JPH03228365A - semiconductor resistance circuit - Google Patents
semiconductor resistance circuitInfo
- Publication number
- JPH03228365A JPH03228365A JP2395890A JP2395890A JPH03228365A JP H03228365 A JPH03228365 A JP H03228365A JP 2395890 A JP2395890 A JP 2395890A JP 2395890 A JP2395890 A JP 2395890A JP H03228365 A JPH03228365 A JP H03228365A
- Authority
- JP
- Japan
- Prior art keywords
- diode
- resistor
- semiconductor
- resistance circuit
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 28
- 239000000758 substrate Substances 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体抵抗回路に関するもので、半導体集積回
路(IC)の構成要素等として用いられる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor resistance circuit, which is used as a component of a semiconductor integrated circuit (IC).
半導体集積回路の構成要素である抵抗を半導体基板上に
形成する際、通常用いられるのはイオン注入による方法
である。これは、半導体基板中にnもしくはp型のドー
パントをイオンとして注入することにより実現される。When forming a resistor, which is a component of a semiconductor integrated circuit, on a semiconductor substrate, ion implantation is usually used. This is achieved by implanting n- or p-type dopants as ions into the semiconductor substrate.
その製造工程は、トランジスタの活性層を形成する為の
イオン注入工程と兼ねることができる。The manufacturing process can also serve as an ion implantation process for forming the active layer of the transistor.
一方、広い温度範囲において安定な性能をもつ半導体装
置が求められており、構成要素の1つである抵抗も広い
温度範囲で安定であることが要求される。ところが、イ
オン注入によって形成される抵抗(イオン注入抵抗)の
場合、温度が高くなるにつれて抵抗値が上昇する。つま
り、正の抵抗温度係数T CR(Tcvperatuv
e Coefflclent orResistanc
e)を持つことが知られている。例えば、Ga As基
板にStイオンを加速電圧180ke■で注入すること
によって得られるシート抵抗として、500ΩcII+
−2の抵抗値のものの場合、およそ1670 ppm
/degのTCRを持つことが実験によりわかっている
。On the other hand, there is a demand for semiconductor devices that have stable performance over a wide temperature range, and a resistor, which is one of the components, is also required to be stable over a wide temperature range. However, in the case of a resistor formed by ion implantation (ion implanted resistor), the resistance value increases as the temperature increases. In other words, the positive temperature coefficient of resistance T CR (Tcvperatuv
eCoefflclent orResistance
e) is known to have. For example, the sheet resistance obtained by implanting St ions into a GaAs substrate at an accelerating voltage of 180ke is 500ΩcII+.
-2 resistance value approximately 1670 ppm
It has been found through experiments that it has a TCR of /deg.
このため、ニッケル・クロム等の合金ヲスパッタリング
等により金属薄膜抵抗として半導体基板上に形成し、T
CRが殆んどゼロである抵抗を形成する等の方法が従来
から知られ、例えば下記の文献
「“高安定化薄膜抵抗器の研究゛金親(日本電信電話公
社)他 電子通信学会 電子回路部品・材料研究会資料
CPM68−18 (1968年8月)」
に示されている。しかし、金属薄膜を形成する上記方法
の場合には、半導体装置の製造工程に新たな工程を加え
なければならず、製造工程が複雑になる。このため、広
い温度範囲で安定的に動作する半導体集積回路を、歩留
りよく安価に実現するのが困難であった。For this reason, alloys such as nickel and chromium are formed on semiconductor substrates as metal thin film resistors by sputtering, etc., and T
Methods such as forming a resistor with a CR of almost zero have been known for a long time. Parts and Materials Study Group Material CPM68-18 (August 1968). However, in the case of the above-mentioned method of forming a metal thin film, a new step must be added to the manufacturing process of the semiconductor device, which complicates the manufacturing process. For this reason, it has been difficult to realize a semiconductor integrated circuit that operates stably over a wide temperature range at a high yield and at low cost.
