JPH03223483A - Production of electrolytic manganese dioxide - Google Patents
Production of electrolytic manganese dioxideInfo
- Publication number
- JPH03223483A JPH03223483A JP2013645A JP1364590A JPH03223483A JP H03223483 A JPH03223483 A JP H03223483A JP 2013645 A JP2013645 A JP 2013645A JP 1364590 A JP1364590 A JP 1364590A JP H03223483 A JPH03223483 A JP H03223483A
- Authority
- JP
- Japan
- Prior art keywords
- manganese dioxide
- manganese
- electrolytic
- battery
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 24
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229940099596 manganese sulfate Drugs 0.000 claims abstract description 9
- 235000007079 manganese sulphate Nutrition 0.000 claims abstract description 9
- 239000011702 manganese sulphate Substances 0.000 claims abstract description 9
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims abstract description 9
- 125000003277 amino group Chemical group 0.000 claims abstract description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 11
- 239000008151 electrolyte solution Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract description 34
- 229910052748 manganese Inorganic materials 0.000 abstract description 34
- 239000011572 manganese Substances 0.000 abstract description 34
- 238000005868 electrolysis reaction Methods 0.000 abstract description 15
- 239000003792 electrolyte Substances 0.000 abstract description 12
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 abstract description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract 1
- 239000011149 active material Substances 0.000 abstract 1
- 239000007859 condensation product Substances 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 8
- 239000006183 anode active material Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 240000007320 Pinus strobus Species 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ZGCHATBSUIJLRL-UHFFFAOYSA-N hydrazine sulfate Chemical compound NN.OS(O)(=O)=O ZGCHATBSUIJLRL-UHFFFAOYSA-N 0.000 description 1
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、マンガン電池またはアルカリマンガン電池に
おいて、陽極活物質として使用される電解二酸化マンガ
ンの製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing electrolytic manganese dioxide used as a positive electrode active material in a manganese battery or an alkaline manganese battery.
[従来技術および発明が解決しようとする課題]二酸化
マンガンはマンガン電池またはアルカリマンガン電池の
陽極活物質として知られており、保存性に優れ、かつ安
価であるという利点を有する。[Prior Art and Problems to be Solved by the Invention] Manganese dioxide is known as a positive electrode active material for manganese batteries or alkaline manganese batteries, and has the advantages of excellent storage stability and low cost.
特に、この二酸化マンガンを陽極活物質として用いるア
ルカリマンガン電池は、重負荷での放電性能に優れてい
ることからカメラの自動ワインダストロボ並びに携帯用
テープレコーダ等に使用され、近年急速にその需要が伸
びてきている。In particular, alkaline manganese batteries that use manganese dioxide as the anode active material have excellent discharge performance under heavy loads, and are used in automatic winder strobes for cameras and portable tape recorders, and demand has been rapidly increasing in recent years. It's coming.
しかし、アルカリマンガン電池を使用する際、放電電位
が徐々に低下することに伴なう使い難さがあるという課
題があり、使用に際して許容し得る放電電位までの放電
時間についても、より延長された電池が要求されている
。However, when using alkaline manganese batteries, there is a problem that the discharge potential gradually decreases, making them difficult to use. Batteries are required.
一方、マンガン電池では重負荷での放電性能が劣るとい
う課題がある。On the other hand, manganese batteries have a problem of poor discharge performance under heavy loads.
本発明は、上記のような状況に鑑み、マンガン電池また
はアルカリマンガン電池の陽極活物質として用いられる
電解二酸化マンガンの高性能化を達成し得る製造法を提
供することを目的とし、ひいてはマンガン電池またはア
ルカリマンガン電池の電池性能の向上を図ることを究極
的な目的とするものである。In view of the above-mentioned circumstances, an object of the present invention is to provide a manufacturing method that can achieve high performance of electrolytic manganese dioxide used as an anode active material of manganese batteries or alkaline manganese batteries, and furthermore, The ultimate objective is to improve the performance of alkaline manganese batteries.
5課題を解決するだめの手段]
本発明の上記目的は、電解二酸化マンガンの製造の電解
工程において、電解液中に還元剤または非イオン界面活
性剤を添加することによって達成される。5. Means for Solving the Problem] The above object of the present invention is achieved by adding a reducing agent or a nonionic surfactant to the electrolytic solution in the electrolytic step of producing electrolytic manganese dioxide.
すなわち、本発明の電解二酸化マンガンの製造法は、硫
酸マンガンおよび硫酸溶液を電解液として電解を行ない
電解二酸化マンガンを製造するに際し、電解液中に還元
剤または非イオン界面活性剤を添加することを特徴とす
るものである。That is, the method for producing electrolytic manganese dioxide of the present invention involves adding a reducing agent or a nonionic surfactant to the electrolytic solution when electrolyzing manganese sulfate and a sulfuric acid solution as an electrolytic solution to produce electrolytic manganese dioxide. This is a characteristic feature.
本発明の製造法においては、電解液として硫酸マンガン
および硫酸の溶液を用いる。この電解液中のマンガン濃
度は20〜Bog/J、硫酸濃度は30〜90g/Jが
一般的である。また電極としては、陽極にはチタン等、
陰極にはカーボン等が用いられる。In the production method of the present invention, a solution of manganese sulfate and sulfuric acid is used as the electrolyte. The manganese concentration in this electrolyte is generally 20 to Bog/J, and the sulfuric acid concentration is generally 30 to 90 g/J. In addition, as an electrode, titanium etc. are used for the anode.
Carbon or the like is used for the cathode.
この電解二酸化マンガンの電解条件としては、通常、浴
温90〜100℃、電流密度50〜■ooA/TItで
行なわれる。The electrolysis conditions for this electrolytic manganese dioxide are usually a bath temperature of 90 to 100 DEG C. and a current density of 50 to ■ooA/TIt.
本発明の製造法では、電解液中に還元剤または非イオン
界面活性剤を添加する。In the production method of the present invention, a reducing agent or a nonionic surfactant is added to the electrolytic solution.
ここで用いられる還元剤としては、官能基としてアミノ
基またはカルボキシル基を有する化合物が好ましく、具
体的には硫酸ヒドラジニウム、アニリン、ギ酸ナトリウ
ム等が好ましく例示される。The reducing agent used here is preferably a compound having an amino group or a carboxyl group as a functional group, and specific examples thereof include hydrazinium sulfate, aniline, sodium formate, and the like.
また、非イオン界面活性剤としてはエチレングリコール
およびその縮合物が好ましく例示される。Preferable examples of nonionic surfactants include ethylene glycol and condensates thereof.
この還元剤および非イオン界面活性剤の添加方法として
は、例えば電解槽底部がら電極板間に補給硫酸マンガン
溶液と共に均一に添加する方法等が例示される。Examples of the method for adding the reducing agent and nonionic surfactant include a method in which they are added uniformly from the bottom of the electrolytic cell between the electrode plates together with a supplementary manganese sulfate solution.
この電解液中の還元剤および非イオン界面活性剤の濃度
は0.01〜3.0g/Jであることが、得られる電解
二酸化マンガンの特性から好ましい。The concentration of the reducing agent and nonionic surfactant in this electrolytic solution is preferably 0.01 to 3.0 g/J in view of the properties of the electrolytic manganese dioxide obtained.
なお、本発明においては、還元剤と非イオン界面活性剤
を併用して用いてもよいことはいうまでもない。It goes without saying that in the present invention, a reducing agent and a nonionic surfactant may be used in combination.
このように、本発明の製造法により得られた電解二酸化
マンガンを陽極活物質として用い、例えば単玉形アルカ
リマンガン電池を作成し、その放電特性を確認したとこ
ろ、電解液中に還元剤または非イオン界面活性剤を全く
添加しない従来の製造法によって得られた電解二酸化マ
ンガンを陽極活物質として用いた場合に比較し、優れた
放電特性を示した。As described above, when a single-cell alkaline manganese battery, for example, was created using the electrolytic manganese dioxide obtained by the production method of the present invention as an anode active material, and its discharge characteristics were confirmed, it was found that there was no reducing agent or non-reducing agent in the electrolyte. It showed superior discharge characteristics compared to the case where electrolytic manganese dioxide obtained by the conventional manufacturing method without adding any ionic surfactant was used as the anode active material.
[作用コ
本発明の製造法により得2られた電解二酸化マンガンを
アルカリマンガン電池等の陽極活物質として用いた場合
に放電特性か向上する理由は明らかではないが、電解時
において、電解液中の還元剤および非イオン界面活性剤
が二酸化マンガンの結晶の発達度合に微妙に影響するも
のと推定される。[Function] It is not clear why the discharge characteristics are improved when the electrolytic manganese dioxide obtained by the production method of the present invention is used as the positive electrode active material of alkaline manganese batteries, etc., but during electrolysis, the It is presumed that the reducing agent and nonionic surfactant subtly affect the degree of crystal development of manganese dioxide.
[実施例] 以下、実施例等に基づいて本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples and the like.
実施例1
加温装置を設けた内容積5ノの電解槽に陽極としてチタ
ン板、陰極として黒鉛板をそれぞれ交互に懸吊せしめ、
電解槽の底部に硫酸マンガン、還元剤または非イオン界
面活性剤からなる電解補給液の添加管を設けたものを使
用した。Example 1 A titanium plate as an anode and a graphite plate as a cathode were alternately suspended in an electrolytic cell with an internal volume of 5 mm equipped with a heating device,
An electrolytic cell with an addition tube for an electrolytic replenishment solution consisting of manganese sulfate, a reducing agent, or a nonionic surfactant at the bottom was used.
電解補給液は硫酸マンガン溶液に還元剤としてアニリン
を添加し、電解液中のアニリン濃度が0.5g / J
、となるように調整した。The electrolytic replenishment solution is made by adding aniline as a reducing agent to a manganese sulfate solution, and the aniline concentration in the electrolyte is 0.5 g/J.
, was adjusted so that
この補給液を前記電解槽に注入しながら、電解するに際
して電解液の組成がマンガン濃度40g/J1硫酸濃度
50g/Jとなるように調整し、電解は電解浴の温度を
95± 1℃に保ち、電流密度BOA/TItで行ない
、10日間連続電解した後、電解二酸化マンガンが電着
した陽極板を取り出し、常法の後処理を行なった。While injecting this replenishment solution into the electrolytic bath, the composition of the electrolytic solution was adjusted to have a manganese concentration of 40 g/J1 sulfuric acid concentration of 50 g/J during electrolysis, and the temperature of the electrolytic bath was maintained at 95 ± 1°C during electrolysis. After continuous electrolysis for 10 days at a current density of BOA/TIt, the anode plate on which electrolytic manganese dioxide was electrodeposited was taken out and subjected to a conventional post-treatment.
次に、得られた電解二酸化マンガン7.8gを陽極活物
質とし、第1図に示す単玉形アルカリマンガン電池を用
いて電池性能を評価した。この第1図のアルカリマンガ
ン電池は陽極(正極)缶1、陽極(正極)2、陰極(負
極)3、セパレーター4、封口体5、陰極(負極〕底板
6、陰極(負極)集電体7、キャップ8ζ熱収縮性樹脂
チユーブ9、絶縁リング10.11 、外装缶12で構
成されている。Next, 7.8 g of the obtained electrolytic manganese dioxide was used as an anode active material, and battery performance was evaluated using a single-cell alkaline manganese battery shown in FIG. The alkaline manganese battery shown in FIG. , a cap 8ζ, a heat-shrinkable resin tube 9, an insulating ring 10, 11, and an outer can 12.
このアルカリマンガン電池を用いて、20℃または一2
0℃の室温下で、放電負荷2Ωの連続放電試験をそれぞ
れ行ない、得られた電池電圧と放電持続時間の関係を第
2〜3図に示した。Using this alkaline manganese battery, 20°C or -20°C
A continuous discharge test was conducted at a room temperature of 0° C. with a discharge load of 2Ω, and the relationship between the obtained battery voltage and discharge duration is shown in FIGS. 2 and 3.
また、放電負荷2Ωの室温が20”Cおよび一2fl’
Cにおける電池電圧が0.9Vに達するまでの放電持続
時間をそれぞれ測定し、後述の比較例1の20℃および
一20℃における電池電圧が0.9Vに達するまでの放
電持続時間をそれぞれ100とした指数表示とし、結果
を第1表に示した。Also, the room temperature with a discharge load of 2Ω is 20"C and -2fl'
The discharge duration until the battery voltage reached 0.9V at C was measured, and the discharge duration until the battery voltage reached 0.9V at 20°C and -20°C in Comparative Example 1, which will be described later, was determined as 100 and 100, respectively. The results are shown in Table 1.
