[go: up one dir, main page]

JPH03229223A - Quartz system optical fiber - Google Patents

Quartz system optical fiber

Info

Publication number
JPH03229223A
JPH03229223A JP2024154A JP2415490A JPH03229223A JP H03229223 A JPH03229223 A JP H03229223A JP 2024154 A JP2024154 A JP 2024154A JP 2415490 A JP2415490 A JP 2415490A JP H03229223 A JPH03229223 A JP H03229223A
Authority
JP
Japan
Prior art keywords
core
optical fiber
refractive index
center core
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2024154A
Other languages
Japanese (ja)
Other versions
JP2749686B2 (en
Inventor
Akira Iino
顕 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2024154A priority Critical patent/JP2749686B2/en
Publication of JPH03229223A publication Critical patent/JPH03229223A/en
Application granted granted Critical
Publication of JP2749686B2 publication Critical patent/JP2749686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make a mode field diameter large by providing >=1 outer core which has a lower refractive index than a center core and a clad which has a lower refractive index than the outer core, and incorporating erbium in the center core. CONSTITUTION:More than one outer core 12 which has the lower refractive index than the center core 11 and the clad 13 which has the lower refractive index than the outer core 12 are provided and erbium is incorporated in the center core 11. Thus, not only the center core, but the outer core are provided. Consequently, the mode field having the large diameter is secured to decrease the center core diameter and the erbium is doped in the small-diameter center core to improve light emission efficiency.

Description

【発明の詳細な説明】 1産業上の利用分野」 本発明は光増幅に用いて好適な石英系光ファイバに関す
る。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a silica-based optical fiber suitable for use in optical amplification.

r従来の技術J 光増幅用の石英系光ファイバとして、コアにエルビウム
(Er)をドープしたものが知られており、この光ファ
イバの一例として、第5図に示す屈折率プロフィールを
有するものがある。
rPrior Art J A quartz-based optical fiber for optical amplification whose core is doped with erbium (Er) is known, and an example of this optical fiber has the refractive index profile shown in Fig. 5. be.

第5図の石英系光ファイバは、コア1の直径が約3終腸
φ、モードフィールド直径が約5鉢1φであり、クラッ
ド2の外径(光フアイバ外径)が125 終】φである
In the silica-based optical fiber shown in Fig. 5, the diameter of the core 1 is approximately 3 mm, the mode field diameter is approximately 5 mm, and the outer diameter of the cladding 2 (outer diameter of the optical fiber) is 125 mm. .

かかる石英系光ファイバの場合、導波路内を通過する光
パワーの分布がガウス分布に近似しており、その光パワ
ー分布のトップ部(光強度が最大となる部分)で光が励
起されるので、コアにドープされたエルビウム原子を、
波長1.53Bm付近の発光に有効に役立たせて光増幅
することがことができる。
In the case of such a silica-based optical fiber, the distribution of optical power passing through the waveguide approximates a Gaussian distribution, and the light is excited at the top of the optical power distribution (the area where the optical intensity is maximum). , an erbium atom doped in the core,
It is possible to effectively utilize light emission around a wavelength of 1.53 Bm to amplify light.

r発明が解決しようとする課題」 しかし、第5図の屈折率プロフィールをもつ石英系光フ
ァイバの場合、コア直径が約39L鳳φと小さいだけで
なく、モードフィールド直径も約5ル腸φと小さいため
、たとえば、これをモードフィールド直径約8絡膳φの
分散シフトファイバと相互に接続したとき、接続損失が
0.3〜0.5dBにもなり、この大きな接続損失が問
題となる。
However, in the case of a silica-based optical fiber having the refractive index profile shown in Fig. 5, not only is the core diameter as small as approximately 39Lφ, but the mode field diameter is also approximately 5Lφ. Because of its small size, for example, when this is interconnected with a dispersion shifted fiber having a mode field diameter of about 8 strands φ, the connection loss will be as high as 0.3 to 0.5 dB, and this large connection loss becomes a problem.

本発明はこのような技術的課題に鑑み、光増幅機能を低
下させることなく、モードフィールド直径を大きくする
ことのできる石英系光ファイバを提供しようとするもの
である。
In view of these technical problems, the present invention aims to provide a silica-based optical fiber that can increase the mode field diameter without reducing the optical amplification function.

