[go: up one dir, main page]

JPH03227006A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH03227006A
JPH03227006A JP2262990A JP2262990A JPH03227006A JP H03227006 A JPH03227006 A JP H03227006A JP 2262990 A JP2262990 A JP 2262990A JP 2262990 A JP2262990 A JP 2262990A JP H03227006 A JPH03227006 A JP H03227006A
Authority
JP
Japan
Prior art keywords
metal
tantalum
valve
solid electrolytic
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2262990A
Other languages
Japanese (ja)
Inventor
Masayuki Yamane
雅之 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2262990A priority Critical patent/JPH03227006A/en
Publication of JPH03227006A publication Critical patent/JPH03227006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To reduce the cost of material, and to contrive reduction in the cost of the title capacitor by a method wherein the outside of a positive lead is composed of valve-action metal, and besides, the inside of the positive lead is composed of the metal other than valve-action metal. CONSTITUTION:For example, tantalum metal powder which functions as a valve is press-molded by burying a part of a binary-constructed positive lead 2, and a molded body 1 is manufactured. The positive lead is composed of binary structure consisting of titanium on the inside and tantalum 4 on the outside. An ingot, consisting of titanium on the inside and tantalum on the outside, is subjected to cold pressure welding and the desired wire diameter is obtained by wire drawing. As the obtained positive lead 2 contains a small quantity of expensive tantalum 4 and a large quantity of inexpensive titanium 3, the cost of material of the anode lead 2 can be reduced. Then, the molded body 1 obtained as above is sintered at a high temperature in vacuum, a dielectric layer, a manganese dioxide layer, a carbon layer and a silver-paste layer are formed thereon successively, and a solid electrolytic capacitor element is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解コンデンサに関し、特に素子に植立し
た陽極リードの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solid electrolytic capacitor, and particularly to the structure of an anode lead installed in an element.

〔従来の技術〕[Conventional technology]

従来この種の固体電解コンデンサの素子は、第6図に示
すように、タンタル、ニオブ等の弁作用を有する金属粉
末を所定の形状に加圧成形してなる成形体1に、前記金
属粉末と同じタンタル、ニオブ等からなる陽極リード2
を植立し、さらに前記陽極リード2を植立した成形体を
1000〜2000℃の高温真空中で焼結してコンデン
サ素意を構成していた。
Conventionally, this type of solid electrolytic capacitor element is made by press-molding a metal powder such as tantalum or niobium having a valve action into a predetermined shape, as shown in FIG. Anode lead 2 made of the same tantalum, niobium, etc.
The molded body with the anode lead 2 planted thereon was sintered in a vacuum at a high temperature of 1000 to 2000°C to form a capacitor element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の固体電解コンデンサの素子は、非常に高
価なタンタル等の陽極リード線2を使用しているので、
コンデンサ素子の材料費が高くなり、これによりコンデ
ンサ製品全体の価格が上昇して、市場での価格競争力が
低下する。
The conventional solid electrolytic capacitor element described above uses an anode lead wire 2 made of very expensive tantalum or the like.
The material cost of capacitor elements increases, which increases the price of the entire capacitor product and reduces price competitiveness in the market.

又、これらの材料費の上昇を防、止するために陽極リー
ド2を細くしたり、短かくしなりすると、後工程での機
械的ストレス、あるいは熱的ストレスにより、コンデン
サの漏れt流が増大して製品の信頼性が劣化するという
欠点がある。
In addition, if the anode lead 2 is made thinner or shorter and bent in order to prevent these increases in material costs, the leakage current of the capacitor will increase due to mechanical stress or thermal stress in the subsequent process. The disadvantage is that the reliability of the product deteriorates.