そこで本発明は、上記の欠点を解決した半導体抵抗回路
を提供することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor resistance circuit that solves the above-mentioned drawbacks.
〔課題を解決するための手段〕
本発明に係る半導体抵抗回路は、半導体基板に形成され
たダイオードと、このダイオードに直列接続された第1
の抵抗と、ダイオードおよび第1の抵抗の直列回路に並
列接続された第2の抵抗とを備え、ダイオードは温度上
昇により立上がり電圧が低くなる特性を有し、第1およ
び第2の抵抗は温度上昇により抵抗値が高くなる特性を
有していることを特徴とする。ここで、ダイオードが複
数個直列に接続されているとしてもよい。[Means for Solving the Problems] A semiconductor resistance circuit according to the present invention includes a diode formed on a semiconductor substrate, and a first diode connected in series to the diode.
and a second resistor connected in parallel to a series circuit of the diode and the first resistor. It is characterized by having a characteristic that the resistance value increases as the resistance increases. Here, a plurality of diodes may be connected in series.
本発明の半導体抵抗回路において、ダイオードは温度上
昇すると立ち上り電圧(電流が急に流れ出す電圧)は低
くなり、従って一定電流という条件下では、等価的に負
のTCRを持つ抵抗として働くことになる。一方、第1
および第2の抵抗は半導体基板に正のTCRを有して形
成されている。In the semiconductor resistance circuit of the present invention, the rising voltage (voltage at which current suddenly flows) of the diode decreases as the temperature rises, and therefore, under the condition of constant current, the diode functions as a resistor with an equivalent negative TCR. On the other hand, the first
The second resistor is formed on the semiconductor substrate and has a positive TCR.
従って、これらを組み合せることで、TCHの小さい抵
抗回路が等価的に実現できる。Therefore, by combining these, a resistance circuit with a small TCH can be equivalently realized.
以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図は実施例に係る半導体抵抗回路の回路図である。FIG. 1 is a circuit diagram of a semiconductor resistance circuit according to an embodiment.
図示の通り、ダイオードDと第1の抵抗R1は直列に接
続され、この直列回路は第2の抵抗R2に並列接続され
る。ここで、ダイオードDは金属−半導体接合によるシ
ョットキー接合ダイオードでもよく、pn接合ダイオー
ドでもよい。As shown, the diode D and the first resistor R1 are connected in series, and this series circuit is connected in parallel to the second resistor R2. Here, the diode D may be a Schottky junction diode formed by a metal-semiconductor junction, or a pn junction diode.
また、ダイオードDは1個に限らず、2個以上が直列接
続されたものでもよい。Further, the number of diodes D is not limited to one, and two or more diodes D may be connected in series.
次に、上記実施例が等価的に抵抗として働く原理を説明
する。Next, the principle in which the above embodiment functions equivalently as a resistor will be explained.
まず、イオン注入抵抗は正のTCRを有し、常温で3に
Ωの抵抗の0℃、30℃、85℃での電流−電圧(1−
V)特性は、例えば第2図のようになる。ここにおいて
、TCRの値は具体的には1670ppm /degで
ある。First, the ion implantation resistor has a positive TCR, and the current-voltage (1-
V) Characteristics are as shown in FIG. 2, for example. Here, the TCR value is specifically 1670 ppm/deg.
次に、ショットキー接合ダイオードの順方向に流れる電
流J は、
J = [A*T2exp (−qφ /kT)]n
B
n[exp(qV/kT)−11−(1)但し; (
A*−4πqm*k” /h3)で与えられる。また、
pn接合ダイオードの順方で与えられる。ここで、Tは
温度、m*はキャリアの有効質量、kはボルツマン定数
、φBnはショットキーバリアポテンシャルである。な
お、上記(1)、(2)式はS、M、Szeによる下記
の文献
「Ph1sics of Sea+1conducto
r Devices(2nded1tion)’ J
に示されている。Next, the current J flowing in the forward direction of the Schottky junction diode is J = [A*T2exp (-qφ/kT)]n
B
n[exp(qV/kT)-11-(1) However; (
A*−4πqm*k”/h3). Also,
It is given in the order of pn junction diode. Here, T is the temperature, m* is the effective mass of the carrier, k is the Boltzmann constant, and φBn is the Schottky barrier potential. The above equations (1) and (2) are based on the following document by S, M, and Sze, “Ph1sics of Sea+1 conductor.
r Devices (2nded1tion)' J.
上記(1)、(2)式で表わされるショットキー接合ダ
イオードとpn接合ダイオードのI−V特性が、0℃、
30℃、85℃の温度条件下でどのように変化するかを
、第3図(a)、(b)に示す。図示の通り、順方向電
流が急増するアノード・カソード間電位(立ち上り電位
)が、温度上昇によって低くなっているのがわかる。つ
まり、一定電流を流した状態を考えると、見掛は上で負
のTCRを持つ抵抗となっていることがゎがる。The IV characteristics of the Schottky junction diode and the pn junction diode expressed by the above equations (1) and (2) are 0°C,
Figures 3(a) and 3(b) show how it changes under temperature conditions of 30°C and 85°C. As shown in the figure, it can be seen that the anode-cathode potential (rise potential) at which the forward current increases rapidly becomes lower as the temperature rises. In other words, if we consider the state in which a constant current is flowing, it appears that the resistor has a negative TCR.
このため、この負のTCRを持つダイオードDと正のT
CRを持つ抵抗(第1の抵抗R、第2の抵抗R2)を組
み合せることにより、全体としてTCRの小さな半導体
抵抗回路を等価的に実現できる。Therefore, the diode D with this negative TCR and the positive TCR
By combining resistors with CR (first resistor R, second resistor R2), it is possible to equivalently realize a semiconductor resistance circuit with a small TCR as a whole.
第1の抵抗R1および第2の抵抗R2として3にΩのイ
オン注入抵抗を用い、第4図のような回路を構成すると
、I−V特性は第5図のようになる。VA−IV前後に
至るまで、非常に小さなTCRとなる。ここで、半導体
抵抗回路によって実現される抵抗値は、上記の第1の抵
抗R1と第2の抵抗R2の値を適切なものとすることに
より、任意の値に設定できる。また、VAのより大きい
電位差において使用するときには、ダイオードDを複数
個直列接続すればよい。例えば、第4図の回路において
ダイオードDを2個にすれば、VA−2V程度の範囲ま
で小さなTCRとすることが可能になる。すなわち、上
記実施例の回路ではダイオードDの向きが一方向である
ため、ダイオードDに順方向電流が流れるような条件下
でしか抵抗回路として用いることができないが、印加し
得る電位差には論理上は制限がない。If a circuit as shown in FIG. 4 is constructed using ion-implanted resistors of 3Ω as the first resistor R1 and the second resistor R2, the IV characteristic will be as shown in FIG. 5. The TCR becomes very small until around VA-IV. Here, the resistance value realized by the semiconductor resistance circuit can be set to an arbitrary value by appropriately setting the values of the first resistor R1 and the second resistor R2. Furthermore, when used at a larger potential difference in VA, a plurality of diodes D may be connected in series. For example, if the number of diodes D is reduced to two in the circuit shown in FIG. 4, the TCR can be reduced to a range of about VA-2V. That is, in the circuit of the above embodiment, since the diode D is unidirectional, it can only be used as a resistance circuit under conditions where a forward current flows through the diode D. However, there are theoretical differences in the potential difference that can be applied. is unlimited.
本発明の半導体抵抗回路は単独の抵抗回路として用い得
るものであるが、増幅回路等と組み合せて、あるいはそ
の構成要素としてIC中にも用いられる。このとき、例
えばICがGa AsによるMESFET (ショット
キーゲート電界効果トランジスタ)を用いたものである
ときは、ダイオードDとしてショットキー接合ダイオー
ドを用いることにより、一連のプロセスでICを製造で
きる。The semiconductor resistance circuit of the present invention can be used as an independent resistance circuit, but it can also be used in combination with an amplifier circuit or the like, or in an IC as a component thereof. At this time, for example, when the IC uses a MESFET (Schottky gate field effect transistor) made of GaAs, by using a Schottky junction diode as the diode D, the IC can be manufactured by a series of processes.
