[go: up one dir, main page]

JPH03219658A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH03219658A
JPH03219658A JP1539290A JP1539290A JPH03219658A JP H03219658 A JPH03219658 A JP H03219658A JP 1539290 A JP1539290 A JP 1539290A JP 1539290 A JP1539290 A JP 1539290A JP H03219658 A JPH03219658 A JP H03219658A
Authority
JP
Japan
Prior art keywords
wiring
interconnections
layer
standard cell
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1539290A
Other languages
Japanese (ja)
Inventor
Kiyohiro Furuya
清広 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1539290A priority Critical patent/JPH03219658A/en
Publication of JPH03219658A publication Critical patent/JPH03219658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To largely reduce or eliminate an interconnection region which is required except a layout block and to enhance integration of semiconductor elements, etc., by dividing interconnections for connecting the blocks therebetween into second and third layer interconnections, and arranging all or part of the interconnections by using the blocks. CONSTITUTION:Basic gates necessary for a semiconductor integrated circuit device are prepared as standard cells 1-22, and the cells 1-22 are so grouped to suitable number of stages that second and third layer interconnections 2AL, 3AL to be connected to each other are short and not entangled. Then, the interconnections 2AL, 3AL are formed by using interconnection regions B, C on standard cell rows. If all the interconnections cannot be provided, conventional interconnection regions 23-24 on the regions B, C and the periphery of the standard cell row. Thus, the regions 23-24 provided between the stages have no interconnections 2AL, 3AL or can be largely reduced in number even if the interconnections 2AL, 3AL exist to enhance the integration of the entirety, thereby reducing a board.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は論理機能、駆動能力が異なる複数種のレイアウ
トブロック、主としては標準セルの集合体として構成さ
れる半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device configured as an assembly of multiple types of layout blocks, mainly standard cells, having different logic functions and driving capabilities.

〔従来の技術〕[Conventional technology]

第6図は従来における標準セルの集合体として構成され
た半導体集積回路装置(Place and Rout
eReference  Manual  Versi
on  2.0  SDA  Systems、  I
ncJune 22.1988 Chapter 15
,15頁)の部分レイアウト図であり、図において15
.5.6.16.7.8等はいずれも標準セルを示して
いる。標準セル15〜8は夫々論理機能、駆動能力が、
従ってまた幅寸法が異なっている。これら標準セル15
〜8は後述する如く配線が出来るだけ短(、しかも単純
化出来るよう複数にグループ分けされ、適正な段数で配
列形成されており、各段間に適正な幅の配′fatiI
域24を設定してここに設けたIN目の配RIAL(い
ずれも横向き配線として表れている)、2層目の配線2
AL (いずれも縦向き配線として表れている)を用い
て各標準セル15〜8相互の接続が行われている。
FIG. 6 shows a conventional semiconductor integrated circuit device (Place and Route) configured as an assembly of standard cells.
eReference Manual Versi
on 2.0 SDA Systems, I
ncJune 22.1988 Chapter 15
, page 15).
.. 5.6.16.7.8, etc. all indicate standard cells. The standard cells 15 to 8 each have a logic function and a driving ability,
Therefore, the width dimensions are also different. These standard cells 15
8, the wiring is as short as possible (furthermore, it is divided into multiple groups for simplicity, arranged in an appropriate number of stages, and has an appropriate width between each stage).
The IN eye layout RIAL (both appear as horizontal wiring) and the second layer wiring 2 are set here by setting area 24.
The standard cells 15 to 8 are interconnected using AL (all shown as vertical wiring).

例えば標準セル6は2人力のANDゲートであって、具
体的には第7.8図に示す如くに構成されている。第7
図は2人力のへNDゲート回路を構成する標準セルの拡
大レイアウト図、第8図は入出力端の配置図であり、図
中34は半導体素子であるトランジスタを構成する拡散
領域(点を付して示す領域)、35はゲートポリシリコ
ン、37はこれらトランジスタ間を接続する1層目の配
線(ハツチングを付して示す領域)を示している。
For example, the standard cell 6 is a two-person AND gate, and is specifically constructed as shown in FIG. 7.8. 7th
The figure is an enlarged layout diagram of a standard cell constituting a two-man-powered ND gate circuit, and Figure 8 is a layout diagram of input/output terminals. 35 is a gate polysilicon, and 37 is a first layer wiring (a region shown with hatching) that connects these transistors.

トランジスタを構成する拡散層34.ゲートポリシリコ
ン35はコンタクト38(図中で示しである)を介して
1層目の配線37と接続され、第7図に示す端子36a
、 36c、 36d及び第8図に示す如き接続点40
a、 40b (又は40e、 40f) 、40c(
又は40g)を有する2人力のANDゲートが構成され
ている。上述した如き標準セル6の入力端子36a、 
36c、 36dは接続点40a、 40b(又は40
e、 40f)、40c(又は40g)を介して第6図
に示す如く基板上に定めた配’ilA ’pH域24.
24上に配した他の1層目の配線IAL及びこの1層目
の配′4IAI A Lと絶縁膜を介在させて配設した
2層目の配線2ALに接続され、これら配線領域24中
のIN目、2層目の配線IAL、 2ALを介して他の
標準セル15〜8と接続されている。
Diffusion layer 34 constituting the transistor. The gate polysilicon 35 is connected to the first layer wiring 37 via a contact 38 (shown in the figure), and is connected to a terminal 36a shown in FIG.
, 36c, 36d and connection points 40 as shown in FIG.
a, 40b (or 40e, 40f), 40c (
or 40g) is constructed. Input terminal 36a of standard cell 6 as described above,
36c and 36d are connection points 40a and 40b (or 40
e, 40f), 40c (or 40g), the pH range 24.
It is connected to the other first-layer wiring IAL arranged on the wiring area 24 and the second-layer wiring 2AL arranged with an insulating film interposed between the first-layer wiring IAL and the first-layer wiring IAL. It is connected to other standard cells 15 to 8 via IN-th and second-layer wirings IAL and 2AL.

ところでこのような標準セルを用いた半導体集積回路装
置を設計する場合、通常は第9図に示す如き手順で行わ
れる。第9図は半導体集積回路の標準セルのレイアウト
決定の手順を示す説明図であり、先ず設計すべき論理回
路を構成するに必要な基本ゲートを用いて論理図を作成
した後、作成した論理図に基づいて各標準セルの出力端
子が駆動すべき次段のゲートの数(ファンアウト数と称
される)に応じて浮遊容量を推定し、標準セル夫々につ
いて必要な駆動能力を決定し、第9図(alに示す如く
必要な基本ゲート、例えばAND、 OR,NAND。
By the way, when designing a semiconductor integrated circuit device using such a standard cell, the procedure is usually as shown in FIG. FIG. 9 is an explanatory diagram showing the procedure for determining the layout of a standard cell of a semiconductor integrated circuit. First, a logic diagram is created using the basic gates necessary to configure the logic circuit to be designed, and then the created logic diagram is Based on this, the stray capacitance is estimated according to the number of gates in the next stage that the output terminal of each standard cell should drive (referred to as the fan-out number), and the required driving capacity for each standard cell is determined. As shown in Figure 9 (al), the necessary basic gates, such as AND, OR, NAND.

NOR,NOT等を標準セル1〜22として用意する。NOR, NOT, etc. are prepared as standard cells 1 to 22.

標準セル1〜22はその機能、駆動力によって横幅が異
なっており、図面には幅の異なる3種類の標準セル1〜
12.13〜21及び22が示されている。
Standard cells 1 to 22 have different widths depending on their function and driving force, and the drawing shows three types of standard cells 1 to 22 with different widths.
12.13-21 and 22 are shown.

次に第9図(a)に示す如き標準セル1〜22について
、これらの端子間を相互に接続する配線長が可及的に短
く、しかも単純化されるように標準セル1〜22をグル
ープ分けし、第9図(b>に示す如く適当な段数(図面
上では3段)で配列する。
Next, regarding the standard cells 1 to 22 as shown in FIG. 9(a), the standard cells 1 to 22 are grouped so that the length of the wiring connecting these terminals to each other is as short as possible and is simplified. They are divided and arranged in an appropriate number of stages (three stages in the drawing) as shown in FIG. 9 (b>).

次に第9図(C)に示す如く各標準セル1〜22の端子
間を、標準セル列の周囲に定めた配線領域22゜23、
24を利用して第6図に示す如き1層目の配線IAL、
 2層目の配線2ALにより接続する。なお、配vA領
域22.23.24は配線数に応じて適宜に拡縮される
Next, as shown in FIG. 9(C), between the terminals of each standard cell 1 to 22, a wiring area 22° 23, defined around the standard cell row,
24, the first layer wiring IAL as shown in FIG.
Connection is made by the second layer wiring 2AL. Note that the distribution areas 22, 23, and 24 are expanded or contracted as appropriate depending on the number of wires.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこのようにして作成されたレイアウトにおいて
は、標準セル間を接続する配線IAL、 2ALが標準
セル1〜22を構成するトランジスタ等の半導体素子の
形成領域とは別の配線領域22.23.24に配設する
ため、チップ面積の略半分程度を配線領域22.23.
24によって占められることとなり、トランジスタ等の
集積度が悪いという欠点がある。
By the way, in the layout created in this manner, the wirings IAL and 2AL connecting between the standard cells are located in wiring areas 22, 23, and 24 that are separate from the formation areas of semiconductor elements such as transistors that constitute the standard cells 1 to 22. , approximately half of the chip area is allocated to the wiring areas 22, 23 .
24, which has the disadvantage that the degree of integration of transistors and the like is poor.

またファンアウト数に応じて出力端子に接続される配線
の浮遊容量を推定し、標準セル1〜22の駆動能力を決
定して、第9図(blに示す如く標準セル1〜22をグ
ループ分けをしても全ての配線が短縮されることにはな
らず、部分的には第9図(C)に示す如く駆動能力の小
さい標準セル2,11にて長い信号線を介して他の標準
セル12. 1を駆動しなければならない場合が生じる
ことがある。
In addition, the stray capacitance of the wiring connected to the output terminal is estimated according to the number of fan-outs, the driving capacity of the standard cells 1 to 22 is determined, and the standard cells 1 to 22 are divided into groups as shown in Figure 9 (bl). Even if this is done, not all the wiring will be shortened, and in some cases, as shown in FIG. A case may arise when cell 12.1 must be driven.

このような場合には信号が遅延し、全体の動作が遅くな
るから標準セル2,11を駆動力の大きいセルと変換す
ることとなるが、この場合は当然にセル幅が変化するた
め、他の標準セルを移動させねばならなくなる。しかし
移動量が大きくなると配線領域が不足し、より広い基板
面積が必要となる場合が生じ配線設計をし直さねばなら
なくなるという問題があった。
In such a case, the signal will be delayed and the overall operation will be slow, so standard cells 2 and 11 will be replaced with cells with larger driving force, but in this case, the cell width will naturally change, so other standard cells would have to be moved. However, when the amount of movement increases, there is a problem that the wiring area becomes insufficient and a wider substrate area is sometimes required, making it necessary to redesign the wiring.

本発明はかかる事情に鑑みなされたものであり、その目
的とするところはトランジスタの集積度を高め、チップ
面積を低減し、信号の遅延等の不都合を解消し得るよう
にした半導体集積回路装置を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a semiconductor integrated circuit device that increases the degree of integration of transistors, reduces the chip area, and eliminates inconveniences such as signal delays. It is on offer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体集積回路装置は、レイアウトブロッ
ク間を接続する配線を2層目配線と3層目配線とに区分
し、これらの配線の全部又は一部をレイアウトブロック
上を利用して配設する。
In the semiconductor integrated circuit device according to the present invention, wiring connecting between layout blocks is divided into second layer wiring and third layer wiring, and all or part of these wirings are arranged using the layout blocks. do.

[作用] 本発明にあってはこれによって、レイアウトブロック以
外に必要とされる配線領域が大幅に縮小、又は不要とな
り、半導体素子等の集積度が高まる。
[Function] According to the present invention, the wiring area required other than the layout block is significantly reduced or becomes unnecessary, and the degree of integration of semiconductor elements and the like is increased.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて具体的に
説明する。
The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る半導体集積回路装置におけるグル
ープ分けして配列された標準セル及び2層目、3層目の
配線を示すレイアウト図、第2図は第1図に示す−の標
準セル及びセル領域内に設けられる1層目の配線を示す
拡大レイアウト図、第3図は第2.第3層目配線と標準
セルとの接続点を示す説明図である。
FIG. 1 is a layout diagram showing standard cells arranged in groups and wiring in the second and third layers in a semiconductor integrated circuit device according to the present invention, and FIG. 2 is a standard cell shown in FIG. 1. FIG. 3 is an enlarged layout diagram showing the first layer wiring provided in the cell area. FIG. 3 is an explanatory diagram showing connection points between third-layer wiring and standard cells.

第1図において15〜8はいずれもグループ分けにより
同じ段に配列された標準セル、IALはIN目の配線に
より、2ALは2層目の配線(横向き配線として表れて
いる) 、3ALは3層目の配線(縦向き配線として表
れている)を示している。
In Figure 1, 15 to 8 are all standard cells arranged in the same row by grouping, IAL is the IN-th wiring, 2AL is the second layer wiring (appears as horizontal wiring), and 3AL is the 3rd layer wiring. The eye wiring (shown as vertical wiring) is shown.

標準セル6は2人力のANDゲートであり第2図に明ら
かな如く、半導体素子であるトランジスタを構成する拡
散層25、同じくゲートポリシリコン26が形成され、
これらトランジスタを構成するゲートポリシリコン26
、拡散層25はコンタクト29(図中で示す)を介して
1層目の配線1^Lに接続され27aを出力端子27b
、 27cを入力端子としている。またこの1層目の配
線IALは標準セル6の縦方向の略中央部に定めた接続
点領域へにおいてのみコンタクト30(囲印で示す)を
介して2層目の配線2^L(28a、 28c、 28
d)及び/又はこの配線2AL上にこれとml膜を隔て
て配設された3層目の配線3ALに接続され、この2層
目、3層目の配線2AL。
The standard cell 6 is an AND gate made by two people, and as is clear from FIG. 2, a diffusion layer 25 constituting a transistor, which is a semiconductor element, and a gate polysilicon 26 are also formed.
Gate polysilicon 26 that constitutes these transistors
, the diffusion layer 25 is connected to the first layer wiring 1^L via a contact 29 (shown in the figure), and the diffusion layer 27a is connected to the output terminal 27b.
, 27c are used as input terminals. The first layer wiring IAL is connected to the second layer wiring 2^L (28a, 28a, 28c, 28
d) and/or the second and third layer wirings 2AL connected to the third layer wiring 3AL disposed on the wiring 2AL with an ml film in between.

3^Lを介して標準セル相互の接続が行われている。Standard cells are interconnected via 3^L.

2層目、3層目の配線2^L、 341.は、第1.3
図に示す如く標準セル15〜8上であワて縦方向の略中
央部に定めた2層目、3層目の配線2AL 、 3AL
との接続点領域Aを除く領域、即ち配線領域B、  C
(ハツチングを付して示す)上に相互の間に絶縁膜を隔
てて配設されている。なお28bは標準セルを横断する
配線の中継点である。
2nd and 3rd layer wiring 2^L, 341. 1.3
As shown in the figure, the second and third layer wirings 2AL and 3AL are set approximately at the center of the standard cells 15 to 8 in the vertical direction.
Areas excluding connection point area A, that is, wiring areas B and C
(shown with hatching) are disposed above each other with an insulating film interposed therebetween. Note that 28b is a relay point for wiring that crosses the standard cell.

第4図は標準セルの他の例を示す拡大レイアウト図であ
り、トランジスタを構成する拡散N25′25′の形成
領域を縦方向に延長して形成し、またこれに伴ってゲー
トポリシリコン26′の形成領域も標準セルの縦方向に
延在させて構成してあり、全体として標準セルの横幅は
変わらないが縦方向の長さが大きくなり、駆動能力がよ
り大きくなっている。他の構成は第2図に示す実施例と
実質的に同じであり対応する部分には同じ番号を付して
説明を省略する。
FIG. 4 is an enlarged layout diagram showing another example of the standard cell, in which the formation region of the diffusion N25'25' constituting the transistor is extended in the vertical direction, and along with this, the gate polysilicon 26' The formation region is also configured to extend in the vertical direction of the standard cell, and although the width of the standard cell as a whole remains the same, the length in the vertical direction is increased, and the driving capacity is increased. The rest of the structure is substantially the same as that of the embodiment shown in FIG. 2, and corresponding parts are given the same reference numerals and explanations will be omitted.

上述した如き半導体集積回路装置のレイアウト作成手順
について具体的に説明する。第5図はレイアウト作成手
順を示す説明図であり、従来と同様に第9図(a)に示
す如く半導体集積回路装置に必要な基本ゲートを標準セ
ル1〜22として用意し、各標準セル1〜22を、相互
に接続する2層目、3層の配線2AL、 3ALが短く
、しかも錯綜しないよう第5図(a)に示す如く適宜の
段数(実施例では3段)にグループ分けする。この際格
段の標準セル列ノ周囲には第9図(b)におけると同様
に配線領域としての間隙を付与しておくが、配線数に応
じて適宜拡張又は縮小してゆく。
A procedure for creating a layout of a semiconductor integrated circuit device as described above will be specifically explained. FIG. 5 is an explanatory diagram showing the layout creation procedure. As in the past, basic gates necessary for a semiconductor integrated circuit device are prepared as standard cells 1 to 22, as shown in FIG. 9(a), and each standard cell 1. 22 are grouped into an appropriate number of stages (three stages in the embodiment) as shown in FIG. 5(a) so that the interconnections 2AL and 3AL in the second and third layers that are connected to each other are short and do not become complicated. At this time, a gap is provided around the standard cell row as a wiring area as in FIG. 9(b), but it is expanded or reduced as appropriate depending on the number of wiring lines.

次に2層目、3層目の配線2AL、 3ALを標準セル
列上の配線領域B、Cを利用して行う。勿論全ての配′
IIIA2AL、 3ALを配′vA領域B、C内ニオ
イテ行イ得ない場合が生じるが、この場合は標準セル列
上の配¥!A?iJ域B、C及び標準セル列の周囲にお
ける従来の配線領域23〜24(第5図Cbl上にハツ
チングを付して示す領域)を用いて行うことは言うまで
もない。これによって各段間に設ける配置1 ml域2
3〜24には配、線2AL、 3ALが無いか又は配4
12AL、 3ALが存在してもその数は大幅に減少し
得ることとなり、全体の集積度が高められ、基板の縮小
が可能となる。
Next, the second and third layer wirings 2AL and 3AL are formed using the wiring areas B and C on the standard cell column. Of course all arrangements
There may be cases where it is not possible to arrange IIIA2AL and 3AL in areas B and C, but in this case it is impossible to arrange them on the standard cell column! A? Needless to say, this is carried out using the conventional wiring areas 23 to 24 (areas indicated by hatching on Cbl in FIG. 5) around the iJ areas B and C and the standard cell row. As a result, arrangement 1 ml area 2 provided between each stage
3 to 24 have no wires, wires 2AL and 3AL, or wires 4
Even if 12AL and 3AL exist, their number can be significantly reduced, increasing the overall degree of integration and making it possible to reduce the size of the substrate.

完成した第5図山)に示す如きレイアウトで所定の性能
が得られるか否かをチエ’yりし、実際の配線長から浮
遊容量を算出し、シュミレーションによって信号の遅延
量を求める。
We check whether the predetermined performance can be obtained with the completed layout as shown in Figure 5, calculate the stray capacitance from the actual wiring length, and determine the amount of signal delay through simulation.

その結果、例えば信号線が長いため、浮遊容量が標準セ
ルの駆動能力に比べて大きくなり、遅延量が大きく、所
望の性能が得られない場合が生じると、標準セル2,1
1について別途用意しである第5図(C)に示す如き標
準セル2’、11’と交換する。第5図(C)に示す標
準セル2′は例えば第4図に示す如きB様であって第5
図(b)に示すセル2とは横幅が同じであるが縦長が標
準セル2のそれよりも大きく、能力も大きくなっている
As a result, for example, because the signal line is long, the stray capacitance becomes larger than the drive capacity of the standard cell, the amount of delay is large, and the desired performance may not be obtained.
1 is replaced with standard cells 2' and 11' as shown in FIG. 5(C), which are separately prepared. The standard cell 2' shown in FIG. 5(C) is, for example, type B as shown in FIG.
Although the width is the same as that of the cell 2 shown in FIG. 2(b), the vertical length is larger than that of the standard cell 2, and the capacity is also larger.

また標準セル11’は第5図(b)の標準セル11と横
幅が同じであるが縦幅が大きく、しかも縦幅方向の両端
部で広幅となっており、その駆動能力は、標準セル11
のそれよりも大きくなっている。これによって標準セル
2’、11’、は交換前の標準セル2.11の横幅と同
じであるから、他の標準セルを移動することがなく交換
が可能となり、しかも遅延の少ない半導体集積回路装置
を簡単に得られることとなる。
Further, the standard cell 11' has the same width as the standard cell 11 shown in FIG.
is larger than that of . As a result, the standard cells 2' and 11' have the same width as the standard cell 2.11 before replacement, so they can be replaced without moving other standard cells, and the semiconductor integrated circuit device has less delay. can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明装置によれば標準セルの上部を配線領
域として利用できて集積度を高め得、チップ面積の縮小
化が可能となるなど本発明は優れた効果を奏するもので
ある。
As described above, according to the device of the present invention, the upper part of the standard cell can be used as a wiring area, the degree of integration can be increased, and the chip area can be reduced.The present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の部分レイアウト図、第2図は第1
図に示す−の標準セルの1層目の配線及び半導体素子の
拡大平面図、第3図は本発明装置における配vASI域
を示す説明図、第4図は本発明装置における他の標準セ
ルを示す拡大平面図、第5図は本発明装置の設計過程を
示す説明図、第6図は従来装置における部分レイアウト
図、第7図は第6図に示す−の標準セルの1層目の配線
及び半導体素子の拡大平面図、第8図は従来装置におけ
る入力端子、出力端子の配置を示す説明図、第9図は従
来装置の設計過程を示す説明図である。 L〜22・・・標準セル 2’、11’・・・標準セル
23、24・・・配’に’A ?iI域 1^L・・・
1層目の配線 2AL・・・2層目の配線 3AL・・
・3層目の配線 A・・・接続点領域  B、C・・・
配線領域 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a partial layout diagram of the device of the present invention, and Fig. 2 is a partial layout diagram of the device of the present invention.
Fig. 3 is an explanatory diagram showing the distribution ASI area in the device of the present invention, and Fig. 4 is an enlarged plan view of the first layer wiring and semiconductor element of the standard cell shown in the figure. 5 is an explanatory diagram showing the design process of the device of the present invention, FIG. 6 is a partial layout diagram of the conventional device, and FIG. 7 is the first layer wiring of the standard cell shown in FIG. 6. and an enlarged plan view of a semiconductor element, FIG. 8 is an explanatory diagram showing the arrangement of input terminals and output terminals in a conventional device, and FIG. 9 is an explanatory diagram showing the design process of the conventional device. L~22...Standard cell 2', 11'...Standard cell 23, 24...'A'? iI area 1^L...
1st layer wiring 2AL... 2nd layer wiring 3AL...
・Third layer wiring A... Connection point area B, C...
Wiring area: In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)1又は複数の半導体素子及びこれらを相互に接続
する1層目の配線を有し、論理機能、駆動能力が異なる
複数種のレイアウトブロックの集合体として構成される
半導体集積回路装置において、 前記レイアウトブロック間の接続を行うべ き2層目の配線を設ける配線層及び3層目の配線を設け
る第3の配線層とを備え、前記1層目の配線、及び2層
目の配線を設ける各配線層は前記レイアウトブロックの
領域上にこの順序で相互に絶縁された状態で積層して設
けてあることを特徴とする半導体集積回路装置。
(1) In a semiconductor integrated circuit device that has one or more semiconductor elements and a first layer of wiring that interconnects these elements, and is configured as a collection of multiple types of layout blocks with different logical functions and driving capabilities, A wiring layer in which a second layer of wiring is provided for connection between the layout blocks, and a third wiring layer in which a third layer of wiring is provided, and the first layer wiring and the second layer wiring are provided. A semiconductor integrated circuit device characterized in that each wiring layer is stacked and provided in this order on the region of the layout block in a mutually insulated state.
JP1539290A 1990-01-24 1990-01-24 Semiconductor integrated circuit device Pending JPH03219658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1539290A JPH03219658A (en) 1990-01-24 1990-01-24 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1539290A JPH03219658A (en) 1990-01-24 1990-01-24 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH03219658A true JPH03219658A (en) 1991-09-27

Family

ID=11887465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1539290A Pending JPH03219658A (en) 1990-01-24 1990-01-24 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH03219658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222151A (en) * 2011-04-08 2012-11-12 Panasonic Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222151A (en) * 2011-04-08 2012-11-12 Panasonic Corp Semiconductor integrated circuit device
US9373611B2 (en) 2011-04-08 2016-06-21 Socionext Inc. Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US6166560A (en) Basic cell structure having a plurality of transistors for master slice type semiconductor integrated circuit device
EP0469728B1 (en) Programmable interconnect architecture
US6091090A (en) Power and signal routing technique for gate array design
JPH10335612A (en) High density gate array cell structure and manufacturing method thereof
JPS61100947A (en) Semiconductor integrated circuit device
JP3281234B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH03219658A (en) Semiconductor integrated circuit device
JPS63108746A (en) programmable logic array
JPH03274764A (en) Semiconductor integrated circuit device
JPH0722510A (en) Method for manufacturing semiconductor integrated circuit device and semiconductor integrated circuit device
JPH0312963A (en) Gate array
JPH0669339A (en) Semiconductor device
JPS6037764A (en) Fixed memory element matrix
JP3132604B2 (en) Semiconductor integrated circuit device
JPS63229733A (en) Master slice LSI
JPH0475665B2 (en)
JPH01112749A (en) Semiconductor integrated circuit
JPH01152642A (en) semiconductor integrated circuit
JP3386004B2 (en) Semiconductor integrated circuit device
JPS601844A (en) Semiconductor integrated circuit device
JPH06140566A (en) Semiconductor integrated circuit
JPS60175438A (en) Semiconductor integrated circuit device
JP2001189386A (en) Method for laying out semiconductor integrated circuit
JPH09331040A (en) Semiconductor integrated circuit
JPS62210641A (en) Interconnection method for semiconductor integrated circuit