チユー
ブミル内で添加剤を多段に供給することにより、
添加剤の使用量が低減でき、CWMの低コスト化
が可能となる。 As described above, according to the present invention, by feeding additives in multiple stages within a tube mill,
The amount of additives used can be reduced, making it possible to lower the cost of CWM.
第1図は、従来の湿式ミルを用いた石炭−水ス
ラリ製造装置のフローを示す図、第2図ないし第
7図および第9図は、それぞれ本発明を実施する
ための同様な装置のフローを示す図、第8図は、
小型の湿式ミルで1段添加と多段添加した場合の
実験結果(粘度と石炭濃度の関係)を示す図であ
る。
1……石炭ホツパー、2……石炭供給管、3…
…給液タンク、4……給液供給管、5……湿式チ
ユーブミル、6……スラリ排出管、7……スラリ
調整タンク、8……給液ノズル。
FIG. 1 is a diagram showing the flow of a coal-water slurry manufacturing apparatus using a conventional wet mill, and FIGS. 2 to 7 and 9 are flowcharts of a similar apparatus for carrying out the present invention, respectively. The figure 8, which shows
FIG. 3 is a diagram showing experimental results (relationship between viscosity and coal concentration) in the case of single-stage addition and multi-stage addition using a small wet mill. 1...Coal hopper, 2...Coal supply pipe, 3...
...Liquid supply tank, 4...Liquid supply pipe, 5...Wet tube mill, 6...Slurry discharge pipe, 7...Slurry adjustment tank, 8...Liquid supply nozzle.
Claims (1)
て湿式粉砕する高濃度石炭−水スラリの製造方法
において、該チユーブミル内の石炭の粉砕方向に
沿つて添加剤を多段に供給することを特徴とする
高濃度石炭−水スラリの製造方法。 2 特許請求範囲第1項において、添加剤を粉末
状で供給してスラリ濃度を調整することを特徴と
する高濃度石炭−水スラリの製造方法。 3 特許請求の範囲第1項において、湿式チユー
ブミルが複数あるか、またはチユーブミルが多室
化されており、かつ各チユーブミルまたは各室で
粉砕された石炭の表面積に応じた量の添加剤を供
給することを特徴とする高濃度石炭−水スラリの
製造方法。[Claims] 1. A method for producing a highly concentrated coal-water slurry in which coal and additives are supplied into a wet tube mill and wet-pulverized, in which the additives are supplied in multiple stages along the direction of pulverization of coal in the tube mill. A method for producing a highly concentrated coal-water slurry. 2. A method for producing a highly concentrated coal-water slurry according to claim 1, characterized in that the slurry concentration is adjusted by supplying an additive in powder form. 3 In claim 1, there is a plurality of wet tube mills or a tube mill with multiple chambers, and each tube mill or each chamber supplies an amount of additive according to the surface area of the pulverized coal. A method for producing a highly concentrated coal-water slurry, characterized by:
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18251283A JPS6072995A (en) | 1983-09-30 | 1983-09-30 | Production of highly concentrated coal/water slurry |
EP84304372A EP0130788B1 (en) | 1983-06-28 | 1984-06-27 | Process for producing a coal-water slurry |
US06/625,245 US4613084A (en) | 1983-06-28 | 1984-06-27 | Process for producing a coal-water slurry |
DE8484304372T DE3462268D1 (en) | 1983-06-28 | 1984-06-27 | Process for producing a coal-water slurry |
AU30010/84A AU563646B2 (en) | 1983-06-28 | 1984-06-28 | Coal-water slurry |
CA000457764A CA1257771A (en) | 1983-06-28 | 1984-06-28 | Process for producing a coal-water slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18251283A JPS6072995A (en) | 1983-09-30 | 1983-09-30 | Production of highly concentrated coal/water slurry |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6072995A JPS6072995A (en) | 1985-04-25 |
JPH0323116B2 true JPH0323116B2 (en) | 1991-03-28 |
Family
ID=16119591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18251283A Granted JPS6072995A (en) | 1983-06-28 | 1983-09-30 | Production of highly concentrated coal/water slurry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6072995A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0662968B2 (en) * | 1986-04-17 | 1994-08-17 | バブコツク日立株式会社 | Solid fuel slurry production equipment |
DE4411105C1 (en) * | 1994-03-30 | 1995-04-06 | Maury Hans Dietmar | Method of feeding auxiliary grinding means |
-
1983
- 1983-09-30 JP JP18251283A patent/JPS6072995A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6072995A (en) | 1985-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1102837A (en) | Process and apparatus for reprocessing polyurethane foams wastes, in particular flexible foam wastes for recycling as additives in the production of polyurethane | |
CN101326011A (en) | Apparatus for removing of unburned carbon from fly ash and relevant removing method | |
EP0130788B1 (en) | Process for producing a coal-water slurry | |
US4598873A (en) | Method of manufacturing a pumpable coal/liquid mixture | |
JPH0323116B2 (en) | ||
US4702421A (en) | Process for conveying raw coal | |
CN111992321A (en) | A kind of limestone slurry preparation system and pulping method | |
US4265407A (en) | Method of producing a coal-water slurry of predetermined consistency | |
JPH0315957B2 (en) | ||
AU656184B2 (en) | Production method of high-concentration coal-water slurry | |
CN207567187U (en) | A kind of coal slirne production system | |
CN201391884Y (en) | Coal water slurry masterbatch production system | |
EP0157307B1 (en) | Apparatus for preparing coal slurry of high concentration | |
JP2534022B2 (en) | Method for producing high-concentration coal-water slurry | |
JP3588128B2 (en) | Coal / water mixture and its production method | |
RU2637119C2 (en) | Line for producing fine-dispersed coal-water slurry | |
JPH0315958B2 (en) | ||
JPH0254397B2 (en) | ||
JP2631623B2 (en) | Apparatus and method for producing coal / water slurry | |
RU2026741C1 (en) | Method for coal preparation for hydrotransportation | |
CN117304988A (en) | System and method for preparing high-concentration coal water slurry by mixing pipe coal slurry with dehydrated coarse and fine coal | |
JPH068418B2 (en) | Coal-water slurry manufacturing method | |
JPH0315956B2 (en) | ||
JPS62244453A (en) | Method of operating vertical type mill for manufacturing coal-water slurry | |
JPS61166889A (en) | Production unit for coal-water slurry |