本発明の目的は、材料費の上昇を防止するため陽極リー
ドを細くしなり、短かくしたりし、後工程での機械的ス
トレスあるいは熱的ストレスによるコンデンサの漏れ電
流の増大による製品の信頼性の低下を来す欠点を除き、
陽極リード線の太さや長さを変えることなく、材料費を
低減しコンデンサ製品価格を低減できる固体電解コンデ
ンサを提供することにある。
The purpose of the present invention is to make the anode lead thinner and shorter in order to prevent an increase in material costs, and to reduce product reliability due to an increase in capacitor leakage current due to mechanical stress or thermal stress in subsequent processes. Except for the disadvantages that cause deterioration,
The purpose of the present invention is to provide a solid electrolytic capacitor that can reduce material costs and capacitor product prices without changing the thickness or length of the anode lead wire.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体電解コンデンサは、陽極リードを植立した
弁作用金属の成形体上に順次、誘電体層、半導体層、グ
ラファイト層および銀ペースト層等の陰極層を被着した
コンデンサ素子において、前記陽極リードの外側を前記
弁作用金属、さらに内側を前記弁作用金属以外の金属で
構成したことを特徴としている。
The solid electrolytic capacitor of the present invention is a capacitor element in which a cathode layer such as a dielectric layer, a semiconductor layer, a graphite layer and a silver paste layer is sequentially deposited on a molded body of valve metal having an anode lead planted thereon. The present invention is characterized in that the outside of the anode lead is made of the valve metal, and the inside is made of a metal other than the valve metal.

本発明によれば、コンデンサ素子に植立された陽極リー
ドが、タンタル等の高価な弁作用金属のみではなく、安
価な金属の上に、高価な弁作用金属をうずく張り合わせ
る二元構造を有しているのでコンデンサ素子の材料費を
大幅に下げることができる。
According to the present invention, the anode lead planted on the capacitor element has a dual structure in which not only an expensive valve metal such as tantalum is laminated, but also an expensive valve metal is laminated on an inexpensive metal. Therefore, the material cost of capacitor elements can be significantly reduced.

また、材料費を下げるために陽極リードを細くしなり、
短かくしたりする必要がないので、製品の信頼性が向上
する。
In addition, to reduce material costs, the anode lead is made thinner and more flexible.
Since there is no need to shorten the length, the reliability of the product is improved.

〔実施例〕〔Example〕

以下、本発明について図面を参照して説明する。第1図
は本発明の一実施例のコンデンサ素子成形体の斜視図で
ある。又、第2図は本発明の一実施例に使用する陽極リ
ードの断面図であり、第3図は本発明の一実施例の固体
電解コンデンサの断面図である。
Hereinafter, the present invention will be explained with reference to the drawings. FIG. 1 is a perspective view of a molded capacitor element according to an embodiment of the present invention. Further, FIG. 2 is a cross-sectional view of an anode lead used in one embodiment of the present invention, and FIG. 3 is a cross-sectional view of a solid electrolytic capacitor according to one embodiment of the present invention.

弁作用を有するたとえばタンタルの金属粉末を本発明の
二元構造から成る陽極リード2の一部を埋設してプレス
成型し、第1図に示すような成形体1を製造する。
A part of the anode lead 2 having a dual structure of the present invention is embedded in a metal powder, such as tantalum, which has a valve action, and is press-molded to produce a molded body 1 as shown in FIG.

本発明の陽極リード2は、第2図に示すように傘径が0
.1〜0.5mmφで内側がチタン3から成り、その外
側にタンタル4を張り合わせた二元構造のクラツド材か
ら構成される。又、チタンの直径は陽極リード2の約5
0〜90%とする。
The anode lead 2 of the present invention has an umbrella diameter of 0 as shown in FIG.
.. It is made of a two-dimensional clad material with a diameter of 1 to 0.5 mm and made of titanium 3 on the inside and tantalum 4 on the outside. Also, the diameter of titanium is approximately 5 mm of the anode lead 2.
0 to 90%.

製造方法としては、内側チタン、外側タンタルから成る
インゴットを冷間圧接し、さらに、これを線引きして所
定の線径とする。
The manufacturing method involves cold welding an ingot made of titanium on the inside and tantalum on the outside, and then drawing the ingot to a predetermined wire diameter.