1課題を解決するための手段j 本発明に係る石英系光ファイバは、は所期の目的を達成
するため、軸心部から外周部にわたり、センタコアと、
センタコアよりも屈折率の低い一つ以上の7ウタコアと
27ウタコアよりも屈折率の低いクラッドとを備え、か
つ、センタコアがエルビウムを含んでいることを特徴と
する。
1 Means for Solving the Problems j In order to achieve the intended purpose, the silica-based optical fiber according to the present invention has a center core,
It is characterized by comprising one or more 7-outa cores having a refractive index lower than the center core and a cladding having a refractive index lower than the 27-outa cores, and that the center core contains erbium.

【作用j 本発明に係る石英系光ファイバは、センタコアと一以上
のアウタコアとによる複数の屈折率プロフィールを有す
る。
[Function j] The silica-based optical fiber according to the present invention has a plurality of refractive index profiles formed by a center core and one or more outer cores.

かかる石英系光ファイバの場合、センタコアだけでなく
、アウタコアをも備えているので、直径の大きなモード
フィールドを確保して、センタコア直径を小さくするこ
とができ、しかも、直径の小さなセンタコアにエルビウ
ム(Er)が含有しているので、そのエルビウムを波長
1.53g■付近の発光に有効に役立たせることができ
る。
In the case of such a silica-based optical fiber, since it has not only a center core but also an outer core, it is possible to secure a mode field with a large diameter and reduce the center core diameter. ), the erbium can be effectively used to emit light at a wavelength of around 1.53 g.

特に、モードフィールド直径が大きい場合、センタコア
へのエルビウムドープにより、発光効率を高めることが
でき、モードフィールド内の光パワーが低下しない。
In particular, when the mode field diameter is large, doping the center core with erbium can increase the luminous efficiency without reducing the optical power within the mode field.

r実 施 例」 本発明に係る石英系光ファイバの実施例を図面に基づい
て説明する。
Embodiment Embodiments of the silica-based optical fiber according to the present invention will be described based on the drawings.

第1図に例示した石英系光ファイバにおいて。In the silica-based optical fiber illustrated in FIG.

11はセンタコアを示し、12はアウタコアを示し、1
3はクラッドを示し、14は被覆層を示す。
11 indicates the center core, 12 indicates the outer core, 1
3 indicates a cladding, and 14 indicates a covering layer.

センタコア1は、−例として、ゲルマニウム(Ge)と
エルビウム(Er)とを含むドープト石英からなり、そ
の外径は3pmφ程度である。
The center core 1 is made of, for example, doped quartz containing germanium (Ge) and erbium (Er), and has an outer diameter of about 3 pmφ.

なお、センタコア11におけるエルビウム(Er)の含
有量は、tooopp脂以下である。
Note that the content of erbium (Er) in the center core 11 is less than toopp fat.

アウタコア12は、−例として、フッ素(F)を含むド
ープト石英からなり、その外径は8井1φ程度である。
The outer core 12 is made of doped quartz containing fluorine (F), for example, and has an outer diameter of about 8 wells and 1 φ.

クラッド13も、−例として、フッ素(F)を含むドー
プト石英からなり、そのクラッド外径(=光ファイバ外
径)は125 JL履φである。
The cladding 13 is also made of, for example, doped quartz containing fluorine (F), and the outer diameter of the cladding (=outer diameter of the optical fiber) is 125 mm.

被覆層14は、−例として、外径は250.gmφの紫
外線硬化樹脂からなる。
The coating layer 14 has an outer diameter of, for example, 250 mm. Made of gmφ ultraviolet curing resin.

第1図の石英系光ファイバにおいて、センタコア11の
屈折率をnl、アウタコア12の屈折率を12、クラッ
ド13の屈折率をn3とした場合、これらの屈折がnl
 > n2 > n3となっており、かつ、そのコア部
分が複数の屈折率プロフィールを有スル。
In the silica optical fiber shown in FIG. 1, if the refractive index of the center core 11 is nl, the refractive index of the outer core 12 is 12, and the refractive index of the cladding 13 is n3, then these refractions are nl
> n2 > n3, and the core portion has multiple refractive index profiles.

この場合の屈折率プロフィールとして、センタコア11
が第2図(A) (B)に示すステップ型(シングルモ
ード)、二乗分布型となるもの、または1図示しない三
角型となるものがある。
As a refractive index profile in this case, the center core 11
There are a step type (single mode) shown in FIGS. 2(A) and 2(B), a square distribution type, and a triangular type (not shown in FIG. 1).

第3図に例示した石英系光ファイバは、センタコア11
と、複数の7ウタコア121.122 と、クラッド1
3とからなり、クラッド13の外周に被覆Jij14が
設けられている。
The silica-based optical fiber illustrated in FIG. 3 has a center core 11
, multiple 7 Uta cores 121.122, and clad 1
3, and a coating Jij 14 is provided on the outer periphery of the cladding 13.