実施例2〜9
実施例1と同様の装置を用い、電解液中の還元剤または
非イオン界面活性剤とその濃度を第1表に示したように
変えた以外は実施例1と同様の電解条件で10日間連続
電解を行なった後、実施例1と同様に後処理を行なった
。Examples 2 to 9 Electrolysis was carried out in the same manner as in Example 1, using the same apparatus as in Example 1, except that the reducing agent or nonionic surfactant in the electrolyte and its concentration were changed as shown in Table 1. After performing continuous electrolysis under the same conditions for 10 days, post-treatment was performed in the same manner as in Example 1.
次に、実施例1と同様の方法で第1図に示される単玉形
アルカリマンガン電池を作成し、この電池を用いて放電
試験を行ない、電池電圧が0.9Vに達するまでの放電
持続時間を第1表に示した。Next, a single-ball alkaline manganese battery shown in FIG. 1 was prepared in the same manner as in Example 1, and a discharge test was conducted using this battery.The discharge duration until the battery voltage reached 0.9V was are shown in Table 1.
比較例1
実施例1と同様の装置を用い、還元剤または非イオン界
面活性剤溶液添加しない以外は実施例1と同様の電解条
件で10日間連続電解を行なった後、実施例1と同様に
後処理を行なった。Comparative Example 1 Using the same equipment as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions as in Example 1 except that no reducing agent or nonionic surfactant solution was added, and then electrolysis was carried out in the same manner as in Example 1. Post-processing was performed.
次に、実施例1と同様の方法で第1図に示される単玉形
アルカリマンガン電池を作成し、この電池を用いて20
℃または一20℃の室温下で、放電負荷2Ωの連続放電
試験をそれぞれ行ない、得られた電池電圧と放電持続時
間の関係を第2〜3図に、また電池電圧が0.9vに達
するまでの放電持続時間を第1表に示した。Next, a single bead alkaline manganese battery shown in FIG. 1 was prepared in the same manner as in Example 1, and this battery was used to
℃ or -20℃, a continuous discharge test with a discharge load of 2Ω was carried out, and the relationship between the obtained battery voltage and discharge duration is shown in Figures 2 and 3, and until the battery voltage reached 0.9V. The discharge duration is shown in Table 1.
第2〜3図から明らかなように実施例1のアルカリマン
ガン電池は比較例1のアルカリマンガン電池と比べて、
温度の相違(20℃および一20’C)にも拘らず、高
い作動電圧(電池電圧)および放電持続時間の伸びを示
し、特に低温(−20”C)での放電持続時間を大幅に
延長させることができた。As is clear from FIGS. 2 and 3, the alkaline manganese battery of Example 1 has the following characteristics compared to the alkaline manganese battery of Comparative Example 1:
Despite the temperature difference (20°C and -20'C), it shows a high operating voltage (battery voltage) and extended discharge duration, especially at low temperature (-20'C), which significantly extends the discharge duration. I was able to do it.
また、第1表に示されるように室温20℃または20℃
のいずれの場合においても実施例1〜5のアルカリマン
ガン電池は還元剤または非イオン界面活性剤を全く添加
しない比較例1のアルカリマンガン電池と比べ0.9v
までの放電持続時間が延長された。In addition, as shown in Table 1, the room temperature is 20°C or 20°C.
In any case, the alkaline manganese batteries of Examples 1 to 5 had a lower voltage of 0.9V compared to the alkaline manganese battery of Comparative Example 1 in which no reducing agent or nonionic surfactant was added.
The discharge duration has been extended.
実施例1゜
実施例1と同様の装置を用い、同様の電解条件でlO日
間連続電解を行なった後、実施例1と同様に後処理を行
なった。Example 1 Using the same apparatus as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions, and then post-treatment was performed in the same manner as in Example 1.
次に得られた二酸化マンガン29.9gを陽極活物質と
し塩化亜鉛系JIS名称R20型マンガン電池を作成し
た。Next, a zinc chloride-based JIS name R20 type manganese battery was prepared using 29.9 g of the obtained manganese dioxide as an anode active material.
この電池を用いて、20℃の室温下で放電負荷2Ωの連
続放電を行ない、電池電圧が0,9Vに達するまでの放
電持続時間を測定し、後述の比較例2の電池電圧が0.