このようにして得られた陽極リード2は、高価なタンタ
ル4が少なく安価なチタン3が多いため、陽極リード2
の材料費が約50〜80%低減できる。
The anode lead 2 obtained in this way contains less expensive tantalum 4 and more cheap titanium 3.
The material cost can be reduced by about 50-80%.

次に、このようにして得られた成形体1を高温、真空焼
結し、さらにその上に誘電体層、二酸化マンガン層、カ
ーボン層、銀ペースト層を順次形成し、固体電解コンデ
ンサ素子を製造する。
Next, the molded body 1 thus obtained is sintered at high temperature in a vacuum, and a dielectric layer, a manganese dioxide layer, a carbon layer, and a silver paste layer are sequentially formed thereon to produce a solid electrolytic capacitor element. do.

最後に、第3図に示すように、コンデンサ素子から陽極
外部リード5.陰極外部リード6を導出し、エポキシ樹
脂等の外装樹脂7で絶縁外装して、固体電解コンデンサ
を形成する。
Finally, as shown in FIG. 3, from the capacitor element to the anode external lead 5. The cathode external lead 6 is led out and insulated with an exterior resin 7 such as epoxy resin to form a solid electrolytic capacitor.

尚ここでは、陽極リード2の断面が円形の場合について
述べたが、第4図、第5図に示すように四角状、だ円状
の断面にしても良いことは、勿論である。さらに陽極リ
ード2の内側の金属としてMo、Nbを用いても同様な
効果が得られることは言うまでもない。
Although the case where the anode lead 2 has a circular cross section has been described here, it goes without saying that it may have a square or elliptical cross section as shown in FIGS. 4 and 5. Furthermore, it goes without saying that similar effects can be obtained by using Mo or Nb as the metal inside the anode lead 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、安価なTiMO等の金属
を中心にして外側のうすい部分のみに、高価なタンタル
等の金属を使用しているので(1)II!極り−ドの資
材費が50%以上低減され、これによりコンデンサの価
格が大幅に下がり、コストダウンが推進される。
As explained above, the present invention uses an expensive metal such as tantalum only in the outer thin part of the inexpensive metal such as TiMO, so (1) II! The material cost of the extreme card is reduced by more than 50%, which significantly reduces the price of capacitors and promotes cost reduction.

(2) lQi極リードを細くしたり、短かくしたりし
てコストダウンを図る必要がないので、コンデンサにス
トレスが加っな場合の信頼性が向上する。
(2) Since there is no need to reduce costs by making the lQi pole lead thinner or shorter, reliability is improved when stress is not applied to the capacitor.

などの効果がある。There are effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコンデンサ素子成形体の斜視図、第2
図(a)、(b)は、本発明の陽極リードの斜視図およ
びその断面図、第3図は、本発明の固体電解コンデンサ
の側断面図、第4図、第5図は本発明の他の実施例の陽
極リードの斜視図、第6図は従来のコンデンサ素子成形
体の斜視図である。 1・・・成形体、2・・・陽極リード、3・・・チタン
、4・タンタル、5・・・陽極外部リード、6・・・陰
極外部リード、7・・・外装樹脂。
FIG. 1 is a perspective view of a capacitor element molded body of the present invention, and FIG.
Figures (a) and (b) are a perspective view and a sectional view of an anode lead of the present invention, Figure 3 is a side sectional view of a solid electrolytic capacitor of the present invention, and Figures 4 and 5 are a perspective view and a sectional view thereof of an anode lead of the present invention. A perspective view of an anode lead of another embodiment, and FIG. 6 is a perspective view of a conventional capacitor element molded body. DESCRIPTION OF SYMBOLS 1... Molded body, 2... Anode lead, 3... Titanium, 4... Tantalum, 5... Anode external lead, 6... Cathode external lead, 7... Exterior resin.

