[go: up one dir, main page]

JPH03219031A - Contact material of silver-oxides series - Google Patents

Contact material of silver-oxides series

Info

Publication number
JPH03219031A
JPH03219031A JP2012215A JP1221590A JPH03219031A JP H03219031 A JPH03219031 A JP H03219031A JP 2012215 A JP2012215 A JP 2012215A JP 1221590 A JP1221590 A JP 1221590A JP H03219031 A JPH03219031 A JP H03219031A
Authority
JP
Japan
Prior art keywords
oxide
oxides
contact material
silver
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012215A
Other languages
Japanese (ja)
Inventor
Hironobu Yamamoto
博信 山本
Takashi Nara
奈良 喬
Sadao Sato
貞夫 佐藤
Yasuhiro Sagara
相良 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP2012215A priority Critical patent/JPH03219031A/en
Publication of JPH03219031A publication Critical patent/JPH03219031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PURPOSE:To obtain an electrical contact material excellent in arc consumption resistance and deposition resistance as well as free from abnormal consumption by compositely adding the oxides of Sn and Te to an Ag-oxides series electrical contact obtd. by dispersing each oxide of Sb, Cu, In and Mn into Ag. CONSTITUTION:An Sn oxide by 0.05 to 5.0wt.% as metallic components and a Te oxide by 0.01 to 2.0wt.% as metallic component are compositely added to an Ag-oxides series electrical contact material obtd. by incorporating the oxide of Sb by 0.1 to 6.2wt.% as metallic component to Ag and, furthermore, uniformly incorporating each oxide of Cu, In and Mn by 0.05 to 5wt.% as metallic component thereto. Or, one or more kinds among the oxides of Fe, Ni and Co by 0.01 to 0.5wt.% as metallic component are moreover added thereto, by which the electrical contact material having excellent arc consumption resistance and deposition resistance as well as free from the abnormal consumption of either contact can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はAgを−1ミ成分とし、その中に金属酸化物を
分n交した銀−酸化物系の接点材料に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silver-oxide contact material in which Ag is a -1 component and a metal oxide is mixed therein.

(従来の技術) 従来、電気接点材料としては、いろいろなものが用いら
れているが、とりわけへg−CdO接点が広く使用され
ている。
(Prior Art) Conventionally, various materials have been used as electrical contact materials, but heg-CdO contacts have been particularly widely used.

AgにCdOとSb、Sn、In、Mn %の酸化物を
分散させた接点は、耐溶着性、耐アーク性、耐消耗性、
接触安定性などの諸接点特性が優れているため各種スイ
フチ、コンタクタ−、ブレーカ−など小から大電流領域
まで広く用いられている。
Contacts made of Ag with CdO and oxides of Sb, Sn, In, and Mn dispersed have excellent welding resistance, arc resistance, wear resistance,
Due to its excellent contact characteristics such as contact stability, it is widely used in various swifts, contactors, breakers, etc. from small to large current ranges.

AgマトリックスにCdOを分散させることに、接点表
面の清浄作用や溶着力の軽減などの電気的緒特性を改善
するものとして確かに効果的である。
Dispersing CdO in the Ag matrix is certainly effective in improving electrical characteristics such as cleaning the contact surface and reducing welding force.

しかしこのような効果を充分果してきたのは特に交流回
路であり、極性の変化しない直流回路で使用したときは
一方の極から他方の極へ転移が起こり易くなり接触状態
が非常に不安定になる。
However, this effect has been particularly effective in AC circuits, and when used in DC circuits where the polarity does not change, transition easily occurs from one pole to the other, making the contact state extremely unstable. .

また、近時各産業分野における合理化、自動化は11覚
ましい発達を遂げているが、これに伴ない装置に大型化
、複雑化する傾向にある一方、これら装置の制御系はむ
しろ高い精密度を要求されるため、急速に電子化制御に
移行している。
Furthermore, although rationalization and automation in various industrial fields have made remarkable progress in recent years, this has led to a tendency for equipment to become larger and more complex. Due to demand, there is a rapid shift to electronic control.