この図示例の石英系光ファイバは、複数の7ウタコア1
21.122 を有するものの、その他については第1
図のものと実質的に同じである。
The silica-based optical fiber in this illustrated example has a plurality of 7 outer cores 1
21.122, but other than that, the first
It is substantially the same as that shown.

第3図の石英系光ファイバにおいて、センタコア11の
屈折率を11、アウタコア12+の屈折率を121 、
アウタコア122の屈折率をn2?、クラッド13の屈
折率をn3とした場合、これらの屈折がnl>nH>n
22 >n3となっており、かつ、第4図のごとき屈折
率プロフィールを有する。
In the silica-based optical fiber shown in FIG. 3, the refractive index of the center core 11 is 11, the refractive index of the outer core 12+ is 121,
Is the refractive index of the outer core 122 n2? , when the refractive index of the cladding 13 is n3, these refractions are nl>nH>n
22>n3, and has a refractive index profile as shown in FIG.

第3図の石英系光ファイバも、センタコア11が二乗分
布型、三角型などの屈折率プロフィールを有することが
ある。
In the silica-based optical fiber shown in FIG. 3, the center core 11 may have a refractive index profile such as a square distribution type or a triangular type.

具体例 本発明に係る石英系光ファイバの具体例をこれの製造例
とともに説明する。
Specific Examples A specific example of the silica-based optical fiber according to the present invention will be described together with an example of its manufacture.

センタコア用のガラスロッドをつくるとき。When making the glass rod for the center core.

Er:1100pp 、 GeO2:11mo1%が均
一にドープされた石英系の透明ガラスロッドを合成し2
これを外径It)s■φ、長さ200重園に加熱延伸し
た。
A quartz-based transparent glass rod uniformly doped with Er: 1100pp and GeO2: 11mo1% was synthesized.
This was heated and stretched to an outer diameter It)s■φ and a length of 200 layers.

このガラスロッドの外周に7ウタコア用のガラスを形成
するとき、はじめ、5iC14を原料とする火炎加水分
解法により、上記ガラスロッドの外周にスート状のガラ
ス微粒子を堆積させ、つぎに。
When forming the glass for the 7-outa core on the outer periphery of this glass rod, first, soot-like glass particles are deposited on the outer periphery of the glass rod by a flame hydrolysis method using 5iC14 as a raw material.

最高温度1350℃の電気炉内にHe:30Jl/si
n、 C12:0.341/s+in、 5iFa:0
.03文/winを供給しつつ、当該電気炉内にガラス
微粒子層材きガラスロッドを150mm/hrの速度で
挿入して、ガラス微粒子層を透明ガラス化し、その後、
アウタコア用ガラス付きガラスロッドを外径71φに加
熱延伸した。
He: 30Jl/si in an electric furnace with a maximum temperature of 1350℃
n, C12:0.341/s+in, 5iFa:0
.. While supplying 03 sentences/win, a glass rod with a glass fine particle layer was inserted into the electric furnace at a speed of 150 mm/hr to turn the glass fine particle layer into transparent vitrification, and then,
A glass rod with glass for the outer core was heated and stretched to an outer diameter of 71φ.

アウタコア用ガラス付きガラスロッドの外周にクラッド
用のガラスを形成するとき、はじめ、既述の火炎加水分
解法にて、アウタコア用ガラスの外周にスート状のガラ
ス微粒子を!IIfJIさせ、つぎに、前記と同様の電
気炉内にHe:15fL/win、 C12:0.15
Jl/gin、 SiF*:0.8241/sinを供
給しつつ、当該電気炉内にガラス微粒子層付きガラスロ
ッドを150sn/hrの速度で挿入して、ガラス微粒
子層を透明ガラス化し、その後、これらガラス微粒子堆
積と透明ガラス化とを2回繰り返した。
When forming glass for cladding on the outer periphery of the glass rod with glass for the outer core, first soot-like glass particles are formed on the outer periphery of the glass for the outer core using the flame hydrolysis method described above! IIfJI, then He: 15fL/win, C12: 0.15 in the same electric furnace as above.
While supplying Jl/gin, SiF*: 0.8241/sin, a glass rod with a glass fine particle layer was inserted into the electric furnace at a speed of 150 sn/hr to turn the glass fine particle layer into transparent vitrification, and then these Glass fine particle deposition and transparent vitrification were repeated twice.

こうして得られた石英系光フアイバ母材は、センタコア
部:アウタコア部の外径比が1=3、アウタコア部:ク
ラッド部の外径比が1=13である。
The quartz-based optical fiber base material obtained in this way has a center core part:outer core part outer diameter ratio of 1=3 and an outer core part:clad part outer diameter ratio of 1=13.