また、バイポーラトランジスタを用いたICに組み合さ
れるときは、ダイオードDとしてpn接合ダイオードを
用いればよく、このときにも一連のプロセスでICを製
造できる。従って、いずれの場合にも製造工程を複雑に
することがなく、特性の優れた半導体装置が歩留りよく
安価に実現できる。Further, when combined with an IC using a bipolar transistor, a pn junction diode may be used as the diode D, and the IC can also be manufactured in a series of processes in this case. Therefore, in either case, a semiconductor device with excellent characteristics can be realized at a high yield and at low cost without complicating the manufacturing process.
以上の通り、本発明によれば、広い温度範囲で安定な抵
抗値を実現できる半導体抵抗回路を、半導体基板におい
て得ることができる。As described above, according to the present invention, a semiconductor resistance circuit that can realize a stable resistance value over a wide temperature range can be obtained on a semiconductor substrate.
第1図は本発明の実施例に係る半導体抵抗回路の回路図
、第2図はイオン注入抵抗の電流−電圧特性図、第3図
はダイオードDの電流−電圧特性図、第4図は具体的な
半導体抵抗回路の回路図、第5図は第4図に示す半導体
抵抗回路の電流−電圧特性図である。
R・・・第1の抵抗、R2・・・第2の抵抗、D・・・
ダ■
イオード。Fig. 1 is a circuit diagram of a semiconductor resistance circuit according to an embodiment of the present invention, Fig. 2 is a current-voltage characteristic diagram of an ion-implanted resistor, Fig. 3 is a current-voltage characteristic diagram of diode D, and Fig. 4 is a specific diagram. FIG. 5 is a current-voltage characteristic diagram of the semiconductor resistance circuit shown in FIG. 4. R...first resistance, R2...second resistance, D...
da ■ iode.
Claims (1)
ードに直列接続された第1の抵抗と、前記ダイオードお
よび第1の抵抗の直列回路に並列接続された第2の抵抗
とを備え、前記ダイオードは温度上昇により立上がり電
圧が低くなる特性を有し、前記第1および第2の抵抗は
温度上昇により抵抗値が高くなる特性を有していること
を特徴とする半導体抵抗回路。 2、前記ダイオードが複数個直列に接続されている請求
項1記載の半導体抵抗回路。[Claims] 1. A diode formed on a semiconductor substrate, a first resistor connected in series to the diode, and a second resistor connected in parallel to a series circuit of the diode and the first resistor. A semiconductor resistance circuit comprising: the diode having a characteristic that a rising voltage decreases as the temperature rises, and the first and second resistors having a characteristic that the resistance value increases as the temperature rises. . 2. The semiconductor resistance circuit according to claim 1, wherein a plurality of said diodes are connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2395890A JPH03228365A (en) | 1990-02-02 | 1990-02-02 | semiconductor resistance circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2395890A JPH03228365A (en) | 1990-02-02 | 1990-02-02 | semiconductor resistance circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03228365A true JPH03228365A (en) | 1991-10-09 |
Family
ID=12125058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2395890A Pending JPH03228365A (en) | 1990-02-02 | 1990-02-02 | semiconductor resistance circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03228365A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516402A (en) * | 1996-08-16 | 2000-12-05 | エービービー リサーチ リミテッド | Bipolar semiconductor device having a semiconductor layer composed of SiC and a method of manufacturing a semiconductor device composed of SiC |
JP2003533027A (en) * | 2000-04-27 | 2003-11-05 | モトローラ・インコーポレイテッド | Temperature compensated single power supply HFET |
JP2007263667A (en) * | 2006-03-28 | 2007-10-11 | Toyota Central Res & Dev Lab Inc | Stress measuring device |
JP2010161343A (en) * | 2009-01-12 | 2010-07-22 | Honeywell Internatl Inc | Circuit for adjusting temperature coefficient of resistor |
JP2014160332A (en) * | 2013-02-19 | 2014-09-04 | Toshiba Corp | Step-down regulator |
JP2017526077A (en) * | 2014-08-25 | 2017-09-07 | マイクロン テクノロジー, インク. | Temperature independent current generator |
US10001793B2 (en) | 2015-07-28 | 2018-06-19 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