電気回路の断続において、電子化された正確な制御に制
御角が一定となり、接点のONの時期とOFFの時期が
ずれることなく常に一定の状!Eにコントロールされる
こととなり、この結果接点開閉時には疑似的な直流現象
が起こることにより、方の極から他方の極へ接点材質が
層状に維持し始め、接触安定性が著しく損なわれ、時間
の経過とともにその堆積物が欠落し急激な接点消耗へと
発カー(することとなる。
When electrical circuits are switched on and off, the control angle is constant due to accurate electronic control, and the ON and OFF timings of the contacts are always constant without any lag! As a result, a pseudo direct current phenomenon occurs when the contact opens and closes, and the contact material begins to maintain a layered structure from one pole to the other, significantly impairing contact stability and increasing the time. Over time, the deposits will be lost and the contacts will rapidly wear out.

そこで、本願人は、思考基盤は、電気接点の表面の清浄
作用やアークに対する諸現象、たとえば消弧作用などが
添加する酸化物の物性特にその蒸気圧の温度特性に最も
関係が深いとする考え方に基づいて既に次のような研究
をすすめてきている。
Therefore, the applicant's basic thinking is that the cleaning effect on the surface of electrical contacts and various phenomena against arcs, such as arc-extinguishing effects, are most closely related to the physical properties of the added oxide, especially its vapor pressure and temperature characteristics. Based on this, the following research has already been carried out.

即ち、当該蒸気圧に関し、約500〜1,500℃の温
度範囲でCdOの)ん気圧より高いSb酸化物に右目し
、これをAg中に分散させることによりAg−Cd0系
のものと同等量トの接点表面清浄作用が発揮し得たこと
は、特願昭48−Ei1188(特公昭53−5’1e
3)に明示の如く確認され、更にCu、In、Mn、S
n酸化物を分散させた系においても、特に耐アーク消耗
性、耐溶71P1に効果的なことを確認している。
That is, with regard to the vapor pressure, Sb oxides having a vapor pressure higher than that of CdO in the temperature range of about 500 to 1,500°C are selected, and by dispersing them in Ag, the same amount as that of the Ag-Cd0 system is produced. The fact that the contact surface cleaning effect of
3), and furthermore, Cu, In, Mn, S
It has been confirmed that a system in which n-oxide is dispersed is particularly effective in improving arc wear resistance and melting resistance 71P1.

ところがこのAgにSb酸化物あるいはSb酸化物とC
u、In、Mn、Sn酸化物を分散させた電気接点材料
について種々な回路条件で試験を行ったところ前述のよ
うなある条件下で接点を開閉するとどちらか・方の極に
接点材料がi([積し始め、その堆積物にアークが集中
して異常消耗に発展することがわかった。
However, this Ag contains Sb oxide or Sb oxide and C.
Tests were conducted on electrical contact materials in which U, In, Mn, and Sn oxides were dispersed under various circuit conditions, and it was found that when the contacts were opened and closed under certain conditions as mentioned above, the contact material was attached to either pole. (It was found that when the deposits started to accumulate, arcs were concentrated in the deposits, leading to abnormal consumption.

(発明が解決しようとする課題) そこで、L記の異常消耗につき、その原因を追求した。(Problem to be solved by the invention) Therefore, we investigated the cause of the abnormal wear and tear in Book L.

ここで、通常電気接点を開閉すると、接点間には激しい
アークが発生し、接点表面はかなりの高温にさらネれる
When electrical contacts are normally opened and closed, a strong arc is generated between the contacts, and the contact surfaces are exposed to considerably high temperatures.

このとき接点表面が、接点特性に有効な成分が逸散して
消耗するのであり、この際失われた効果的な成分が接点
内部から表層部へ間断なく補われるのが理想的な接点材
料といえる。
At this time, the contact surface wears out as the effective components for the contact characteristics dissipate, and the ideal contact material is such that the effective components lost at this time are continuously replenished from the inside of the contact to the surface layer. I can say that.

ところで、前掲(1) Ag−9b−Cu−ln−Mn
−9n系ついては、この効果的成分が順調に供給されな
いため前述のような現象が起こったものと考えられる。
By the way, the above (1) Ag-9b-Cu-ln-Mn
Regarding the -9n series, it is thought that the above-mentioned phenomenon occurred because this effective component was not supplied smoothly.

これらについて詳細な検討を進めた結果接点内部から表
層への順調な有効成分の供給力はアークによる表層成分
の揮発によって促がされる点に着11シ酸化物の75気
圧と深い関係があると推定した。
After conducting detailed studies on these issues, we found that the smooth supply of active ingredients from the inside of the contact to the surface layer is facilitated by the volatilization of the surface layer components due to the arc, and that there is a deep relationship with the 75 atm of 11 silica oxide. estimated.

そこでSb酸化物の蒸気圧を基準とし、それより高い蒸
気圧を有する各種酸化物とSb酸化物とを共存した系で
実験を繰り返した結果、AgにSbとCu。
Therefore, using the vapor pressure of Sb oxide as a standard, we repeated experiments in systems in which various oxides with higher vapor pressures and Sb oxide coexisted, and as a result, we found that Ag, Sb and Cu.

In、Mnの各酸化物およびSnとTeの各酸化物とを
複合添加することによって有効成分の表層への供給が順
調になり層状堆積防止に極めて大きい効果があることを
見い出したものであり、本願請求項(1)の接点材料に
あっては、このようにすることで5種々な回路条件に適
合し、しかも層状の堆積物や欠ノ^などによる異常な消
耗のない電気接点材料゛lを提供しようとするものであ
り、請求項(2)では、さらに適j賃のFe、Ni、C
oM化物を一種以」−添加することで、さらにその特性
の向」−を意図したものである。
It has been discovered that the combined addition of In and Mn oxides and Sn and Te oxides allows the effective ingredients to be smoothly supplied to the surface layer and has an extremely large effect on preventing layered deposition. By doing so, the contact material of claim (1) of the present application can be adapted to various circuit conditions and is free from abnormal wear due to layered deposits or defects. According to claim (2), Fe, Ni, C and
By adding one or more oM compounds, it is intended to further improve the properties.

(課題を解決するための手段) 本発明はl−記の目的を達成するために、請求項(1)
では、銀をIX成分とし、これに金属成分が01〜6.
2重J、t%となるSb酸化物と、金属成分が0 、0
5〜5 屯、lJ%となるCu、In、Mnの酸化物と
、金属成分が0.05〜5千ψ%となるSnの酸化物と
更に金属成分が0.01〜2屯量%Te酸化物とが分散
されていることを特徴とする銀−酸化物系の接点材ネ゛
lを提供しようとしており、さらに請求項(2)では、
L記請求項(1)に、0.O1〜0.5主項、%となる
Fe、 Ni、Co酸化物の一種以1−をも分散させる
ようにしたことを特徴とする銀−酸化物系の接点材料を
提供しようとしている。
(Means for Solving the Problems) In order to achieve the object set forth in item (1), the present invention is directed to claim (1).
In this case, silver is used as the IX component, and metal components are added to it as 01 to 6.
Double J, t% Sb oxide and metal component 0,0
Cu, In, and Mn oxides with a metal content of 5 to 5 tons, lJ%, Sn oxides with a metal component of 0.05 to 5,000 ψ%, and further metal components of 0.01 to 2 tons, Te. The present invention seeks to provide a silver-oxide contact material layer characterized in that silver-oxide is dispersed therein, and further, in claim (2),
Claim L (1) includes 0. The present invention aims to provide a silver-oxide contact material characterized in that one or more of Fe, Ni, and Co oxides with an O1 to 0.5% main term are also dispersed therein.

(実施例) 本発明を後記具体例を示して、さらに詳記すると、先づ
このような電気接点材料を製造するには既知のように、
焼結法によっても内部酸化法によってもよいが、溶製内
部酸化法ではSbとTeおよびSnを添加したAg合金
を酸化雰囲気中で高温に保持してその表面より酸素を侵
入させ、Sb、Cu、In。
(Example) The present invention will be described in more detail with reference to specific examples below. First, in order to manufacture such an electrical contact material, as is known,
Either the sintering method or the internal oxidation method may be used, but in the infusion internal oxidation method, an Ag alloy containing Sb, Te, and Sn is held at a high temperature in an oxidizing atmosphere to allow oxygen to enter from the surface. , In.

Mn、Te、Snその他の元素を選択的に酸化するもの
であり、長時間該酸化を続けることによりAgマトリン
クス中に!1/、該酸化物を分散せしめて電気接点材木
;(を製するものである。
It selectively oxidizes Mn, Te, Sn, and other elements, and by continuing the oxidation for a long time, it becomes oxidized in the Ag matrix! 1/ Electrical contact material is produced by dispersing the oxide.

ここで、AgへのSbとTeとCu4n−MnおよびS
nの添加−1の1−限を夫々6.2玉に%と2毛は%お
よび5重量%に限定しなければならない理由は、Ag5
b合金のα固溶体におけるSbの最大固溶限が300°
Cで6.2取量%であり、この添加にを超過するSbを
添加した場合には著しく加T性を阻害することとなり、
星産的加Tが不能となるからでありAg4こ対し、 C
u−1n−Hnの添加は30%程度の量でも充分可能だ
が、上記の通り既にAgに最大6.2重量%のSbを含
んだ合金系に更にSn−Cu−In−Mnを添加する場
合であると、Agへの固溶度が急に減少すると共に各添
加元素が5重量%を越えた添加であるとM延性が著しく
低下し、所望形状までの加工が極めて困難となるからで
ある。
Here, Sb, Te, Cu4n-Mn and S
The reason why the addition of n-1 must be limited to 6.2% and 5% by weight, respectively, is that Ag5
The maximum solid solubility limit of Sb in α solid solution of b alloy is 300°
The amount of C is 6.2%, and if Sb is added in excess of this amount, the T addition properties will be significantly inhibited.
This is because star production becomes impossible, and as opposed to Ag4, C
It is possible to add u-1n-Hn in an amount of about 30%, but as mentioned above, when Sn-Cu-In-Mn is further added to an alloy system that already contains up to 6.2% by weight of Sb in Ag. This is because the solid solubility in Ag suddenly decreases, and if each additive element is added in excess of 5% by weight, the M ductility decreases significantly, making it extremely difficult to process it into the desired shape. .

またTeの−(二限を上記の如く2重量%に限定した理
由は、TeのA、に対する溶解度が低いことに加え、こ
れ以(−の添加では塑性加工が極めて困難なためである
Further, the reason why the limit of Te (-) is limited to 2% by weight as mentioned above is that in addition to the low solubility of Te in A, plastic working is extremely difficult with the addition of (-).

力、Sb、Te、Cu、In、Mn、Sn c7)添加
量が夫hO,1屯j11%、0.01重績%、0.05
重績%未猫の場合は後述する添加効果力胃すられない。
Power, Sb, Te, Cu, In, Mn, Sn c7) Addition amount is 11%, 0.01% by weight, 0.05
In the case of a non-weighted cat, the added effects described below will not even affect the stomach.

次に請求項(2)においてFe族元素の添加にを0、O
1〜0.5重〜1:%に限定した理由は、Agに対する
Fe族元素の固溶度が0.5重量%を超えると急激に減
少するためAgマトリック中に偏在、偏析して加l性を
トII害し0.O1屯rl″L%未満の添加では内部酸
化組織の調整に対する効果が低いためである。
Next, in claim (2), the addition of Fe group elements is 0, O.
The reason why the solid solubility of Fe group elements in Ag is limited to 1 to 0.5 wt. 0. This is because addition of less than O1 ton rl''L% has a low effect on adjusting the internal oxidation structure.

ここで具体例を示せば、99.5重量%以にの純度をイ
JするSb、Te、Cu、In、Mn、SnおよびFe
、Ni、Coを原1゛lとし下記(表)に示す組成合金
を次の工程で製作した。
Specific examples include Sb, Te, Cu, In, Mn, Sn, and Fe having a purity of 99.5% by weight or more.
, Ni, and Co were used as raw materials to produce an alloy with the composition shown in the table below in the following steps.

高周波誘導溶解炉で、溶解、鋳造したインゴフトを熱間
鍛造表面切削後、その−面にAg板を熱圧着して、ろう
材用のAg層を形成する。
After hot forging the surface of an ingot melted and cast in a high frequency induction melting furnace, an Ag plate is thermocompression bonded to the negative surface to form an Ag layer for a brazing filler metal.

次に5該素材を冷間圧延して厚さ2marの板にした後
直径6IIIffiの円盤状に打抜き、これを720℃
の醇化雰囲気中でSb、Teその他の添加金属を内部耐
化して夫々本発明合金((A)〜(H))を得た。
5 Next, the material was cold rolled into a plate with a thickness of 2mar, and then punched into a disk shape with a diameter of 6IIIffi, which was heated to 720°C.
The alloys of the present invention ((A) to (H)) were obtained by internally hardening Sb, Te, and other additive metals in a melting atmosphere.

比較のためAg−10重量%Cd他従来例合金をつくり
実験に供した。
For comparison, conventional alloys such as Ag-10 wt % Cd and others were prepared and subjected to experiments.

接点試験は、接触抵抗とアーク消耗量および層状堆桔の
傾向について、夫々ASTM接点試験機(AC200V
、50A) 、!−7−り消耗試験機(AC200V、
1OA93よび市販スイッチによる実機テス) (AC
:200V、35A)を行って評価した結果が別表であ
る。
The contact test was conducted using an ASTM contact tester (AC200V) for contact resistance, arc consumption, and layered deposit tendency.
,50A) ,! -7-ri wear tester (AC200V,
(Actual test using 1OA93 and commercially available switches) (AC
:200V, 35A) and the evaluation results are shown in the attached table.

(発明の効果) 請求項(+)(2)によるときは、別表に示される如く
、Ag−10Cd h4従来例の層状堆積物に対し、本
発明になる(A)〜(H)合金は何れも0.1mm″以
下の極〈微小であり、SbとTeの複合添加が極めて効
果的であることを示している。
(Effect of the invention) According to claim (+) (2), as shown in the attached table, which of the alloys (A) to (H) according to the present invention is applied to the layered deposit of Ag-10Cd h4 conventional example. It is also extremely small, less than 0.1 mm'', indicating that the combined addition of Sb and Te is extremely effective.

しかし、これはAgに対するSb、!=Teの複合添加
が条ヂ1であり、Te酸化物のみの添加では層状堆積物
防1!に対する効果が著しく低いことを念のため述べて
おく。
However, this is Sb against Ag,! = Composite addition of Te is 1, and addition of only Te oxide prevents layered deposits 1! I would like to point out that the effectiveness of this method is extremely low.

また、アーク消耗ψについても、本発明合金は何れも低
く、アークに対する耐消耗件部ち消弧特性にも効果的に
作用している。
Furthermore, the arc wear ψ is low in all of the alloys of the present invention, and the alloys have an effective effect on arc wear resistance and arc extinguishing properties.

ネらに、請求項(2)のように第■族元素のFe。Additionally, Fe, which is a group Ⅰ element, as claimed in claim (2).

Ni、Coの一種または二種以」二を添加することは、
Agマトリックス中に析11するSbとTeの酸化物と
Cu、In、Mn酸化物およびSn酸化物を均一に分散
せしむると共に結晶粒を微細化するのに効果がある。
Adding one or more of Ni and Co
It is effective in uniformly dispersing the Sb and Te oxides, Cu, In, Mn oxides, and Sn oxides precipitated in the Ag matrix, and also in refining crystal grains.

Claims (2)

【特許請求の範囲】[Claims] (1)銀を主成分とし、これに金属成分が0.1〜6.
2重量%となるSb酸化物と、金属成分が0.05〜5
重量%となるCu、In、Mnの酸化物と、金属成分が
0.05〜5重量%となるSnの酸化物と更に金属成分
が0.01〜2重量%Te酸化物とが分散されているこ
とを特徴とする銀−酸化物系の接点材料。
(1) The main component is silver, and the metal component is 0.1 to 6.
2% by weight of Sb oxide and 0.05 to 5% of the metal component.
Cu, In, and Mn oxides with a weight percent of oxides, Sn oxides with a metal component of 0.05 to 5 weight percent, and Te oxide with a metal component of 0.01 to 2 weight percent are dispersed. A silver-oxide contact material characterized by:
(2)銀を主成分とし、これに金属成分が0.1〜6.
2重量%となるSb酸化物と、金属成分が0.05〜5
重量%となるCu、In、Mnの酸化物と、金属成分が
0.05〜5重量%となるSnの酸化物と、金属成分が
0.01〜2重量%Te酸化物と、さらに金属成分とし
て0.01〜0.5重量%となるFe、Ni、Co酸化
物の一種以上とが分散されていることを特徴とする銀−
酸化物系の接点材料。
(2) The main component is silver, and the metal component is 0.1 to 6.
2% by weight of Sb oxide and 0.05 to 5% of the metal component.
oxides of Cu, In, and Mn with a weight% of weight%, an oxide of Sn with a metal component of 0.05 to 5% by weight, a Te oxide with a metal component of 0.01 to 2% by weight, and a further metal component. 0.01 to 0.5% by weight of one or more of Fe, Ni, and Co oxides are dispersed therein.
Oxide-based contact material.
JP2012215A 1990-01-22 1990-01-22 Contact material of silver-oxides series Pending JPH03219031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215A JPH03219031A (en) 1990-01-22 1990-01-22 Contact material of silver-oxides series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215A JPH03219031A (en) 1990-01-22 1990-01-22 Contact material of silver-oxides series

Publications (1)

Publication Number Publication Date
JPH03219031A true JPH03219031A (en) 1991-09-26

Family

ID=11799159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215A Pending JPH03219031A (en) 1990-01-22 1990-01-22 Contact material of silver-oxides series

Country Status (1)

Country Link
JP (1) JPH03219031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279134A (en) * 1991-12-25 1994-01-18 Kabushiki Kaisha Toshiba Operation panel with a display unit for use in washing machines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110639A (en) * 1981-12-23 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JPS62158839A (en) * 1985-12-30 1987-07-14 Tokuriki Honten Co Ltd Silver-oxide type contact point material
JPS6318027A (en) * 1986-07-08 1988-01-25 Fuji Electric Co Ltd Contact material of silver-metal oxide series and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110639A (en) * 1981-12-23 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JPS62158839A (en) * 1985-12-30 1987-07-14 Tokuriki Honten Co Ltd Silver-oxide type contact point material
JPS6318027A (en) * 1986-07-08 1988-01-25 Fuji Electric Co Ltd Contact material of silver-metal oxide series and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279134A (en) * 1991-12-25 1994-01-18 Kabushiki Kaisha Toshiba Operation panel with a display unit for use in washing machines

Similar Documents

Publication Publication Date Title
CN102304640A (en) Silver-base rare-earth alloy material and preparation method and application thereof
JPH04311543A (en) Ag-sno-ino electrical contact material and production thereof
JPS62158839A (en) Silver-oxide type contact point material
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
JPS62158838A (en) Silver-oxide type contact point material
JPH03219031A (en) Contact material of silver-oxides series
JPH03219032A (en) Contact material of silver-oxides series
JPH03215638A (en) Silver-oxides series contact material
JPS62151537A (en) Contact point material of silver oxide series
JPH03215641A (en) Silver-oxides series contact material
JPS62151536A (en) Contact point material of silver oxide series
JPH03215637A (en) Contact material of oxide series
JPH03215640A (en) Silver-oxides series contact material
JPH03215639A (en) Silver-oxides series contact material
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH05239572A (en) Ag-sn oxide type electrical contact material excellent in internal oxidizability
JPS61246337A (en) Contact material
JPS6355822A (en) Contact material
JPS6367537B2 (en)
JPH0371522A (en) Electric contact material and manufacture thereof
JPS6338545A (en) High strength conductive copper alloy
EP1584696B1 (en) METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRIC CONTACT MATERIAL AND ITS PRODUCT
JPS58144445A (en) Silver-oxide for contact material
JPH04314837A (en) Electrical contact material of silver oxide series
JPS61246336A (en) Contact material