Claims (3)

【特許請求の範囲】[Claims] 1.陽極リードを植立した弁作用金属粉末の成形体上に
順次、誘電体層,半導体層,グラファイト層および銀ペ
ースト層等の陰極層を被着したコンデンサ素子において
、前記陽極リードの外側を前記弁作用金属,さらに内側
を該弁作用金属以外の金属で構成したことを特徴とする
固体電解コンデンサ。
1. In a capacitor element in which cathode layers such as a dielectric layer, a semiconductor layer, a graphite layer, and a silver paste layer are successively deposited on a molded body of valve metal powder with an anode lead planted thereon, the outside of the anode lead is attached to the valve metal powder. A solid electrolytic capacitor comprising a working metal and an inner side made of a metal other than the valve working metal.
2.前記陽極リードの内側金属の融点が1000℃以上
であることを特徴とする請求項1記載の固体電解コンデ
ンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the melting point of the inner metal of the anode lead is 1000° C. or higher.
3.前記弁作用金属がタンタル,前記弁作用金属以外の
金属がチタン又はモリブデン又はニオブであることを特
徴とする請求項1記載の固体電解コンデンサ。
3. 2. The solid electrolytic capacitor according to claim 1, wherein the valve metal is tantalum, and the metal other than the valve metal is titanium, molybdenum, or niobium.
JP2262990A 1990-01-31 1990-01-31 Solid electrolytic capacitor Pending JPH03227006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262990A JPH03227006A (en) 1990-01-31 1990-01-31 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262990A JPH03227006A (en) 1990-01-31 1990-01-31 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03227006A true JPH03227006A (en) 1991-10-08

Family

ID=12088120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262990A Pending JPH03227006A (en) 1990-01-31 1990-01-31 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03227006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216680A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires
CN113745005A (en) * 2021-08-17 2021-12-03 深圳江浩电子有限公司 Method for manufacturing cast anode capacitor cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502072A (en) * 1985-12-23 1988-08-11 ス−パ−コン インコ−ポレ−テツド Lead wire for tantalum capacitor, tantalum capacitor including this lead wire, and method for manufacturing the lead wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502072A (en) * 1985-12-23 1988-08-11 ス−パ−コン インコ−ポレ−テツド Lead wire for tantalum capacitor, tantalum capacitor including this lead wire, and method for manufacturing the lead wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216680A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4601440B2 (en) * 2005-02-02 2010-12-22 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
US8066783B2 (en) 2005-02-02 2011-11-29 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method therefor
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires
CN113745005A (en) * 2021-08-17 2021-12-03 深圳江浩电子有限公司 Method for manufacturing cast anode capacitor cell
CN113745005B (en) * 2021-08-17 2022-12-30 深圳江浩电子有限公司 Method for manufacturing cast anode capacitor cell

Similar Documents

Publication Publication Date Title
EP2769394B1 (en) Sintered article and method of making sintered article
US6493214B1 (en) Solid electrolytic capacitor
JP2000208367A (en) Solid electrolytic capacitor and manufacture of the same
JPH03227006A (en) Solid electrolytic capacitor
JPH04246813A (en) Solid electrolytic capacitor containing fuse
JPH04159705A (en) Solid-state electrolytic condenser
JP2004014667A (en) Solid electrolytic capacitor
JP4646707B2 (en) Solid electrolytic capacitor
JP2001332446A (en) Capacitor
JP3883766B2 (en) Solid electrolytic capacitor
JP5213685B2 (en) Solid electrolytic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP2008159826A (en) Solid electrolytic capacitor
JP2018101709A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2005328100A (en) Method for manufacturing solid electrolytic capacitor
JPS5930528Y2 (en) solid electrolytic capacitor
JP2002110462A (en) Solid-state electrolytic capacitor
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP2001176756A (en) Solid electrolytic capacitor
JPS5824435Y2 (en) solid electrolytic capacitor
JPS62102515A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP2960099B2 (en) Lead wire for tantalum capacitor
JP2006049610A (en) Method for manufacturing solid electrolytic capacitor
JPH05343272A (en) Solid electrolytic capacitor
JP2024043522A (en) Improving electrical connections in devices and processes used in capacitor device manufacturing