US10229973B2 (en) | 2016-04-28 | 2019-03-12 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, first electrode and second electrode |
-
1990
- 1990-02-02 JP JP2395890A patent/JPH03228365A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516402A (en) * | 1996-08-16 | 2000-12-05 | エービービー リサーチ リミテッド | Bipolar semiconductor device having a semiconductor layer composed of SiC and a method of manufacturing a semiconductor device composed of SiC |
JP2003533027A (en) * | 2000-04-27 | 2003-11-05 | モトローラ・インコーポレイテッド | Temperature compensated single power supply HFET |
JP2007263667A (en) * | 2006-03-28 | 2007-10-11 | Toyota Central Res & Dev Lab Inc | Stress measuring device |
JP4578427B2 (en) * | 2006-03-28 | 2010-11-10 | 株式会社豊田中央研究所 | Stress temperature measuring device |
JP2010161343A (en) * | 2009-01-12 | 2010-07-22 | Honeywell Internatl Inc | Circuit for adjusting temperature coefficient of resistor |
JP2014160332A (en) * | 2013-02-19 | 2014-09-04 | Toshiba Corp | Step-down regulator |
JP2017526077A (en) * | 2014-08-25 | 2017-09-07 | マイクロン テクノロジー, インク. | Temperature independent current generator |
US10073477B2 (en) | 2014-08-25 | 2018-09-11 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US10678284B2 (en) | 2014-08-25 | 2020-06-09 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US10001793B2 (en) | 2015-07-28 | 2018-06-19 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
US10459466B2 (en) | 2015-07-28 | 2019-10-29 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
US10229973B2 (en) | 2016-04-28 | 2019-03-12 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, first electrode and second electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuijk | A precision reference voltage source | |
US4263518A (en) | Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body | |
US4066917A (en) | Circuit combining bipolar transistor and JFET's to produce a constant voltage characteristic | |
JPH0680688B2 (en) | Planar semiconductor device body and its manufacturing method | |
JPH07161973A (en) | Transistor circuit | |
JPH03228365A (en) | semiconductor resistance circuit | |
US4200877A (en) | Temperature-compensated voltage reference diode with intermediate polycrystalline layer | |
US3171042A (en) | Device with combination of unipolar means and tunnel diode means | |
GB1023531A (en) | Improvements in or relating to semiconductor devices | |
US11199565B1 (en) | Undervoltage detection circuit | |
JP2001168651A (en) | Semiconductor device | |
US4910158A (en) | Zener diode emulation and method of forming the same | |
US3940683A (en) | Active breakdown circuit for increasing the operating range of circuit elements | |
Kato et al. | A monolithic 14 bit D/A converter fabricated with a new trimming technique (DOT) | |
US5146297A (en) | Precision voltage reference with lattice damage | |
JPH03228364A (en) | semiconductor resistance circuit | |
US5164615A (en) | Method and apparatus for zero temperature coefficient reference voltage devices | |
US4717886A (en) | Operational amplifier utilizing resistors trimmed by metal migration | |
US20060139022A1 (en) | System and method for generating a reference voltage | |
US5144405A (en) | Temperature compensation apparatus for logic gates | |
US6046481A (en) | Transistor for preventing a thermal runaway caused by temperature rise in a bias circuit of the transistor | |
JPS60159919A (en) | Bias current reference circuit having virtually zero temperature coefficient | |
US20030030128A1 (en) | Transistor configuration for a bandgap circuit | |
JP3432877B2 (en) | Zener diode | |
Anderson et al. | Theory of depletion-layer recombination in silicon p–n junctions |