9Vに達するまでの放電持続時間を100とした指数表
示とし結果を第2表に示した。Using this battery, continuous discharge was performed at a discharge load of 2Ω at a room temperature of 20°C, and the discharge duration until the battery voltage reached 0.9V was measured.
The results are shown in Table 2, expressed as an index with the discharge duration until reaching 9V set as 100.
実施例11〜18
実施例1と同様の装置を用い、電解液中の還元剤または
非イオン界面活性剤とその濃度を第2表に示した様に変
えた以外は実施例1と同様の電解条件でlO日間連続電
解を行なった後、実施例1と同様に後処理を行なった。Examples 11 to 18 Electrolysis was carried out in the same manner as in Example 1, using the same apparatus as in Example 1, except that the reducing agent or nonionic surfactant in the electrolyte and its concentration were changed as shown in Table 2. After continuous electrolysis for 10 days under the conditions, post-treatment was performed in the same manner as in Example 1.
次に、実施例10と同様の方法でR2D型マンガン電池
を作成し、この電池を用いて放電試験を行ない電池電圧
が0,9vに達するまでの放電持続時間を第2表に示し
た。Next, an R2D type manganese battery was prepared in the same manner as in Example 10, and a discharge test was conducted using this battery. Table 2 shows the discharge duration until the battery voltage reached 0.9V.
比較例2
実施例1と同様の装置を用い、還元剤または非イオン界
面活性剤溶液を添加しない以外は実施例1と同様の電解
条件で10日間連続電解を行なった後、実施例1と同様
に後処理を行なった。Comparative Example 2 Using the same equipment as in Example 1, continuous electrolysis was performed for 10 days under the same electrolytic conditions as in Example 1, except that no reducing agent or nonionic surfactant solution was added, and then the same as in Example 1 was used. Post-processing was performed.
次に、実施例10と同様の方法でR20型マンガン電池
を作成し、この電池を用いて放電試験を行ない電池電圧
が0.9vに達するまでの放電持続時間を第2表に示し
た。Next, an R20 type manganese battery was prepared in the same manner as in Example 10, and a discharge test was conducted using this battery. Table 2 shows the discharge duration until the battery voltage reached 0.9V.
第2表に示されるように実施例10−18のマンガン電
池は還元剤または非イオン界面活性剤を添加しない比較
例2のマンガン電池と比較して、電池電圧0.9Vまで
の放電持続時間を延長させることができた。As shown in Table 2, the manganese battery of Examples 10-18 has a longer discharge duration up to a battery voltage of 0.9 V than the manganese battery of Comparative Example 2 in which no reducing agent or nonionic surfactant is added. I was able to extend it.
第
表
第
表
[発明の効果コ
以上説明したように硫酸マンガンおよび硫酸溶液を電解
液として電解を行ない、電解二酸化マンガンを製造する
に際し、電解液中に還元剤または非イオン界面活性剤を
添加する本発明の製造法によって得られた電解二酸化マ
ンガンを、マンガン電池またはアルカリマンガン電池の
陽極活物質として用いることによって、放電電圧の向上
と放電時間の延長が達成される。Table 1 [Effects of the Invention] As explained above, when electrolysis is performed using manganese sulfate and a sulfuric acid solution as an electrolyte to produce electrolytic manganese dioxide, a reducing agent or a nonionic surfactant is added to the electrolyte. By using the electrolytic manganese dioxide obtained by the production method of the present invention as a positive electrode active material of a manganese battery or an alkaline manganese battery, an improvement in discharge voltage and an extension of discharge time can be achieved.
このように、放電電圧の向上と放電時間の延長が達成し
得ることは、マンガン電池またはアルカリマンガン電池
の電池性能の改善といった見地から極めて有効なことで
ある。The ability to improve the discharge voltage and extend the discharge time in this way is extremely effective from the standpoint of improving the battery performance of manganese batteries or alkaline manganese batteries.
第1図は、アルカリマンガン電池の一例を示す側断面図
、
第2図は、実施例1および比較例1の20℃における放
電時間と電池電圧との関係を示すグラフ、そして、
第3図は、実施例1および比較例1の一20℃における
放電時間と電池電圧との関係を示すグラフ。FIG. 1 is a side sectional view showing an example of an alkaline manganese battery, FIG. 2 is a graph showing the relationship between discharge time and battery voltage at 20°C for Example 1 and Comparative Example 1, and FIG. , a graph showing the relationship between discharge time and battery voltage at 20° C. in Example 1 and Comparative Example 1.
Claims (1)
電解二酸化マンガンを製造するに際し、電解液中に還元
剤または非イオン界面活性剤を添加することを特徴とす
る電解二酸化マンガンの製造法。 2、前記還元剤がアミノ基またはカルボキシル基を有す
る化合物である請求項1に記載の電解二酸化マンガンの
製造法。 3、前記非イオン界面活性剤がエチレングリコールおよ
びその縮合物である請求項1に記載の電解二酸化マンガ
ンの製造法。[Claims] 1. Electrolytic manganese dioxide characterized by adding a reducing agent or a nonionic surfactant to the electrolytic solution when producing electrolytic manganese dioxide using manganese sulfate and a sulfuric acid solution as an electrolytic solution. manufacturing method. 2. The method for producing electrolytic manganese dioxide according to claim 1, wherein the reducing agent is a compound having an amino group or a carboxyl group. 3. The method for producing electrolytic manganese dioxide according to claim 1, wherein the nonionic surfactant is ethylene glycol and a condensate thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013645A JP2879236B2 (en) | 1990-01-25 | 1990-01-25 | Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013645A JP2879236B2 (en) | 1990-01-25 | 1990-01-25 | Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03223483A true JPH03223483A (en) | 1991-10-02 |
JP2879236B2 JP2879236B2 (en) | 1999-04-05 |
Family
ID=11838967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013645A Expired - Lifetime JP2879236B2 (en) | 1990-01-25 | 1990-01-25 | Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2879236B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006076865A (en) * | 2004-09-13 | 2006-03-23 | Yamaguchi Univ | Method for producing layered manganese oxide |
-
1990
- 1990-01-25 JP JP2013645A patent/JP2879236B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006076865A (en) * | 2004-09-13 | 2006-03-23 | Yamaguchi Univ | Method for producing layered manganese oxide |
Also Published As
Publication number | Publication date |
---|---|
JP2879236B2 (en) | 1999-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104342724B (en) | Electrolytic copper foil | |
EP2450476B1 (en) | Method for manufacturing aluminum foil | |
JP2020530878A (en) | Copper foil with wrinkle prevention, electrodes containing it, secondary battery containing it, and method for manufacturing the same. | |
CN101013747A (en) | Coin-shape cell | |
JPH01200557A (en) | Nonaqueous electrolytic battery | |
WO2002066707A3 (en) | Process for manufacture and improved manganese dioxide for electrochemical cells | |
WO2017128989A1 (en) | Electrolytic solution, positive electrode, and lithium-ion battery containing the electrolytic solution and/or the positive electrode | |
CN114300662A (en) | A composite lithium, a solid-state lithium battery | |
KR20170085425A (en) | Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same | |
JPH03223483A (en) | Production of electrolytic manganese dioxide | |
CN105161795A (en) | Electrolyte for lithium air battery and preparation method for electrolyte, and lithium air battery | |
KR100440487B1 (en) | Positive active plate for rechargeable lithium battery and rechargeable lithium battery comprising thereof | |
JPH07312227A (en) | Lithium secondary battery | |
JP2707340B2 (en) | Manufacturing method of electrolytic manganese dioxide | |
JPH04214885A (en) | Production of electrolytic manganese dioxide | |
JPH07166386A (en) | Production of electrolytic manganese dioxide | |
JPS62170492A (en) | Production of electrolytic manganese dioxide | |
CN104201416B (en) | A kind of high-voltage lithium-ion battery functional electrolyte and its preparation method and application | |
JPS62149724A (en) | Production of polyaniline | |
JP2594827B2 (en) | Method for producing electrolytic manganese dioxide | |
JPH0521062A (en) | Manganese dioxide for lithium secondary battery and manufacture thereof | |
JPH02168559A (en) | Lithium primary battery and its positive electrode active substance | |
JP2737233B2 (en) | Zinc alkaline battery | |
JP2000200623A (en) | Lithium battery having fluorine-containing polymer electrolyte | |
JPH02173280A (en) | Production of electrolytic manganese dioxide |