かかる光フアイバ母材を周知の加熱延伸により外径12
5延腸φの光ファイバに線引きし、その線引き直後の光
フアイバ外周に、紫外線硬化樹脂による外径250μ曽
φの被覆層を周知のコーティング手段により形成して、
第1図に示す断面構造と第2図(A)に示す屈折率プロ
フィールとを有する被覆材5右英系光ファイバを得た。
This optical fiber base material is heated and stretched to an outer diameter of 12 mm.
An optical fiber with a length of 5 elongated diameters is drawn, and a coating layer of an ultraviolet curable resin with an outer diameter of 250μ so φ is formed on the outer periphery of the optical fiber immediately after the drawing, using a well-known coating method.
A coating material 5-right type optical fiber having the cross-sectional structure shown in FIG. 1 and the refractive index profile shown in FIG. 2(A) was obtained.

かくて得られた石英系光ファイバは、 Erを含有する
センタコアが直径−3,2pmφ、Δ゛・1.1zであ
り、アウタコアがΔ−O,tXであり、クラッドがΔ−
0,3mであった。
The thus obtained silica-based optical fiber has an Er-containing center core with a diameter of -3.2 pmφ and Δ゛・1.1z, an outer core with Δ-O, tX, and a cladding with Δ-
It was 0.3m.

この具体例の石英系光ファイバから15層長を採取し5
これに波長1.48μmのレーザ光を入射したところ、
1.5dB/厘Wの光増幅効率を確認することができ、
モードフィールド直径も7.8μ■φと大きかった。
A length of 15 layers was sampled from the silica optical fiber of this specific example.
When a laser beam with a wavelength of 1.48 μm was applied to this,
The optical amplification efficiency of 1.5dB/LW can be confirmed.
The mode field diameter was also as large as 7.8μ■φ.

上記具体例における石英系光ファイバの光増幅効率は、
第5図で述べた従来の石英系光ファイバ(コアのEr含
有量l1−1O0pp 、コアのΔ°−1,41コアの
外径−3鉢1φ、モードフィールド直径−5,1w1φ
)とほぼ同等の値であるが、モードフィールド直径につ
いては、当該具体例のものが、従来例のものよりもかな
り大きい。
The optical amplification efficiency of the silica-based optical fiber in the above specific example is:
The conventional silica-based optical fiber described in Fig. 5 (core Er content l1-1O0pp, core Δ°-1, 41 core outer diameter -3 pot 1φ, mode field diameter -5, 1w1φ
), but the mode field diameter of the specific example is considerably larger than that of the conventional example.

なお、第1図〜第2図(B)、第3図〜第4図になどに
示す石英系光ファイバ(二乗分布型、三角型などの屈折
率プロフィールを含む)も、モードフィールド直径が8
gmφ程度となり2かつ、外径3〜4 graφのセン
タコア11において、これに含有されているErを光増
幅に有効活用することができる。
Note that the silica-based optical fibers (including square distribution type, triangular type, etc. refractive index profiles) shown in Figures 1 to 2 (B) and Figures 3 to 4 also have a mode field diameter of 8.
In the center core 11 having an outer diameter of about 2 gmφ and an outer diameter of 3 to 4 graφ, the Er contained therein can be effectively utilized for optical amplification.

r発明の効果J 以上説明した通り、本発明に係る石英系光ファイバは、
光増幅効率がよく、モードフィールド直径が大きいので
、光増幅用の光ファイバとして、有用かつ有益なものと
なり得る。
Effects of the Invention J As explained above, the silica-based optical fiber according to the present invention has the following effects:
Since it has high optical amplification efficiency and a large mode field diameter, it can be useful and useful as an optical fiber for optical amplification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る石英系光ファイバの一実施例を示
した断面図、第2図(A) (B)は上記一実施例の石
英系光ファイバにおける屈折率プロフィールを例示した
説明図2第3図は本発明に係る石英系光ファイバの他実
施例を示した断面図、第4図は上記他実施例の石英系光
ファイバにおける屈折率プロフィールを例示した説明図
、第5図は従来の石英系光ファイバにおける屈折率プロ
フィールを示した説明図である。 11・・・・・・センタコア 12・・・・・・アウタコア 121 ・・・・アウタコア 122 ・・・・アウタコア 13・・・・・・クラ−2ド 14・・・・・・被覆層
FIG. 1 is a sectional view showing an embodiment of the silica-based optical fiber according to the present invention, and FIGS. 2(A) and 2(B) are explanatory diagrams illustrating the refractive index profile of the silica-based optical fiber of the above-mentioned embodiment. 2. FIG. 3 is a cross-sectional view showing another embodiment of the silica-based optical fiber according to the present invention, FIG. 4 is an explanatory diagram illustrating the refractive index profile of the silica-based optical fiber of the other embodiment described above, and FIG. FIG. 2 is an explanatory diagram showing a refractive index profile in a conventional silica-based optical fiber. 11... Center core 12... Outer core 121... Outer core 122... Outer core 13... Clair 2 14... Coating layer

