JPH03224689A - How to remove soluble COD - Google Patents
How to remove soluble CODInfo
- Publication number
- JPH03224689A JPH03224689A JP2017938A JP1793890A JPH03224689A JP H03224689 A JPH03224689 A JP H03224689A JP 2017938 A JP2017938 A JP 2017938A JP 1793890 A JP1793890 A JP 1793890A JP H03224689 A JPH03224689 A JP H03224689A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment
- wastewater
- treated
- soluble cod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Sludge (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、下水の処理水や工場廃水中の溶解性COD成
分を公害対策上、又は水の再利用上さらに高度処理する
場合に用いるCOD処理の一方法に関し、更に詳しくい
えば、一般的廃水処理のために設けられた、凝集沈殿、
脱水工程を有効利用するCOD処理方法である。Detailed Description of the Invention [Industrial Field of Application] The present invention is a COD treatment method used for further advanced treatment of soluble COD components in treated sewage water and industrial wastewater for pollution control purposes or for water reuse. Regarding one method of treatment, in more detail, coagulation and sedimentation, which are established for general wastewater treatment,
This is a COD treatment method that effectively utilizes the dehydration process.
[従来の技術]
(1)工場廃水処理の場合
工場廃水は同一工場でも各製造工程別に多種水質の廃水
が発生するが、一般にこれらを整理統合すると生物処理
、凝集沈殿、脱水といった一般処理技術により処理可能
な廃水と、これら一般的方法では処理しきれない水質の
廃水とに大別される。[Conventional technology] (1) In the case of factory wastewater treatment Even in the same factory, various types of wastewater are generated depending on the manufacturing process, but when these are generally integrated, they can be treated using general treatment techniques such as biological treatment, coagulation and sedimentation, and dehydration. Wastewater is broadly divided into wastewater that can be treated and wastewater of a quality that cannot be treated using these general methods.
一般的方法にて処理しきれない廃水の内、高分子有機化
合物や生物難分解性有機物質(胆汁色素、リグニン等の
色度成分、ABS等の界面活性剤、表面処理剤、染料、
PVA等の水溶性高分子有機化合物)に起因する溶解性
COD成分を除去するための従来法としては、活性炭吸
着法、オゾン、塩素イオン、過マンガン酸カリ等による
酸化法、などがあり、最近技術としてはrPPM 19
86.10月号」に掲載されている酸性凝集、化学酸化
法がある。Among the wastewater that cannot be treated using general methods, high-molecular organic compounds and biorefractory organic substances (color components such as bile pigments and lignin, surfactants such as ABS, surface treatment agents, dyes,
Conventional methods for removing soluble COD components caused by water-soluble polymeric organic compounds such as PVA include activated carbon adsorption methods, oxidation methods using ozone, chlorine ions, potassium permanganate, etc.; The technology is rPPM 19
There are acidic flocculation and chemical oxidation methods published in the 1986 October issue.
これら従来法は、いづれも溶解性COD処理のための専
用処理設備を設ける必要があり、運転にあたっては多量
の薬剤を要することから、建設コスト、処理ランニング
コストが高価となることが問題となっている。All of these conventional methods require the installation of dedicated treatment equipment for soluble COD treatment, and require a large amount of chemicals to operate, resulting in high construction costs and treatment running costs. There is.
(2)下水高度処理の場合
下水の二次処理水を凝集、沈殿、砂濾過などで処理し、
その処理水を逆浸透膜法によりさらに高度処理して、工
業用水などに再利用する事例が増えている。この場合は
、生物難分解性有機物質に起因する溶解性COD成分は
、逆浸透膜により除去されるが、濃縮された排水は逆に
溶解性COD成分が高濃度となるので上記工場廃水の場
合と同様に従来法による専用設備を付設して処理したの
ちに排水する必要が生じ、同様に建設コスト、ランニン
グコストが高価になる問題があった。(2) In the case of advanced sewage treatment, secondary treatment of sewage water is treated by coagulation, sedimentation, sand filtration, etc.
Increasingly, the treated water is subjected to more advanced treatment using reverse osmosis membrane technology and reused for industrial purposes. In this case, soluble COD components caused by organic substances that are difficult to decompose are removed by a reverse osmosis membrane, but concentrated wastewater has a high concentration of soluble COD components, so in the case of the factory wastewater mentioned above, Similarly to the conventional method, it is necessary to install specialized equipment for treatment and then drain the water, which similarly raises the problem of high construction and running costs.
口発明が解決しようとする課題]
本発明はこの従来法の問題点を解消し、既存処理工程を
有効利用することにより、建設コストを低減し、ランニ
ングコストも極めて安価にて、しかも高い除去率で溶解
性COD成分を除去する方法を提供するものである。[Problems to be Solved by the Invention] The present invention solves the problems of this conventional method and makes effective use of existing treatment processes, thereby reducing construction costs, extremely low running costs, and achieving a high removal rate. The present invention provides a method for removing soluble COD components.
[課題を解決するための手段]
本発明は被処理原水に含まれる溶解性のCOD成分を除
去するための処理法において、一般的廃水処理のために
設けられた既存又は新設の凝集、沈殿、脱水工程の引抜
汚泥に、溶解性COD成分を含む被処理原水を混入し、
その原水混合汚泥を脱水によって固液分離し、溶解性C
OD成分を除去した分離水を得るものであり、従来から
一般的に実用されている既存又は新設の凝集、沈殿、脱
水工程を有効活用し、専用処理設備を設けることなく、
高度な除去率で溶解性COD成分を安価に除去する方法
である。[Means for Solving the Problems] The present invention provides a treatment method for removing soluble COD components contained in raw water to be treated, in which existing or new coagulation, precipitation, Raw water to be treated containing soluble COD components is mixed into the sludge extracted during the dewatering process,
The raw water mixed sludge is separated into solid and liquid by dehydration, and the soluble C
This method obtains separated water from which OD components have been removed, and makes effective use of existing or newly installed coagulation, precipitation, and dehydration processes that have been commonly used in the past, without the need for special treatment equipment.
This is a method for inexpensively removing soluble COD components with a high removal rate.
[作用]
一般に凝集、沈殿処理による廃水処理では工場の酸性廃
水のように、鉄やアルミの金属イオンを含む廃水に対し
ては中和剤を注入して凝集し、下水のように有機系物質
(懸濁物質)を多く含むものに対しては凝集剤(アルミ
系、鉄系)を注入し、凝集、フロック化している。従っ
て、沈殿工程で沈降分離し、引抜かれる汚泥には上記い
ずれの場合においても、高濃度に酸性金属イオン成分(
Al1やFe)が含まれている。本発明の溶解性COD
成分除去の作用原理は、このような汚泥に溶解性のCO
D成分を含む被処理原水を混入し、この原水混合汚泥を
脱水処理する過程で溶解性COD成分を酸性金属イオン
成分に作用させ、溶解性COD成分が除去された分離水
を処理水として排水するか、又は処理前の下水や工場廃
水に分離水を再混入して前記凝集、沈殿処理工程を経て
排水処理するものである。[Function] In general, in wastewater treatment by coagulation and precipitation, a neutralizing agent is injected for wastewater containing metal ions such as iron or aluminum, such as acidic wastewater from factories, to coagulate it and remove organic substances like sewage. For materials containing a large amount of suspended solids, a flocculant (aluminum-based or iron-based) is injected to coagulate and form flocs. Therefore, in any of the above cases, the sludge that is separated and extracted in the sedimentation process contains acidic metal ion components (
Al1 and Fe) are included. Soluble COD of the present invention
The principle of action of component removal is that CO soluble in such sludge
Raw water to be treated containing component D is mixed, and in the process of dehydrating this raw water mixed sludge, soluble COD components are made to act on acidic metal ion components, and separated water from which soluble COD components have been removed is discharged as treated water. Alternatively, the separated water is remixed into untreated sewage or industrial wastewater, and the wastewater is treated through the coagulation and precipitation treatment steps.
本発明を工場廃水処理と下水高度処理に適用した例を以
下に説明する。An example in which the present invention is applied to factory wastewater treatment and advanced sewage treatment will be described below.
[実施例1]
第1図(A)はある金属加工工場における既存の廃水処
理設備の処理フローであり、アルミ系金属物質を含んだ
酸性の工場廃水1を、一般的方法であるところの中和凝
集、沈殿法で処理して排水している。[Example 1] Figure 1 (A) is a treatment flow of an existing wastewater treatment facility in a certain metal processing factory, in which acidic factory wastewater 1 containing aluminum-based metal substances is treated using a general method. The wastewater is treated by coagulation and sedimentation methods before being discharged.
第1図(B)は同一工場の別の製造工程から発生する表
面処理剤、染料等を含んだCOD廃水15を生物処理す
るフローであるが、この処理水には処理しきれない溶解
性COD成分が含まれる。Figure 1 (B) shows the flow of biologically treating COD wastewater 15 containing surface treatment agents, dyes, etc. generated from another manufacturing process in the same factory, but this treated water contains soluble COD that cannot be treated. Contains ingredients.
本発明はこの(B)の処理フローで排水される溶解性C
ODを含む処理水を溶解性COD原水19として(A)
の処理フローに混入して行うものである。The present invention is characterized by the soluble C discharged in the treatment flow of (B).
Treated water containing OD as soluble COD raw water 19 (A)
This is done by mixing it into the processing flow.
工場廃水1は調整槽2に一次貯溜され、ポンプにて薬注
槽4に送られる。薬注槽4には中和剤3が注入され、攪
拌機で混合され、凝集槽5にて凝集時間を経過したのち
沈殿槽6へ送られる。沈殿槽6の上澄水はオーバーフロ
ーし、受水槽7を経てポンプにて処理排水8として排水
放流される。一方沈殿槽6の下部から引抜かれる引抜汚
泥9はポンプにて汚泥受槽11に送られ、さらにポンプ
にて脱水装置12に送られ脱水装置12により分離水1
3と脱水ケーキ14に固液分離される。分離水13はポ
ンプにて調整槽2に返送され再処理される。脱水ケーキ
14は産業廃棄物として処理される。なお、脱水装置に
は真空脱水機、加圧脱水機、遠心脱水機等が用いられる
。Factory wastewater 1 is primarily stored in a regulating tank 2 and sent to a chemical feeding tank 4 by a pump. The neutralizing agent 3 is injected into the chemical injection tank 4, mixed with a stirrer, and sent to the sedimentation tank 6 after a flocculation time has elapsed in the flocculation tank 5. The supernatant water in the settling tank 6 overflows, passes through a water receiving tank 7, and is discharged as treated wastewater 8 by a pump. On the other hand, the drawn sludge 9 drawn from the lower part of the settling tank 6 is sent to a sludge receiving tank 11 by a pump, and further sent to a dewatering device 12 by a pump.
3 and a dehydrated cake 14 are separated into solid and liquid. The separated water 13 is returned to the adjustment tank 2 by a pump and reprocessed. The dehydrated cake 14 is treated as industrial waste. Note that a vacuum dehydrator, a pressure dehydrator, a centrifugal dehydrator, etc. are used as the dehydrator.
別工程から発生したCOD廃水15は、別の澗整槽16
に一時貯溜され−、ポンプにて生物処理するためにパッ
キ槽17に送られ、バッキ処理後に沈殿槽18に送られ
る。沈殿槽18の下部から排出される汚泥29の一部は
脱水し、産業廃棄物とし、その他は調整槽16に返送さ
れ、再処理される。COD wastewater 15 generated from another process is transferred to another tank 16.
It is temporarily stored in the tank, sent to a packing tank 17 for biological treatment using a pump, and sent to a settling tank 18 after being packed. A part of the sludge 29 discharged from the lower part of the settling tank 18 is dehydrated and treated as industrial waste, and the rest is returned to the adjustment tank 16 and reprocessed.
沈殿槽18の上澄水は生物処理で処理しきれない生物難
分解性有機物質が残存しているので、溶解性COD原水
19として第1図(A)処理フローに示す汚泥受槽11
へ送り、引抜汚泥9に混入し、混合汚泥10を形成する
。この混合汚泥10はポンプにて脱水装置12に送られ
、脱水装置12にて固液分離されるがこの過程で溶解性
COD成分が引抜汚泥9に含まれている酸性金属イオン
成分に作用し、脱水ケーキ14と共に除去排出される。Since the supernatant water of the sedimentation tank 18 contains organic substances that cannot be completely biodegraded by biological treatment, it is treated as soluble COD raw water 19 in the sludge receiving tank 11 shown in the treatment flow in FIG. 1 (A).
The mixed sludge 10 is mixed into the drawn sludge 9 to form a mixed sludge 10. This mixed sludge 10 is sent by a pump to a dewatering device 12, where it is separated into solid and liquid, but in this process, the soluble COD component acts on the acidic metal ion component contained in the drawn sludge 9, It is removed and discharged together with the dehydrated cake 14.
分離水13はそのまN排水放流されるか、又は更に溶解
性CODの除去率を高めるためポンプにて調整槽2に返
送され前記第1図(A)の既存処理フローに示す凝集、
沈殿により再処理されて、処理排水8と共に排水放流さ
れる。The separated water 13 is either directly discharged as N waste water, or in order to further increase the removal rate of soluble COD, it is returned to the adjustment tank 2 by a pump and coagulated as shown in the existing treatment flow shown in FIG. 1(A).
It is reprocessed by precipitation and discharged as wastewater together with the treated wastewater 8.
この実施例1における実験により測定された溶解性CO
Dの除去性能を第1表に示す。第1図(A)処理フロー
の引抜汚泥9と第1図(B)処理フローの溶解性COD
原水19の水量(ボリューム)比率を実験N001〜3
の3種類変化させ、混合汚泥10内の溶解性COD成分
が300ppm 〜1.500ppmの時、脱水処理後
の分離水13内に残存する溶解性COD成分が、26、
lppm−79,2ppmに減少し、即ち90%以上の
高除去率が得られた。Soluble CO measured experimentally in this Example 1
Table 1 shows the removal performance of D. Drawing sludge 9 in Figure 1 (A) treatment flow and soluble COD in Figure 1 (B) treatment flow
Experiment No. 001 to 3 on the water volume ratio of raw water 19
When the soluble COD component in the mixed sludge 10 is 300 ppm to 1.500 ppm, the soluble COD component remaining in the separated water 13 after dehydration treatment is 26,
The removal rate was reduced to lppm-79.2ppm, that is, a high removal rate of 90% or more was obtained.
[実施例2コ
第2図(C)は下水処理場における既存の下水高度処理
フローであり、生物処理された下水2次処理水21を一
般的方法であるところの、凝集、沈殿法で処理し、さら
に砂濾過処理して雑用水24として再利用している。[Example 2] Figure 2 (C) shows the existing advanced sewage treatment flow at a sewage treatment plant, in which biologically treated sewage secondary treated water 21 is treated by the common method of coagulation and precipitation. The water is then subjected to sand filtration treatment and reused as miscellaneous water 24.
第2図(D)は上記雑用水24の一部を原水として逆浸
透膜処理により、さらに高度処理し、高純度な工業用水
28を再生して利用するフローである。FIG. 2(D) shows a flow in which a part of the above-mentioned miscellaneous water 24 is treated as raw water and subjected to further advanced treatment through reverse osmosis membrane treatment to regenerate and utilize highly pure industrial water 28.
本発明は(D)の処理フローの逆浸透膜により分離・濃
縮された溶解性COD成分を含む濃縮水を溶解性COD
原水として(C)のフローに混入してrg)
行うものである。The present invention converts concentrated water containing soluble COD components separated and concentrated by the reverse osmosis membrane in the treatment flow (D) into soluble COD components.
rg) is mixed into the flow of (C) as raw water.
下水2次処理水21は調整槽2に一時貯溜され、ポンプ
にて薬注槽4に送られる。薬注槽4には凝集剤22が注
入され攪拌機で混合され、凝集槽5にて凝集時間を経過
したのち、沈殿槽6へ送られる。沈殿槽6の上澄水はオ
ーバーフローし、受水槽7に貯溜され、ポンプにて砂濾
過装置23へ送られ、その濾過水を雑用水24として再
利用される。The secondary treated sewage water 21 is temporarily stored in the adjustment tank 2 and sent to the chemical injection tank 4 by a pump. A flocculant 22 is injected into the chemical injection tank 4 and mixed with a stirrer, and after a flocculation time has elapsed in the flocculation tank 5, it is sent to the settling tank 6. The supernatant water of the settling tank 6 overflows, is stored in the water receiving tank 7, is sent to the sand filter device 23 by a pump, and the filtered water is reused as miscellaneous water 24.
一方、沈殿槽6の下部から引抜かれる引抜汚泥9はポン
プにて汚泥受槽11に送られ、さらにポンプにて脱水装
置12に送られ、その脱水装置12により分離水13と
脱水ケーキ14に固液分離される。脱水ケーキ14は産
業廃棄物として処理され、分離水13はそのまN排水放
流されるか、又はポンプにて調整槽2に返送し再処理さ
れる。On the other hand, the drawn sludge 9 drawn from the lower part of the settling tank 6 is sent to a sludge receiving tank 11 by a pump, and further sent to a dewatering device 12 by a pump. Separated. The dehydrated cake 14 is treated as industrial waste, and the separated water 13 is either directly discharged as N waste water or sent back to the adjustment tank 2 by a pump and reprocessed.
第2図(C)フローにて再生された雑用水24の一部は
、調整槽16に一時貯溜され、チエツクフィルター25
を経て、高圧ポンプ26にて逆浸透膜27へ送られ、透
過処理水は高純度な工業用水28として再利用される。A part of the miscellaneous water 24 regenerated in the flow shown in FIG.
The permeated water is sent to a reverse osmosis membrane 27 by a high-pressure pump 26, and the permeated water is reused as high-purity industrial water 28.
一方濃縮水は溶解性COD原水19として、第2図(C
)処理フローに示す汚泥受槽11へ送り、引抜汚泥9に
混入し、混合汚泥10を形成する。On the other hand, concentrated water is treated as soluble COD raw water 19 in Figure 2 (C
) The sludge is sent to the sludge receiving tank 11 shown in the treatment flow and mixed with the drawn sludge 9 to form the mixed sludge 10.
二の混合汚泥10はポンプにて脱水装置12に送られ、
脱水装置12にて、固液分離されるが、この過程で溶解
性COD成分が引抜汚泥9に含まれている酸性金属イオ
ン成分に作用し、脱水ケーキ14と共に除去排出される
。The second mixed sludge 10 is sent to a dewatering device 12 by a pump,
Solid-liquid separation is performed in the dewatering device 12, and during this process, soluble COD components act on acidic metal ion components contained in the drawn sludge 9, and are removed and discharged together with the dehydrated cake 14.
分離水13は溶解性COD成分が除去され排水放流され
るか又は(C)フローの処理前の下水2次処理水に再混
入されて凝集、沈殿処理される。The soluble COD components are removed from the separated water 13 and the water is discharged as waste water, or (C) it is remixed into the secondary treated sewage water before the flow treatment and subjected to coagulation and precipitation treatment.
[発明の効果]
本発明によれば、下水や工場廃水を凝集、沈殿処理した
際、発生する酸性金属イオンを含む引抜汚泥に溶解性C
OD原水を混入し固液分離することにより、高分子有機
化合物や生物戴置解性有機物質に起因する溶解性のCO
D成分を第1表に示す如く、90%以上の高除去率で除
去できるとともに溶解性COD成分の量が変化しても前
記除去率が低下することが無い優れた効果がある。しか
も従来から一般的な廃水処理に用いられている既存の凝
集、沈殿処理、脱水処理設備を有効利用できるため、溶
解性COD成分除去のための専用設備を設ける必要が無
く、又溶解性COD成分除去のための薬品が不要である
ため、設備費、ランニングコストを著しく低減すること
ができる効果がある。[Effects of the Invention] According to the present invention, soluble C
By mixing OD raw water and performing solid-liquid separation, soluble CO caused by high-molecular organic compounds and biodegradable organic substances is removed.
As shown in Table 1, component D can be removed with a high removal rate of 90% or more, and even if the amount of the soluble COD component changes, there is an excellent effect that the removal rate does not decrease. Furthermore, existing flocculation, precipitation treatment, and dehydration treatment equipment conventionally used in general wastewater treatment can be effectively used, so there is no need to install dedicated equipment for removing soluble COD components. Since no chemicals are required for removal, equipment costs and running costs can be significantly reduced.
第1図は本発明の工場廃水処理における一実施例の処理
フローを示す図、
第2図は本発明を下水2次処理水の再生処理に用いる場
合の一実施例の処理フローを示す図、である。
1;工場廃水、 2:調整槽、 3:中和剤、4:薬注
槽、 5:凝集槽、 6:沈殿槽、 7:受水槽、 8
:処理排水、 9:引抜汚泥、10:混合汚泥、 1]
:汚泥受槽、 12:脱水装置、 13:分離水、 1
4:脱水ケーキ、 15:COD廃水、 16:調整槽
、 17:生物処理槽(バッキ槽)、18:沈殿槽、
19:溶解性COD原水、 20:COD処理排水、
21:下水2次処理水、 22:凝集剤、 23:砂濾
過装置、24:雑用水、 25:チェックフィルター2
6;高圧ポンプ、 27;逆浸透膜、 28工業用水・FIG. 1 is a diagram showing a processing flow of an embodiment in factory wastewater treatment of the present invention, FIG. 2 is a diagram showing a processing flow of an embodiment when the present invention is used for recycling treatment of secondary sewage treatment water, It is. 1: Factory wastewater, 2: Adjustment tank, 3: Neutralizing agent, 4: Chemical feeding tank, 5: Coagulation tank, 6: Sedimentation tank, 7: Water receiving tank, 8
: Treated wastewater, 9: Pulled sludge, 10: Mixed sludge, 1]
: Sludge receiving tank, 12: Dewatering device, 13: Separated water, 1
4: Dehydrated cake, 15: COD wastewater, 16: Adjustment tank, 17: Biological treatment tank (bag tank), 18: Sedimentation tank,
19: Dissolved COD raw water, 20: COD treated wastewater,
21: Secondary treated sewage water, 22: Coagulant, 23: Sand filter device, 24: Miscellaneous water, 25: Check filter 2
6; High pressure pump, 27; Reverse osmosis membrane, 28 Industrial water
Claims (2)
酸性金属イオンを含む引抜汚泥に溶解性COD原水を混
入し、その混合汚泥を脱水処理により固液分離し、その
分離水を処理排水とすることを特徴とする溶解性COD
の除去方法。(1) When sewage or factory wastewater is coagulated and sedimented, soluble COD raw water is mixed into the extracted sludge containing acidic metal ions, the mixed sludge is separated into solid and liquid by dehydration treatment, and the separated water is used as treated wastewater. Soluble COD characterized by
How to remove.
沈殿処理工程の処理前の下水や工場廃水に再混入し、凝
集沈殿処理して排水することを特徴とする溶解性COD
の除去方法。(2) Soluble COD, characterized in that the separated water according to claim (1) is further mixed into the sewage or industrial wastewater before the coagulation-precipitation treatment step, subjected to the coagulation-precipitation treatment, and then discharged.
How to remove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017938A JPH03224689A (en) | 1990-01-30 | 1990-01-30 | How to remove soluble COD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017938A JPH03224689A (en) | 1990-01-30 | 1990-01-30 | How to remove soluble COD |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03224689A true JPH03224689A (en) | 1991-10-03 |
Family
ID=11957721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017938A Pending JPH03224689A (en) | 1990-01-30 | 1990-01-30 | How to remove soluble COD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03224689A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006212569A (en) * | 2005-02-04 | 2006-08-17 | Nippon Steel Corp | Method for concentrating slurry |
-
1990
- 1990-01-30 JP JP2017938A patent/JPH03224689A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006212569A (en) * | 2005-02-04 | 2006-08-17 | Nippon Steel Corp | Method for concentrating slurry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001070989A (en) | Method and apparatus for treating organic wastewater containing high concentration of salts | |
JP2003236584A (en) | Sewage treatment apparatus | |
JPH10109091A (en) | Treatment of water | |
JP2004275884A (en) | Waste water treating method, waste water treating apparatus and treating system | |
KR100193785B1 (en) | Wastewater Treatment and Reuse Method using Microfiltration and Reverse Osmosis Membrane and Its Apparatus | |
JP4401251B2 (en) | General waste incineration wastewater treatment method | |
JPH03224689A (en) | How to remove soluble COD | |
JPH0117433B2 (en) | ||
KR100673841B1 (en) | Treatment method of high concentration organic suspended solids containing ceramic flocculant | |
JPH06237B2 (en) | Wastewater treatment method and apparatus | |
JP4531823B2 (en) | Waste water treatment apparatus and waste water treatment method for reusing chemicals for waste water treatment | |
JP2939156B2 (en) | Sewage treatment equipment | |
JPS61185400A (en) | Human waste wastewater treatment equipment | |
JP2007098270A (en) | Method and apparatus for producing pure water | |
JPH1157799A (en) | Membrane separation activated sludge method | |
JP2534336B2 (en) | Sludge treatment equipment | |
JP2005238184A (en) | Method for treating organoarsenic compound | |
JPH0649197B2 (en) | Organic wastewater treatment method | |
JPH04271888A (en) | Wastewater treatment method | |
JP3229806B2 (en) | Human wastewater treatment equipment | |
JPH1028995A (en) | Treatment of waste water | |
JP3522154B2 (en) | Decomposition and removal method of dioxins in sludge | |
JP2001038353A (en) | Treatment of wastewater | |
JP3501843B2 (en) | Treatment of oil-containing wastewater | |
JPH0847686A (en) | Waste water treating system |