[go: up one dir, main page]

JPH0322626A - Fourth order delta/sigma modulator - Google Patents

Fourth order delta/sigma modulator

Info

Publication number
JPH0322626A
JPH0322626A JP15657489A JP15657489A JPH0322626A JP H0322626 A JPH0322626 A JP H0322626A JP 15657489 A JP15657489 A JP 15657489A JP 15657489 A JP15657489 A JP 15657489A JP H0322626 A JPH0322626 A JP H0322626A
Authority
JP
Japan
Prior art keywords
output
integrator
quantizer
loop
integrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15657489A
Other languages
Japanese (ja)
Inventor
Masatsugu Kamimura
正継 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP15657489A priority Critical patent/JPH0322626A/en
Publication of JPH0322626A publication Critical patent/JPH0322626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To compress a low frequency quantized noise to the utmost with stable operation by dividing a DELTA-SIGMA modulator having a fourth order transmission characteristic into a main loop processing a main signal and a sub loop processing quantized noise. CONSTITUTION:First and 2nd integration devices 11, 12 are connected in series and a 1st quantizing device 31, a delay device 41 and adders 21, 22 form a main loop having a 2nd order transmission characteristic. An adder 25 extracts only an error component-Q1 (Z) of the 1st quantizer 31. The sub loop integrates the quantized error in the 2nd order transmission characteristic. The sub loop is provided with 3rd and 4th integration devices 13, 14 connected in series, a 2nd quantizer 32, a feedback use delay device 42 and the adders 23, 24. Since the main loop and the sub loop apply feedback within the 2nd order range only, stable operation is guaranteed.

Description

【発明の詳細な説明】 〔概 要〕 4次の伝達特性を有するデルタ・シグマ変調器に関し、 動作の安定化を図ることを目的とし、 サンプリングされたアナログ入力を積分する第1積分器
と、該第1積分器の出力を積分する第2積分器と、該第
2積分器の出力を量子化して該第1および第2積分器の
入力に負帰還する第I!子化器と、該第1量子化器の量
子化誤差を積分する第3積分器と、該第3積分器の出力
を積分する第4積分器と、該第4積分器の出力を量子化
して該第3および第4積分器の入力に負帰還する第2量
子化器と、該第21子化器の出力を2回微分する・第1
および第2微分器と、該第2微分器の出力と前記第B1
子化器の出力を加算してデジタル出力とする演算器とを
備えるよう構或する。
[Detailed Description of the Invention] [Summary] Regarding a delta-sigma modulator having a fourth-order transfer characteristic, the purpose is to stabilize the operation, and the first integrator integrates a sampled analog input; a second integrator that integrates the output of the first integrator, and a second integrator that quantizes the output of the second integrator and provides negative feedback to the inputs of the first and second integrators. a third integrator that integrates the quantization error of the first quantizer, a fourth integrator that integrates the output of the third integrator, and a fourth integrator that quantizes the output of the fourth integrator. a second quantizer that provides negative feedback to the inputs of the third and fourth integrators; and a first
and a second differentiator, the output of the second differentiator and the B1
The device is configured to include an arithmetic unit that adds the outputs of the subgenizers and generates a digital output.

〔産業上の利用分野〕[Industrial application field]

本発明は4次の伝達特性を有するデルタ・シグマ変調器
に関する。
The present invention relates to a delta-sigma modulator with fourth-order transfer characteristics.

アナログ信号をデジタル符号化するデルタ・シグマ(Δ
−Σ)変調器は、オーバサンプリング型A/D変換器の
初段符号器等に利用される。近年、浮動小数点演算が可
能なプロセッサが各種開発され、高精度なA/D変換器
が望まれるようになった。一方、A/D変換器の精度は
分解能に依存するため、量子化誤差を少なくするにはA
/D変換器の多ビット化が必要である。オーバサンプリ
ング型A/D変換器はアナログ信号をそのナイキストレ
ートより極めて高いサンプリング周波数で符号化し、そ
の符号化出力を帯域制限することで低域或分の量子化雑
音を抑圧し、例えば音声帯域内に限定してS/Nを改善
しようとしている。このようなオーバサンプリング型A
/D変換器の初段符号器として使用されるΔ一Σ変調器
が低周波帯域内において量子化雑音の少ないものであれ
ば、所要とするS/Nを実現するサンプリング周波数を
低くすることができる。
Delta sigma (Δ
-Σ) The modulator is used as a first stage encoder of an oversampling type A/D converter. In recent years, various processors capable of floating point operations have been developed, and high precision A/D converters have become desirable. On the other hand, since the accuracy of the A/D converter depends on its resolution, in order to reduce the quantization error,
/D converter needs to have multiple bits. An oversampling A/D converter encodes an analog signal at a sampling frequency much higher than its Nyquist rate, and limits the frequency of the encoded output to suppress some quantization noise in the low frequency range. We are trying to improve the S/N by limiting the This kind of oversampling type A
If the Δ-Σ modulator used as the first-stage encoder of the /D converter has low quantization noise in the low frequency band, the sampling frequency to achieve the required S/N can be lowered. .

〔従来の技術〕[Conventional technology]

基本的なΔ−Σ変調器は、サンプリングされたアナログ
入力を積分してその出力を量子化し、これをデジタル出
力にすると共に入力に負帰還する構戒をとる。第3図を
例にすると、アナログ人力X (z)からデジタル出力
Y (Z)を減算する加算器21と、その出力を積分す
る積分器11と、その出力を量子化する量子化器31と
、その出力Y (Z)を負帰還するlサンプル遅延器4
lによって単一積分型のΔ一Σ変調器が構威される。量
子化器31は量子化誤差Q (Z)を加える加算器とし
て示してある。
A basic Δ-Σ modulator integrates a sampled analog input, quantizes the output, converts it into a digital output, and provides negative feedback to the input. Using FIG. 3 as an example, there are an adder 21 that subtracts the digital output Y (Z) from the analog human power X (z), an integrator 11 that integrates the output, and a quantizer 31 that quantizes the output. , l sample delay device 4 which provides negative feedback of its output Y (Z)
A single integral type Δ-Σ modulator is constructed by l. Quantizer 31 is shown as an adder that adds a quantization error Q (Z).

この量子化器31が1サンプル遅延機能がある場合、帰
還ループの遅延器41は省略され得る。X(Z), Y
(Z), Q(Z)はそれぞれ入力、出力、量子化誤差
のZ変換値であり、また積分器11の伝達関数を(1−
Z−’)−’とすると、上述した単一積分型Δ−Σ変調
器の伝達関数は (X(Z)− Z−’ ・Y(Z)) ( 1 − Z
−’)−’ = Y(Z)−Q(Z)なる関係から Y(Z)=X(Z)+(1−Z−’)・Q(Z)   
  −・−・■となる.上式の(1−Z−’)の項は低
域を圧縮し、高城を伸長する周波数特性を有するので、
この積分を繰り返せば希望する低域での量子化雑音Q 
(Z)Q影響を充分に小さくできる。
If this quantizer 31 has a one-sample delay function, the feedback loop delay device 41 can be omitted. X(Z), Y
(Z) and Q(Z) are the Z-transformed values of the input, output, and quantization error, respectively, and the transfer function of the integrator 11 is expressed as (1-
Z-')-', the transfer function of the single integral Δ-Σ modulator described above is (X(Z)-Z-' ・Y(Z)) (1-Z
-')-' = Y(Z)-Q(Z) From the relationship, Y(Z)=X(Z)+(1-Z-')・Q(Z)
−・−・■. The term (1-Z-') in the above equation has a frequency characteristic that compresses the low frequency range and expands the high frequency range, so
By repeating this integration, the desired low frequency quantization noise Q
(Z) Q influence can be sufficiently reduced.

第3図で第1積分器11の後段に加算器22と第2積分
器12を接続すると2重積分型のΔ一Σ変調器となり、
その伝達特性は y(z)= X(Z)+ ( 1 − Z−’)” ・
Q(z)    −.・−・■となる.これは■式のQ
 (Z)の項に更に(1−Z−’)を乗じkものである
。以下、同様に加算器23と第3積分器13を加えると
3重積分型、更に加算器24と第4積分器l4を加える
と4重積分型になる。3重積分型の伝達特性では(1−
Z−’)の項が3次になって Y(z)=X(z)+(1−Z−’)’・Q(z)  
  m*e+oとなり、また4重積分型の伝達特性では
( 1 − Z−’)の項が4次になって Y(z)=X(z)十(1−Z−’)’−Q(z)  
  ・−=■となる。
In FIG. 3, when the adder 22 and the second integrator 12 are connected after the first integrator 11, it becomes a double integration type Δ-Σ modulator,
Its transfer characteristic is y(z)=X(Z)+(1 − Z−')”・
Q(z) −.・−・■. This is the Q of the formula
The term (Z) is further multiplied by (1-Z-'). Similarly, adding the adder 23 and the third integrator 13 results in a triple integration type, and further adding the adder 24 and the fourth integrator l4 results in a quadruple integration type. In the triple integral type transfer characteristic, (1-
The term Z-') becomes cubic and becomes Y(z)=X(z)+(1-Z-')'・Q(z)
m * e + o, and in the quadruple integral type transfer characteristic, the term (1 - Z-') becomes fourth-order, and Y (z) = X (z) + (1-Z-')' - Q ( z)
・−=■.

このように(1−Z−’)の項の次数が高くなると低域
における量子化雑音Q (Z)の影響が益々小さくなり
、多ビット化が進むオーバサンプリング型A/D変換器
の初段符号器として都合が良い。つまり、A/D変換器
のS/Nは例えば16ビットで96dB,18ビットで
108dBのように高い値が要求されている。オーバサ
ンプリング型A/D変換器は第4図に示すようにサンプ
リング周波数を高くすることでS/Nを改善できる。し
かし、素子のスイッチング速度の限界とコストの点から
サンプリング周波数はできるだけ低い方が好ましい。量
子化雑音を低域で圧縮する高次のΔΣ変調器は、A/D
変換器のオーバサンプリング周波数を下げる上で役立つ
In this way, as the order of the term (1-Z-') increases, the influence of the quantization noise Q (Z) in the low frequency range becomes smaller and smaller, and the first-stage code of oversampling A/D converters, which are becoming increasingly multi-bit, becomes smaller and smaller. It is convenient as a vessel. That is, the S/N of the A/D converter is required to have a high value, for example, 96 dB for 16 bits and 108 dB for 18 bits. As shown in FIG. 4, the oversampling type A/D converter can improve the S/N by increasing the sampling frequency. However, it is preferable that the sampling frequency be as low as possible from the viewpoint of the switching speed of the device and the cost. A high-order ΔΣ modulator that compresses quantization noise at low frequencies is an A/D
Helps reduce the oversampling frequency of the converter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第3図に示すような直列積分型Δ−Σ変
調器の安定性は2次までが限界とされており、3次以上
で第3図の構戒をとると発振して動作が不安定になる。
However, the stability of a series integral Δ-Σ modulator as shown in Figure 3 is said to be limited to the second order, and if the configuration shown in Figure 3 is adopted in the third order or higher, it will oscillate and malfunction. It becomes stable.

本発明はこの点を改善しようとするものである.〔課題
を解決するための手段〕 第1図は本発明の原理図で、11−14は第1〜第4積
分器、21〜24は負帰還用の加算器、25は量子化誤
差算出用の加算器、26は最終出力用の加算器、31.
32は第1、第2量子化器、41〜44はlサンプル遅
延器、51.52は第1、第2微分器である。
The present invention aims to improve this point. [Means for solving the problem] Fig. 1 is a diagram showing the principle of the present invention, in which 11-14 are first to fourth integrators, 21-24 are adders for negative feedback, and 25 is for calculating quantization error. 26 is an adder for final output, 31.
32 is a first and second quantizer, 41 to 44 are l-sample delay devices, and 51.52 is a first and second differentiator.