Claims (1)

【特許請求の範囲】[Claims] 軸心部から外周部にわたり、センタコアと、センタコア
よりも屈折率の低い一つ以上のアウタコアと、アウタコ
アよりも屈折率の低いクラッドとを備え、かつ、センタ
コアがエルビウムを含んでいることを特徴とする石英系
光ファイバ。
It is characterized by comprising a center core, one or more outer cores having a lower refractive index than the center core, and a cladding having a lower refractive index than the outer core, extending from the axial center to the outer periphery, and the center core contains erbium. quartz-based optical fiber.
JP2024154A 1990-02-02 1990-02-02 Silica optical fiber Expired - Fee Related JP2749686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024154A JP2749686B2 (en) 1990-02-02 1990-02-02 Silica optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024154A JP2749686B2 (en) 1990-02-02 1990-02-02 Silica optical fiber

Publications (2)

Publication Number Publication Date
JPH03229223A true JPH03229223A (en) 1991-10-11
JP2749686B2 JP2749686B2 (en) 1998-05-13

Family

ID=12130426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024154A Expired - Fee Related JP2749686B2 (en) 1990-02-02 1990-02-02 Silica optical fiber

Country Status (1)

Country Link
JP (1) JP2749686B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213388A (en) * 1989-02-14 1990-08-24 Brother Ind Ltd Washer-dryer
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2002033536A (en) * 2000-07-14 2002-01-31 Furukawa Electric Co Ltd:The Optical fiber for optical amplification
JP2006519495A (en) * 2003-01-27 2006-08-24 セラムオプテック ゲーエムベーハー Multi-clad fiber optic lasers and their manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127032A (en) * 1989-10-13 1991-05-30 Nippon Telegr & Teleph Corp <Ntt> Functional optical waveguide medium
JPH03132726A (en) * 1989-10-19 1991-06-06 Fujikura Ltd Rare earth element-added optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127032A (en) * 1989-10-13 1991-05-30 Nippon Telegr & Teleph Corp <Ntt> Functional optical waveguide medium
JPH03132726A (en) * 1989-10-19 1991-06-06 Fujikura Ltd Rare earth element-added optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213388A (en) * 1989-02-14 1990-08-24 Brother Ind Ltd Washer-dryer
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2002033536A (en) * 2000-07-14 2002-01-31 Furukawa Electric Co Ltd:The Optical fiber for optical amplification
JP2006519495A (en) * 2003-01-27 2006-08-24 セラムオプテック ゲーエムベーハー Multi-clad fiber optic lasers and their manufacture

Also Published As

Publication number Publication date
JP2749686B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
AU653206B2 (en) Optical fiber amplifier and coupler
JPH09159846A (en) Rare earth element-doped multi-core fiber and method for producing the same
JP2959877B2 (en) Optical fiber manufacturing method
JP2830617B2 (en) Rare earth element-doped multi-core fiber and method for producing the same
EP0391742A3 (en) Image fiber, image fiber preform, and manufacturing processes thereof
JPH11237514A (en) Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform
JPH03229223A (en) Quartz system optical fiber
KR100878709B1 (en) How to make optical fiber by adjusting oxygen stoichiometry
JPS62297808A (en) Dispersion shift optical fiber
JPH05249329A (en) High-input optical fiber and production of its base material
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3315786B2 (en) Optical amplifier type optical fiber
JPS638707A (en) Dispersion shift type optical fiber
JPS5512947A (en) Light communication fiber
JPS61132531A (en) Optical fiber manufacturing method
JP3142955B2 (en) Optical fiber for illumination light transmission for laser beam machine
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPS6131328A (en) Optical fiber
JPS58125621A (en) Production of preform for optical fiber
JP3514406B2 (en) Optical fiber preform for optical amplification and method of manufacturing the same
JPH02267132A (en) Parent material for image fibers and their production
JPS63222031A (en) Method for manufacturing optical fiber preform
JPS63230533A (en) Production of optical fiber preform
CN112505827A (en) Active optical fiber for high-power laser and preparation method thereof
JPH01242432A (en) Production of base material for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees