[go: up one dir, main page]

JPH03223483A - Production of electrolytic manganese dioxide - Google Patents

Production of electrolytic manganese dioxide

Info

Publication number
JPH03223483A
JPH03223483A JP2013645A JP1364590A JPH03223483A JP H03223483 A JPH03223483 A JP H03223483A JP 2013645 A JP2013645 A JP 2013645A JP 1364590 A JP1364590 A JP 1364590A JP H03223483 A JPH03223483 A JP H03223483A
Authority
JP
Japan
Prior art keywords
manganese dioxide
manganese
electrolytic
battery
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013645A
Other languages
Japanese (ja)
Other versions
JP2879236B2 (en
Inventor
Yutaka Shiotani
塩谷 豊
Kazuhiko Nakade
中出 和彦
Hirohisa Senzaki
博久 千崎
Shigenori Kato
加藤 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013645A priority Critical patent/JP2879236B2/en
Publication of JPH03223483A publication Critical patent/JPH03223483A/en
Application granted granted Critical
Publication of JP2879236B2 publication Critical patent/JP2879236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To produce the electrolytic manganese dioxide having high performance by using a soln. of manganese sulfate and sulfuric acid as an electrolyte and adding a reducing agent or nonionic surfactant into the electrolyte. CONSTITUTION:An electrolysis is effected by using the manganese sulfate and sulfuric acid soln. as the electrolyte to produce the electrolytic manganese dioxide. The reducing agent and nonionic surfactant are added at about 0.01 to 3.0g/l into this electrolyte. Hydradinium sulfate having an amino group or carboxyl group, and aniline, etc., are used as the reducing agent and ethylene glycol and the condensation product thereof, etc., are used as the nonionic surfactant. The discharge voltage of a manganese battery is improved and the discharge time thereof is prolonged if this electrolytic manganese dioxide is used as the anodic active material of this battery.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マンガン電池またはアルカリマンガン電池に
おいて、陽極活物質として使用される電解二酸化マンガ
ンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing electrolytic manganese dioxide used as a positive electrode active material in a manganese battery or an alkaline manganese battery.

[従来技術および発明が解決しようとする課題]二酸化
マンガンはマンガン電池またはアルカリマンガン電池の
陽極活物質として知られており、保存性に優れ、かつ安
価であるという利点を有する。
[Prior Art and Problems to be Solved by the Invention] Manganese dioxide is known as a positive electrode active material for manganese batteries or alkaline manganese batteries, and has the advantages of excellent storage stability and low cost.

特に、この二酸化マンガンを陽極活物質として用いるア
ルカリマンガン電池は、重負荷での放電性能に優れてい
ることからカメラの自動ワインダストロボ並びに携帯用
テープレコーダ等に使用され、近年急速にその需要が伸
びてきている。
In particular, alkaline manganese batteries that use manganese dioxide as the anode active material have excellent discharge performance under heavy loads, and are used in automatic winder strobes for cameras and portable tape recorders, and demand has been rapidly increasing in recent years. It's coming.

しかし、アルカリマンガン電池を使用する際、放電電位
が徐々に低下することに伴なう使い難さがあるという課
題があり、使用に際して許容し得る放電電位までの放電
時間についても、より延長された電池が要求されている
However, when using alkaline manganese batteries, there is a problem that the discharge potential gradually decreases, making them difficult to use. Batteries are required.

一方、マンガン電池では重負荷での放電性能が劣るとい
う課題がある。
On the other hand, manganese batteries have a problem of poor discharge performance under heavy loads.

本発明は、上記のような状況に鑑み、マンガン電池また
はアルカリマンガン電池の陽極活物質として用いられる
電解二酸化マンガンの高性能化を達成し得る製造法を提
供することを目的とし、ひいてはマンガン電池またはア
ルカリマンガン電池の電池性能の向上を図ることを究極
的な目的とするものである。
In view of the above-mentioned circumstances, an object of the present invention is to provide a manufacturing method that can achieve high performance of electrolytic manganese dioxide used as an anode active material of manganese batteries or alkaline manganese batteries, and furthermore, The ultimate objective is to improve the performance of alkaline manganese batteries.

5課題を解決するだめの手段] 本発明の上記目的は、電解二酸化マンガンの製造の電解
工程において、電解液中に還元剤または非イオン界面活
性剤を添加することによって達成される。
5. Means for Solving the Problem] The above object of the present invention is achieved by adding a reducing agent or a nonionic surfactant to the electrolytic solution in the electrolytic step of producing electrolytic manganese dioxide.

すなわち、本発明の電解二酸化マンガンの製造法は、硫
酸マンガンおよび硫酸溶液を電解液として電解を行ない
電解二酸化マンガンを製造するに際し、電解液中に還元
剤または非イオン界面活性剤を添加することを特徴とす
るものである。
That is, the method for producing electrolytic manganese dioxide of the present invention involves adding a reducing agent or a nonionic surfactant to the electrolytic solution when electrolyzing manganese sulfate and a sulfuric acid solution as an electrolytic solution to produce electrolytic manganese dioxide. This is a characteristic feature.

本発明の製造法においては、電解液として硫酸マンガン
および硫酸の溶液を用いる。この電解液中のマンガン濃
度は20〜Bog/J、硫酸濃度は30〜90g/Jが
一般的である。また電極としては、陽極にはチタン等、
陰極にはカーボン等が用いられる。
In the production method of the present invention, a solution of manganese sulfate and sulfuric acid is used as the electrolyte. The manganese concentration in this electrolyte is generally 20 to Bog/J, and the sulfuric acid concentration is generally 30 to 90 g/J. In addition, as an electrode, titanium etc. are used for the anode.
Carbon or the like is used for the cathode.

この電解二酸化マンガンの電解条件としては、通常、浴
温90〜100℃、電流密度50〜■ooA/TItで
行なわれる。
The electrolysis conditions for this electrolytic manganese dioxide are usually a bath temperature of 90 to 100 DEG C. and a current density of 50 to ■ooA/TIt.

本発明の製造法では、電解液中に還元剤または非イオン
界面活性剤を添加する。
In the production method of the present invention, a reducing agent or a nonionic surfactant is added to the electrolytic solution.

ここで用いられる還元剤としては、官能基としてアミノ
基またはカルボキシル基を有する化合物が好ましく、具
体的には硫酸ヒドラジニウム、アニリン、ギ酸ナトリウ
ム等が好ましく例示される。
The reducing agent used here is preferably a compound having an amino group or a carboxyl group as a functional group, and specific examples thereof include hydrazinium sulfate, aniline, sodium formate, and the like.

また、非イオン界面活性剤としてはエチレングリコール
およびその縮合物が好ましく例示される。
Preferable examples of nonionic surfactants include ethylene glycol and condensates thereof.

この還元剤および非イオン界面活性剤の添加方法として
は、例えば電解槽底部がら電極板間に補給硫酸マンガン
溶液と共に均一に添加する方法等が例示される。
Examples of the method for adding the reducing agent and nonionic surfactant include a method in which they are added uniformly from the bottom of the electrolytic cell between the electrode plates together with a supplementary manganese sulfate solution.

この電解液中の還元剤および非イオン界面活性剤の濃度
は0.01〜3.0g/Jであることが、得られる電解
二酸化マンガンの特性から好ましい。
The concentration of the reducing agent and nonionic surfactant in this electrolytic solution is preferably 0.01 to 3.0 g/J in view of the properties of the electrolytic manganese dioxide obtained.

なお、本発明においては、還元剤と非イオン界面活性剤
を併用して用いてもよいことはいうまでもない。
It goes without saying that in the present invention, a reducing agent and a nonionic surfactant may be used in combination.

このように、本発明の製造法により得られた電解二酸化
マンガンを陽極活物質として用い、例えば単玉形アルカ
リマンガン電池を作成し、その放電特性を確認したとこ
ろ、電解液中に還元剤または非イオン界面活性剤を全く
添加しない従来の製造法によって得られた電解二酸化マ
ンガンを陽極活物質として用いた場合に比較し、優れた
放電特性を示した。
As described above, when a single-cell alkaline manganese battery, for example, was created using the electrolytic manganese dioxide obtained by the production method of the present invention as an anode active material, and its discharge characteristics were confirmed, it was found that there was no reducing agent or non-reducing agent in the electrolyte. It showed superior discharge characteristics compared to the case where electrolytic manganese dioxide obtained by the conventional manufacturing method without adding any ionic surfactant was used as the anode active material.

[作用コ 本発明の製造法により得2られた電解二酸化マンガンを
アルカリマンガン電池等の陽極活物質として用いた場合
に放電特性か向上する理由は明らかではないが、電解時
において、電解液中の還元剤および非イオン界面活性剤
が二酸化マンガンの結晶の発達度合に微妙に影響するも
のと推定される。
[Function] It is not clear why the discharge characteristics are improved when the electrolytic manganese dioxide obtained by the production method of the present invention is used as the positive electrode active material of alkaline manganese batteries, etc., but during electrolysis, the It is presumed that the reducing agent and nonionic surfactant subtly affect the degree of crystal development of manganese dioxide.

[実施例] 以下、実施例等に基づいて本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples and the like.

実施例1 加温装置を設けた内容積5ノの電解槽に陽極としてチタ
ン板、陰極として黒鉛板をそれぞれ交互に懸吊せしめ、
電解槽の底部に硫酸マンガン、還元剤または非イオン界
面活性剤からなる電解補給液の添加管を設けたものを使
用した。
Example 1 A titanium plate as an anode and a graphite plate as a cathode were alternately suspended in an electrolytic cell with an internal volume of 5 mm equipped with a heating device,
An electrolytic cell with an addition tube for an electrolytic replenishment solution consisting of manganese sulfate, a reducing agent, or a nonionic surfactant at the bottom was used.

電解補給液は硫酸マンガン溶液に還元剤としてアニリン
を添加し、電解液中のアニリン濃度が0.5g / J
、となるように調整した。
The electrolytic replenishment solution is made by adding aniline as a reducing agent to a manganese sulfate solution, and the aniline concentration in the electrolyte is 0.5 g/J.
, was adjusted so that

この補給液を前記電解槽に注入しながら、電解するに際
して電解液の組成がマンガン濃度40g/J1硫酸濃度
50g/Jとなるように調整し、電解は電解浴の温度を
95± 1℃に保ち、電流密度BOA/TItで行ない
、10日間連続電解した後、電解二酸化マンガンが電着
した陽極板を取り出し、常法の後処理を行なった。
While injecting this replenishment solution into the electrolytic bath, the composition of the electrolytic solution was adjusted to have a manganese concentration of 40 g/J1 sulfuric acid concentration of 50 g/J during electrolysis, and the temperature of the electrolytic bath was maintained at 95 ± 1°C during electrolysis. After continuous electrolysis for 10 days at a current density of BOA/TIt, the anode plate on which electrolytic manganese dioxide was electrodeposited was taken out and subjected to a conventional post-treatment.

次に、得られた電解二酸化マンガン7.8gを陽極活物
質とし、第1図に示す単玉形アルカリマンガン電池を用
いて電池性能を評価した。この第1図のアルカリマンガ
ン電池は陽極(正極)缶1、陽極(正極)2、陰極(負
極)3、セパレーター4、封口体5、陰極(負極〕底板
6、陰極(負極)集電体7、キャップ8ζ熱収縮性樹脂
チユーブ9、絶縁リング10.11 、外装缶12で構
成されている。
Next, 7.8 g of the obtained electrolytic manganese dioxide was used as an anode active material, and battery performance was evaluated using a single-cell alkaline manganese battery shown in FIG. The alkaline manganese battery shown in FIG. , a cap 8ζ, a heat-shrinkable resin tube 9, an insulating ring 10, 11, and an outer can 12.

このアルカリマンガン電池を用いて、20℃または一2
0℃の室温下で、放電負荷2Ωの連続放電試験をそれぞ
れ行ない、得られた電池電圧と放電持続時間の関係を第
2〜3図に示した。
Using this alkaline manganese battery, 20°C or -20°C
A continuous discharge test was conducted at a room temperature of 0° C. with a discharge load of 2Ω, and the relationship between the obtained battery voltage and discharge duration is shown in FIGS. 2 and 3.

また、放電負荷2Ωの室温が20”Cおよび一2fl’
Cにおける電池電圧が0.9Vに達するまでの放電持続
時間をそれぞれ測定し、後述の比較例1の20℃および
一20℃における電池電圧が0.9Vに達するまでの放
電持続時間をそれぞれ100とした指数表示とし、結果
を第1表に示した。
Also, the room temperature with a discharge load of 2Ω is 20"C and -2fl'
The discharge duration until the battery voltage reached 0.9V at C was measured, and the discharge duration until the battery voltage reached 0.9V at 20°C and -20°C in Comparative Example 1, which will be described later, was determined as 100 and 100, respectively. The results are shown in Table 1.

実施例2〜9 実施例1と同様の装置を用い、電解液中の還元剤または
非イオン界面活性剤とその濃度を第1表に示したように
変えた以外は実施例1と同様の電解条件で10日間連続
電解を行なった後、実施例1と同様に後処理を行なった
Examples 2 to 9 Electrolysis was carried out in the same manner as in Example 1, using the same apparatus as in Example 1, except that the reducing agent or nonionic surfactant in the electrolyte and its concentration were changed as shown in Table 1. After performing continuous electrolysis under the same conditions for 10 days, post-treatment was performed in the same manner as in Example 1.

次に、実施例1と同様の方法で第1図に示される単玉形
アルカリマンガン電池を作成し、この電池を用いて放電
試験を行ない、電池電圧が0.9Vに達するまでの放電
持続時間を第1表に示した。
Next, a single-ball alkaline manganese battery shown in FIG. 1 was prepared in the same manner as in Example 1, and a discharge test was conducted using this battery.The discharge duration until the battery voltage reached 0.9V was are shown in Table 1.

比較例1 実施例1と同様の装置を用い、還元剤または非イオン界
面活性剤溶液添加しない以外は実施例1と同様の電解条
件で10日間連続電解を行なった後、実施例1と同様に
後処理を行なった。
Comparative Example 1 Using the same equipment as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions as in Example 1 except that no reducing agent or nonionic surfactant solution was added, and then electrolysis was carried out in the same manner as in Example 1. Post-processing was performed.

次に、実施例1と同様の方法で第1図に示される単玉形
アルカリマンガン電池を作成し、この電池を用いて20
℃または一20℃の室温下で、放電負荷2Ωの連続放電
試験をそれぞれ行ない、得られた電池電圧と放電持続時
間の関係を第2〜3図に、また電池電圧が0.9vに達
するまでの放電持続時間を第1表に示した。
Next, a single bead alkaline manganese battery shown in FIG. 1 was prepared in the same manner as in Example 1, and this battery was used to
℃ or -20℃, a continuous discharge test with a discharge load of 2Ω was carried out, and the relationship between the obtained battery voltage and discharge duration is shown in Figures 2 and 3, and until the battery voltage reached 0.9V. The discharge duration is shown in Table 1.

第2〜3図から明らかなように実施例1のアルカリマン
ガン電池は比較例1のアルカリマンガン電池と比べて、
温度の相違(20℃および一20’C)にも拘らず、高
い作動電圧(電池電圧)および放電持続時間の伸びを示
し、特に低温(−20”C)での放電持続時間を大幅に
延長させることができた。
As is clear from FIGS. 2 and 3, the alkaline manganese battery of Example 1 has the following characteristics compared to the alkaline manganese battery of Comparative Example 1:
Despite the temperature difference (20°C and -20'C), it shows a high operating voltage (battery voltage) and extended discharge duration, especially at low temperature (-20'C), which significantly extends the discharge duration. I was able to do it.

また、第1表に示されるように室温20℃または20℃
のいずれの場合においても実施例1〜5のアルカリマン
ガン電池は還元剤または非イオン界面活性剤を全く添加
しない比較例1のアルカリマンガン電池と比べ0.9v
までの放電持続時間が延長された。
In addition, as shown in Table 1, the room temperature is 20°C or 20°C.
In any case, the alkaline manganese batteries of Examples 1 to 5 had a lower voltage of 0.9V compared to the alkaline manganese battery of Comparative Example 1 in which no reducing agent or nonionic surfactant was added.
The discharge duration has been extended.

実施例1゜ 実施例1と同様の装置を用い、同様の電解条件でlO日
間連続電解を行なった後、実施例1と同様に後処理を行
なった。
Example 1 Using the same apparatus as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions, and then post-treatment was performed in the same manner as in Example 1.

次に得られた二酸化マンガン29.9gを陽極活物質と
し塩化亜鉛系JIS名称R20型マンガン電池を作成し
た。
Next, a zinc chloride-based JIS name R20 type manganese battery was prepared using 29.9 g of the obtained manganese dioxide as an anode active material.

この電池を用いて、20℃の室温下で放電負荷2Ωの連
続放電を行ない、電池電圧が0,9Vに達するまでの放
電持続時間を測定し、後述の比較例2の電池電圧が0.
9Vに達するまでの放電持続時間を100とした指数表
示とし結果を第2表に示した。
Using this battery, continuous discharge was performed at a discharge load of 2Ω at a room temperature of 20°C, and the discharge duration until the battery voltage reached 0.9V was measured.
The results are shown in Table 2, expressed as an index with the discharge duration until reaching 9V set as 100.

実施例11〜18 実施例1と同様の装置を用い、電解液中の還元剤または
非イオン界面活性剤とその濃度を第2表に示した様に変
えた以外は実施例1と同様の電解条件でlO日間連続電
解を行なった後、実施例1と同様に後処理を行なった。
Examples 11 to 18 Electrolysis was carried out in the same manner as in Example 1, using the same apparatus as in Example 1, except that the reducing agent or nonionic surfactant in the electrolyte and its concentration were changed as shown in Table 2. After continuous electrolysis for 10 days under the conditions, post-treatment was performed in the same manner as in Example 1.

次に、実施例10と同様の方法でR2D型マンガン電池
を作成し、この電池を用いて放電試験を行ない電池電圧
が0,9vに達するまでの放電持続時間を第2表に示し
た。
Next, an R2D type manganese battery was prepared in the same manner as in Example 10, and a discharge test was conducted using this battery. Table 2 shows the discharge duration until the battery voltage reached 0.9V.

比較例2 実施例1と同様の装置を用い、還元剤または非イオン界
面活性剤溶液を添加しない以外は実施例1と同様の電解
条件で10日間連続電解を行なった後、実施例1と同様
に後処理を行なった。
Comparative Example 2 Using the same equipment as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions as in Example 1, except that no reducing agent or nonionic surfactant solution was added, and then the same as in Example 1 was used. Post-processing was performed.

次に、実施例10と同様の方法でR20型マンガン電池
を作成し、この電池を用いて放電試験を行ない電池電圧
が0.9vに達するまでの放電持続時間を第2表に示し
た。
Next, an R20 type manganese battery was prepared in the same manner as in Example 10, and a discharge test was conducted using this battery. Table 2 shows the discharge duration until the battery voltage reached 0.9V.

第2表に示されるように実施例10−18のマンガン電
池は還元剤または非イオン界面活性剤を添加しない比較
例2のマンガン電池と比較して、電池電圧0.9Vまで
の放電持続時間を延長させることができた。
As shown in Table 2, the manganese battery of Examples 10-18 has a longer discharge duration up to a battery voltage of 0.9 V than the manganese battery of Comparative Example 2 in which no reducing agent or nonionic surfactant is added. I was able to extend it.

第 表 第 表 [発明の効果コ 以上説明したように硫酸マンガンおよび硫酸溶液を電解
液として電解を行ない、電解二酸化マンガンを製造する
に際し、電解液中に還元剤または非イオン界面活性剤を
添加する本発明の製造法によって得られた電解二酸化マ
ンガンを、マンガン電池またはアルカリマンガン電池の
陽極活物質として用いることによって、放電電圧の向上
と放電時間の延長が達成される。
Table 1 [Effects of the Invention] As explained above, when electrolysis is performed using manganese sulfate and a sulfuric acid solution as an electrolyte to produce electrolytic manganese dioxide, a reducing agent or a nonionic surfactant is added to the electrolyte. By using the electrolytic manganese dioxide obtained by the production method of the present invention as a positive electrode active material of a manganese battery or an alkaline manganese battery, an improvement in discharge voltage and an extension of discharge time can be achieved.

このように、放電電圧の向上と放電時間の延長が達成し
得ることは、マンガン電池またはアルカリマンガン電池
の電池性能の改善といった見地から極めて有効なことで
ある。
The ability to improve the discharge voltage and extend the discharge time in this way is extremely effective from the standpoint of improving the battery performance of manganese batteries or alkaline manganese batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アルカリマンガン電池の一例を示す側断面図
、 第2図は、実施例1および比較例1の20℃における放
電時間と電池電圧との関係を示すグラフ、そして、 第3図は、実施例1および比較例1の一20℃における
放電時間と電池電圧との関係を示すグラフ。
FIG. 1 is a side sectional view showing an example of an alkaline manganese battery, FIG. 2 is a graph showing the relationship between discharge time and battery voltage at 20°C for Example 1 and Comparative Example 1, and FIG. , a graph showing the relationship between discharge time and battery voltage at 20° C. in Example 1 and Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、硫酸マンガンおよび硫酸溶液を電解液として用いて
電解二酸化マンガンを製造するに際し、電解液中に還元
剤または非イオン界面活性剤を添加することを特徴とす
る電解二酸化マンガンの製造法。 2、前記還元剤がアミノ基またはカルボキシル基を有す
る化合物である請求項1に記載の電解二酸化マンガンの
製造法。 3、前記非イオン界面活性剤がエチレングリコールおよ
びその縮合物である請求項1に記載の電解二酸化マンガ
ンの製造法。
[Claims] 1. Electrolytic manganese dioxide characterized by adding a reducing agent or a nonionic surfactant to the electrolytic solution when producing electrolytic manganese dioxide using manganese sulfate and a sulfuric acid solution as an electrolytic solution. manufacturing method. 2. The method for producing electrolytic manganese dioxide according to claim 1, wherein the reducing agent is a compound having an amino group or a carboxyl group. 3. The method for producing electrolytic manganese dioxide according to claim 1, wherein the nonionic surfactant is ethylene glycol and a condensate thereof.
JP2013645A 1990-01-25 1990-01-25 Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery Expired - Lifetime JP2879236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013645A JP2879236B2 (en) 1990-01-25 1990-01-25 Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013645A JP2879236B2 (en) 1990-01-25 1990-01-25 Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery

Publications (2)

Publication Number Publication Date
JPH03223483A true JPH03223483A (en) 1991-10-02
JP2879236B2 JP2879236B2 (en) 1999-04-05

Family

ID=11838967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013645A Expired - Lifetime JP2879236B2 (en) 1990-01-25 1990-01-25 Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP2879236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for producing layered manganese oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for producing layered manganese oxide

Also Published As

Publication number Publication date
JP2879236B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
CN104342724B (en) Electrolytic copper foil
EP2450476B1 (en) Method for manufacturing aluminum foil
JP2020530878A (en) Copper foil with wrinkle prevention, electrodes containing it, secondary battery containing it, and method for manufacturing the same.
CN101013747A (en) Coin-shape cell
JPH01200557A (en) Nonaqueous electrolytic battery
WO2002066707A3 (en) Process for manufacture and improved manganese dioxide for electrochemical cells
WO2017128989A1 (en) Electrolytic solution, positive electrode, and lithium-ion battery containing the electrolytic solution and/or the positive electrode
CN114300662A (en) A composite lithium, a solid-state lithium battery
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
JPH03223483A (en) Production of electrolytic manganese dioxide
CN105161795A (en) Electrolyte for lithium air battery and preparation method for electrolyte, and lithium air battery
KR100440487B1 (en) Positive active plate for rechargeable lithium battery and rechargeable lithium battery comprising thereof
JPH07312227A (en) Lithium secondary battery
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
JPH04214885A (en) Production of electrolytic manganese dioxide
JPH07166386A (en) Production of electrolytic manganese dioxide
JPS62170492A (en) Production of electrolytic manganese dioxide
CN104201416B (en) A kind of high-voltage lithium-ion battery functional electrolyte and its preparation method and application
JPS62149724A (en) Production of polyaniline
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH0521062A (en) Manganese dioxide for lithium secondary battery and manufacture thereof
JPH02168559A (en) Lithium primary battery and its positive electrode active substance
JP2737233B2 (en) Zinc alkaline battery
JP2000200623A (en) Lithium battery having fluorine-containing polymer electrolyte
JPH02173280A (en) Production of electrolytic manganese dioxide