〔作用〕[Effect]

第1、第2積分器11.12は直列に接続され、第1量
子化器31、遅延器4l、加算器21.22と共に乏次
の伝達特性を有する主ループを構威する。この主ループ
の出力Fは F = x(z)+ ( l  Z−’)” ・Q+(
Z)    ””■′であり、これは■式のQ (Z)
を第l量子化器31の量子化雑音Q , (Z)に置換
したものである。この第1量子化器31を単純なコンバ
レー夕で実現すると、その人力Eと出力Fとの間には次
の関係が或り立つ. F=E+Ql(Z)             ・・・
・・・■−Ql(Z)=E−F           
   ・・・・・・■加算器25は■式を実現し、第1
量子化器31の誤差威分一Q . (Z)だけを抽出す
る。
The first and second integrators 11.12 are connected in series, and together with the first quantizer 31, the delay device 4l, and the adder 21.22, form a main loop having poor-order transfer characteristics. The output F of this main loop is F = x(z)+ (l Z-')" ・Q+(
Z) ””■′, which is the formula Q (Z)
is replaced with the quantization noise Q, (Z) of the l-th quantizer 31. If this first quantizer 31 is realized by a simple combiner, the following relationship will be established between the human power E and the output F. F=E+Ql(Z)...
...■-Ql(Z)=E-F
・・・・・・■ Adder 25 realizes formula ■, and the first
Error ratio Q of the quantizer 31. Extract only (Z).

副ループはこの量子化誤差を2次の伝達特性で積分する
。この副ループは直列接続された第3、第4積分器13
.14と第2量子化器32、それに帰還用の遅延器42
と加算器23.24を備える。第2量子化器32の量子
化雑音をQ.(Z)とすると、量子化出力Gは G=−Q+(z)+(t−z−+)z・Q.(Z)  
 ・・・・・・■となる.この副ループは第2量子化器
32の後段に第1、第2微分器51.52を置き、量子
化出力Gを2回微分する。微分器51.52の伝達関数
を(1−Z−’)とすると2回微分出力HはH= (1
 − Z−’)”− G =  (l  Z−’)”Q+(Z)+(I  Z−’
)’・Qz(Z)・・・・・・■ となる。
The sub-loop integrates this quantization error with a second-order transfer characteristic. This sub-loop has third and fourth integrators 13 connected in series.
.. 14, a second quantizer 32, and a delay device 42 for feedback.
and adders 23 and 24. The quantization noise of the second quantizer 32 is Q. (Z), the quantized output G is G=-Q+(z)+(t-z-+)z·Q. (Z)
・・・・・・■. In this sub-loop, first and second differentiators 51 and 52 are placed after the second quantizer 32, and the quantized output G is differentiated twice. If the transfer function of the differentiator 51 and 52 is (1-Z-'), the twice differentiated output H is H= (1
- Z-')"- G = (l Z-')"Q+(Z)+(I Z-'
)'・Qz(Z)・・・・・・■.

この副ループの出力Hと前述した主ループの出力Fを加
算器26で加算すると、■゛式の(1−z−’>” −
 Ql(Z)と■式の−(1−Z−’)”− Ql(Z
)が相殺されるため、最終出力Y (z)は次の様にな
る。
When the output H of this sub-loop and the output F of the main loop mentioned above are added by the adder 26, (1-z-'>" -
Ql(Z) and -(1-Z-')"-Ql(Z
) are canceled out, so the final output Y (z) is as follows.

Y(Z)=F+H =x(z)+(t−z−’)’・Qz(z)   ・・
・−・・@この■式は■式と同じ4次の伝達特性である
ので、4重積分型のΔ一Σ変調器が等価的に実現されて
いることが判る。
Y(Z)=F+H =x(z)+(t-z-')'・Qz(z)...
...@This equation (2) has the same fourth-order transfer characteristic as the equation (2), so it can be seen that a quadruple integral type Δ-Σ modulator is equivalently realized.

しかも、本発明では主ループと副ループがいずれも2次
の範囲内でしか帰還を行っていないため、安定した動作
が保証される。尚、主ループの遅延器43.44は副ル
ープの微分器51.52と位相合わせをするためのもの
である,また微分器5l,52の段数は主ループの積分
器11.12の段数に合わせたものである. 〔実施例〕 第2図は本発明の一実施例を示す回路図で、(A)と(
B)に分けて示してある。(A)は積分器11〜l4を
中心に示してある。本例の積分器11−14は、オペア
ンプOPと帰還容量CIを組合せた積分回路60に対し
、各種の電荷注入部61〜64から主信号や帰還信号に
応じた電荷を注入する構戒をとる。
Moreover, in the present invention, since both the main loop and the sub-loop perform feedback only within the second-order range, stable operation is guaranteed. The delay devices 43 and 44 in the main loop are for phase matching with the differentiators 51 and 52 in the sub-loop, and the number of stages of the differentiators 5l and 52 is equal to the number of stages of the integrators 11 and 12 in the main loop. It is a combination. [Embodiment] FIG. 2 is a circuit diagram showing an embodiment of the present invention, in which (A) and (
It is shown separately in B). (A) mainly shows integrators 11 to 14. The integrator 11-14 of this example takes the precaution of injecting charges according to the main signal and the feedback signal from various charge injection sections 61 to 64 into the integration circuit 60 which is a combination of the operational amplifier OP and the feedback capacitor CI. .

電荷注入部61.63は容量C2を充放電する主信号の
電荷注入源で、この容量Czと積分回路60の容量C,
との間で電荷の再分配を行なう。
The charge injection parts 61 and 63 are main signal charge injection sources for charging and discharging the capacitor C2, and this capacitor Cz and the capacitor C of the integrating circuit 60,
The charge is redistributed between the two.

容量C冨の周囲には4個のスイッチ■〜■が付設され、
スイッチ付きキャパシタ回路が構或される。
Four switches ■~■ are attached around the capacitor C.
A switched capacitor circuit is constructed.

スイッチ■.■とスイッチ■,■はそれぞれ対となって
逆相で動作し、容量C!に対する充電又は放電経路を構
威する。電荷注入部6lと63ではスイッチ■.■と■
,■の用い方が逆である。主ループの第1、第2積分器
11.12では電荷注入部61を用い、副ループの第3
、第4積分器13.l4では電荷注入部63を用いてい
る。従って、主ループと副ループでは主信号の充放電が
逆相になる。
Switch ■. ■ and switches ■ and ■ operate in opposite phases as a pair, and the capacitance is C! Establish a charging or discharging path for the In the charge injection parts 6l and 63, switches ■. ■ and ■
,■ are used in the opposite way. The first and second integrators 11.12 of the main loop use a charge injection section 61, and the third integrator 11.12 of the sub-loop
, fourth integrator 13. In l4, a charge injection section 63 is used. Therefore, the main signal is charged and discharged in opposite phases in the main loop and the sub loop.

電荷注入部62は第I!子化器31の出力Fを帰還する
ために使用し、また電荷注入部64は第2量子化器32
の出力Gを帰還するために使用する。電荷注入部62は
2つの容量Cs.Caと、その充放電用スイッチ■〜■
,(9IQから構威され、充電は定電圧Vssを用いて
行われる。スイッチOIQはスイッチ■に第1量子化器
31の出力Fによる開閉条件を付けたものである。この
構或で量子化出力Fを帰還できるのは、スイッチO+f
りによる。つまり、スイッチ■■が同時にオンすると容
量C,がVssで充電され、次にスイッチ■がオンした
とき、同時にスイッチ■,(参の一方だけがオンする。
The charge injection part 62 is the I!th! It is used to feed back the output F of the quantizer 31, and the charge injection section 64 is used to feed back the output F of the second quantizer 32.
It is used to feed back the output G of The charge injection section 62 has two capacitors Cs. Ca and its charge/discharge switch ■~■
, (9IQ, and charging is performed using a constant voltage Vss. The switch OIQ is a switch (2) with opening/closing conditions based on the output F of the first quantizer 31. With this structure, quantization The switch O+f can feed back the output F.
Depends on In other words, when the switches ■■ are turned on at the same time, the capacitor C is charged at Vss, and when the switch ■ is turned on next, only one of the switches ■ and (2) is turned on at the same time.

スイッチOがオンすると容量C4との間で電荷を再分配
して積分回路60側には電荷を注入しない。これに対し
、スイッチOがオンすれば容量C+ との間で電荷を再
分配して積分回路60側に電荷を注入する。
When the switch O is turned on, the charge is redistributed between the capacitor C4 and the charge is not injected into the integrating circuit 60 side. On the other hand, when the switch O is turned on, the charge is redistributed between the capacitor C+ and the charge is injected into the integrating circuit 60 side.

電荷注入部64は2つの容量Cs,Chと、その充放電
用スイッチ■,■,■, $, (3)から構威され、
充電は同じく定電圧Vssを用いて行われる。スイッチ
Q,Qはスイッチ■に第21子化器32の出力Gによる
開閉条件を付したものである。この回路ではスイッチ■
■がオンのときに容量C&が充電され、スイッチ■がオ
ンしたときスイッチQ)がオンすれば容量C,に電荷を
再分配して積分回路60側に電荷を注入せず、逆にスイ
ッチOがオンすれば容量CIに電荷を再分配して積分回
路60側に電荷を注入する。
The charge injection part 64 consists of two capacitors Cs and Ch, and their charging/discharging switches (3),
Charging is also performed using constant voltage Vss. The switches Q and Q are the same as the switch (3) with opening/closing conditions based on the output G of the 21st child converter 32. In this circuit, the switch ■
When ■ is on, capacitor C & is charged, and when switch ■ is turned on, switch Q When turned on, the charge is redistributed to the capacitor CI and the charge is injected into the integrating circuit 60 side.

第1、第2積分器11.12では電荷注入部62を使用
し、また第3、第4積分器13.14では電荷注入部6
4を使用する。これらの電荷注入部61〜64は積分回
路60に直接電荷を注入するので、第1図の加算器21
〜24は省略できる。
A charge injection section 62 is used in the first and second integrators 11.12, and a charge injection section 62 is used in the third and fourth integrators 13.14.
Use 4. Since these charge injection units 61 to 64 directly inject charges into the integrating circuit 60, the adder 21 in FIG.
24 can be omitted.

また、第3積分器13に電荷注入部62を用いると加算
器25も省略できる。
Furthermore, if the charge injection section 62 is used in the third integrator 13, the adder 25 can also be omitted.

第2図(B)は第2積分器12の出力を量子化する第1
量子化器31と、第4積分器14の出力を量子化する第
21子化器32以後の構威を示している。量子化器31
.32はいずれもコンバレータで、入力IPを基準値I
Mと比較してその結果をQ端子に出力する。量子化する
タイξングφ.φ1はタイミング信号発生回路71で発
生する。
FIG. 2(B) shows the first integrator 12 that quantizes the output of the second integrator 12.
The configuration after the quantizer 31 and the 21st childizer 32 that quantizes the output of the fourth integrator 14 is shown. Quantizer 31
.. 32 is a converter, which converts the input IP to the reference value I.
Compare it with M and output the result to the Q terminal. The timing ξ to quantize φ. φ1 is generated by the timing signal generation circuit 71.

前述したスイッチ■〜■の動作もこのタイミングφ1,
φ,による。但し、スイッチ(8>+8の動作タイミン
グP+,Pgは 第1のスイッチ制御部72で作威され
、またスイッチe,(E)の動作タイミングは第2のス
イッチ制御部73で作威される。
The operations of the switches ■ to ■ mentioned above also occur at this timing φ1,
According to φ. However, the operation timings P+ and Pg of the switch (8>+8) are controlled by the first switch control section 72, and the operation timings of the switches e and (E) are controlled by the second switch control section 73.

第1のスイッチ制御部72はタイ逅ング信号発生回路7
lの出力φ2と第1量子化器31の出力Fを基に、φ2
のタイミングで互いに逆相となるタイミングP,,P,
を作或する。このP+.Pzは量子化出力Fの1.0で
レベルが反転する。第2のスイッチ制御部73はタイミ
ング信号発生回路7lの出力φ,と第2量子化器32の
出力Gを基に、φ3のタイ逅ングで互いに逆相となるタ
イξングP..P4を出力する。このP ,. P a
は量子化出力Gの1,Oでレベルが反転する。
The first switch control section 72 is a tie selection signal generation circuit 7.
Based on the output φ2 of l and the output F of the first quantizer 31, φ2
The timings P, , P, which are in opposite phases to each other at the timings of
Create. This P+. The level of Pz is inverted when the quantization output F is 1.0. The second switch control unit 73 uses the output φ of the timing signal generation circuit 7l and the output G of the second quantizer 32 to determine the timing P. .. Output P4. This P,. Pa
The level is inverted at 1 and 0 of the quantized output G.

第2量子化器32の出力Gを微分する微分器5l,52
はそれぞれクロックφ,で駆動されるフリップフロップ
FFと加算器Aで構威される。また、これに対応する主
ループ側の遅延器43.44は同じくクロックφ1で駆
動されるフリップフロップFFで構威される。尚、遅延
器43の前段に半分の遅延量の遅延器45(これもFF
)を置き、厳密な位相合わせを行っている。
Differentiators 5l and 52 that differentiate the output G of the second quantizer 32
are composed of a flip-flop FF and an adder A each driven by a clock φ. Further, the corresponding delay devices 43 and 44 on the main loop side are constituted by flip-flops FF which are also driven by the clock φ1. Note that a delay device 45 with half the amount of delay (also an FF
) to perform strict phase matching.

(発明の効果) 以上述べたように本発明によれば、4次の伝達特性を有
するΔ−Σ変調器を主信号を処理する主ループと量子化
雑音を処理する副ループに分け、それぞれを安定な動作
をする2次のΔ一Σ変調器として構威したので、全体と
して安定した動作で低域の量子化雑音を極力圧縮できる
利点がある。
(Effects of the Invention) As described above, according to the present invention, a Δ-Σ modulator having a fourth-order transfer characteristic is divided into a main loop that processes the main signal and a sub-loop that processes quantization noise. Since it is constructed as a second-order Δ-Σ modulator that operates stably, it has the advantage that low-frequency quantization noise can be compressed as much as possible with stable operation as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の一実施例を示す回路図、第3図は従来
の4重積分型Δ−Σ変調器の一例を示す信号線図、 第4図はオーバサンプリング型A/D変換器の特性図で
ある。 図中、11−14は積分器、2l〜26は加算器、31
.32は量子化器、41〜44は遅延器、51.52は
微分器である。 本発明の実施例の構成図 jI2図(A) 第2図(B)
FIG. 1 is a principle diagram of the present invention, FIG. 2 is a circuit diagram showing an embodiment of the present invention, FIG. 3 is a signal line diagram showing an example of a conventional quadruple integral type Δ-Σ modulator, and FIG. The figure is a characteristic diagram of an oversampling type A/D converter. In the figure, 11-14 are integrators, 2l to 26 are adders, and 31
.. 32 is a quantizer, 41 to 44 are delay devices, and 51.52 is a differentiator. Configuration diagram of the embodiment of the present invention jI2 (A) Figure 2 (B)

Claims (1)

【特許請求の範囲】 1、サンプリングされたアナログ入力を積分する第1積
分器(11)と、 該第1積分器の出力を積分する第2積分器(12)と、 該第2積分器(12)の出力を量子化して該第1および
第2積分器(11、12)の入力に負帰還する第1量子
化器(31)と、 該第1量子化器(31)の量子化誤差を積分する第3積
分器(13)と、 該第3積分器(13)の出力を積分する第4積分器(1
4)と、 該第4積分器(14)の出力を量子化して該第3および
第4積分器(13、14)の入力に負帰還する第2量子
化器(32)と、 該第2量子化器(32)の出力を2回微分する第1およ
び第2微分器(51、52)と、 該第2微分器(52)の出力と前記第1量子化器(31
)の出力を加算してデジタル出力とする演算器(26)
とを備えてなることを特徴とする4次デルタ・シグマ変
調器。
[Claims] 1. A first integrator (11) that integrates the sampled analog input, a second integrator (12) that integrates the output of the first integrator, and the second integrator ( a first quantizer (31) that quantizes the output of 12) and provides negative feedback to the inputs of the first and second integrators (11, 12); and a quantization error of the first quantizer (31). A third integrator (13) that integrates the output of the third integrator (13), and a fourth integrator (13) that integrates the output of the third integrator (13)
4); a second quantizer (32) that quantizes the output of the fourth integrator (14) and negatively feeds it back to the inputs of the third and fourth integrators (13, 14); first and second differentiators (51, 52) that differentiate the output of the quantizer (32) twice; and the output of the second differentiator (52) and the first quantizer (31).
) calculation unit (26) that adds the outputs of
A fourth-order delta-sigma modulator comprising:
JP15657489A 1989-06-19 1989-06-19 Fourth order delta/sigma modulator Pending JPH0322626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15657489A JPH0322626A (en) 1989-06-19 1989-06-19 Fourth order delta/sigma modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15657489A JPH0322626A (en) 1989-06-19 1989-06-19 Fourth order delta/sigma modulator

Publications (1)

Publication Number Publication Date
JPH0322626A true JPH0322626A (en) 1991-01-31

Family

ID=15630742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15657489A Pending JPH0322626A (en) 1989-06-19 1989-06-19 Fourth order delta/sigma modulator

Country Status (1)

Country Link
JP (1) JPH0322626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523072U (en) * 1991-06-24 1993-03-26 有限会社千里応用計測研究所 Fourier interference fringe spectrum measuring device
US7009539B2 (en) 2003-03-11 2006-03-07 Renesas Technology Corp. Modulator providing only quantization error component to delta sigma modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290334A (en) * 1987-05-22 1988-11-28 Komatsu Ltd Radiation type cooling and heating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290334A (en) * 1987-05-22 1988-11-28 Komatsu Ltd Radiation type cooling and heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523072U (en) * 1991-06-24 1993-03-26 有限会社千里応用計測研究所 Fourier interference fringe spectrum measuring device
US7009539B2 (en) 2003-03-11 2006-03-07 Renesas Technology Corp. Modulator providing only quantization error component to delta sigma modulator

Similar Documents

Publication Publication Date Title
EP0586021B1 (en) Digital noise shaper circuit
CN1030026C (en) Low power consumption and small area high order Σ-Δ oversampling A/D conversion integrated circuit network
US6304608B1 (en) Multibit sigma-delta converters employing dynamic element matching with reduced baseband tones
US5369403A (en) Dual quantization oversampling digital-to-analog converter
US5055843A (en) Sigma delta modulator with distributed prefiltering and feedback
KR910009070B1 (en) Delta to sigma converter
FI80548C (en) Method for cascading two or more sigma-delta modulators and a sigma-delta modulator system
JP4856363B2 (en) Stable high-order delta-sigma error feedback modulator and noise transfer function used in such a modulator
US6570519B1 (en) Switched-capacitor summer circuits and methods and systems using the same
TW443039B (en) Sigma-delta modulator by using method of local nonlinear feedback loop
EP0796525B1 (en) Sigma-delta modulator with reduced delay from input to output
JP3048452B2 (en) AD converter
JPH04229722A (en) Improved excess sampling converter of kind using sigma-delta converter of plurality of orders
JPH08125541A (en) Delta sigma modulator
US7167119B1 (en) Delta-sigma modulators with double sampling input networks and systems using the same
EP0624290B1 (en) Method for cascading sigma-delta modulators and a sigma-delta modulator system
JP2003198374A (en) DeltaSigma MODULATOR, A/D CONVERTER AND D/A CONVERTER
JPS6031315A (en) Second order delta sigma modulator
Nys et al. On configurable oversampled A/D converters
JPH0322626A (en) Fourth order delta/sigma modulator
JP3362718B2 (en) Multi-bit-delta sigma AD converter
Garvi et al. A novel multi-bit sigma-delta modulator using an integrating SAR noise-shaped quantizer
Guni et al. Comparative study of sigma delta and nonuniform sampling A/D converters
Yukawa Constraints analysis for oversampling A-to-D converter structures on VLSI implementation
Lin et al. Synthesis and analysis of high-order cascaded continuous-time/spl Sigma//spl Delta/modulators