[go: up one dir, main page]

JPH03218660A - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements

Info

Publication number
JPH03218660A
JPH03218660A JP16748490A JP16748490A JPH03218660A JP H03218660 A JPH03218660 A JP H03218660A JP 16748490 A JP16748490 A JP 16748490A JP 16748490 A JP16748490 A JP 16748490A JP H03218660 A JPH03218660 A JP H03218660A
Authority
JP
Japan
Prior art keywords
lead terminal
external lead
semiconductor element
outer lead
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16748490A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16748490A priority Critical patent/JPH03218660A/en
Publication of JPH03218660A publication Critical patent/JPH03218660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce noises generated in an outer lead terminal and the attenuation of signal in the outer lead terminal to the irreducible minimum by a method wherein the outer lead terminal is formed of conductive material specified im magnetic permeability, thermal expansion coefficient, and electrical conductivity. CONSTITUTION:An outer lead terminal 5 is formed of material whose magnetic permeability, thermal expansion coefficient, and electrical conductivity are 210 (CGS) or below, 5-12X10<-6>/ deg.C, and 10% (IACS) or above respectively. Therefore, as the outer lead terminal 5 is low in magnetic permeability, a large self- inductance is never induced in it even if a current is made to flow through the lead terminal 5. By this setup, noises caused by a counter electromotive force induced by a self-inductance can be minimized, a semiconductor element 4 housed in a package operates always normally, and as the lead terminal 5 is high in electrical conductivity and a current flows easily through it, the outer lead terminal 5 becomes high in signal transmission speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a semiconductor element housing package that houses a semiconductor element.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パッケージは、絶縁基体と蓋体とから成り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構成されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形成すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
れに被着させた封止用ガラス部材を溶融一体化させるこ
とによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a glass-sealed semiconductor element accommodating package sealed by glass welding, consists of an insulating base and a lid body, and the semiconductor element is housed inside. The device is composed of an insulating container having a cavity to open the container, and an external lead terminal for electrically connecting the semiconductor element housed in the container to an external electric circuit. After forming a glass member for sealing on the surface in advance, fixing external lead terminals to the main surface of the insulating substrate, and connecting each electrode of the semiconductor element and the external lead terminal by wire bonding, the insulating substrate and the lid are attached. The semiconductor element is hermetically sealed inside by melting and integrating the sealing glass members attached to each of the parts.

(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納用
パッケージは通常、外部リード端子がコバール(29W
t%Ni−16Wt%Co−55Wt%Fe合金)や4
2Alloy(42Wt%Ni−58Wt%Fe合金)
の導電性材料から成っており、該コバールや42All
oy等は透磁率が高く、且つ導電率が低いことから以下
に述べる欠点を有する。
(Problem to be Solved by the Invention) However, in this conventional glass-sealed package for storing semiconductor elements, the external lead terminals are usually Kovar (29W).
t%Ni-16Wt%Co-55Wt%Fe alloy) and 4
2Alloy (42Wt%Ni-58Wt%Fe alloy)
It is made of conductive materials such as Kovar and 42All.
Oy and the like have high magnetic permeability and low electrical conductivity, so they have the following drawbacks.

即ち、 ■コバールや42Alloyは鉄(Fe)、ニッケル(
Ni)、コバルト(Co)といった強磁性体金属のみか
ら成っており、その透磁率は250〜700 (CGS
)と高い。
That is, ■ Kovar and 42Alloy are iron (Fe) and nickel (
It is made only of ferromagnetic metals such as Ni) and cobalt (Co), and its magnetic permeability is 250 to 700 (CGS
) and high.

そのためこのコバールや42Alloy等から成る外部
リード端子に電流が流れると外部リード端子中に透磁率
に比例した大きな自己インダクタンスが発生し、これが
逆起電力を誘発してノイズとなると共に、該ノイズが半
導体素子に入力されて半導体素子に誤動作を生じさせる
、 ■コバールや42Alloyはその導電率が3.0〜3
.5%(IACS)と低い。そのためこのコバールや4
2Alloy等から成る外部リード端子に信号を伝搬さ
せた場合、信号の伝搬速度が極めて遅いものとなり、高
速駆動を行う半導体素子はその収容が不可となってしま
う、 ■半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数か大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リ一ド端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42AIIoyの導電率が低いことと
相俊って電気抵抗が極めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせる、等の欠点を有し
ていた。
Therefore, when a current flows through the external lead terminal made of Kovar, 42Alloy, etc., a large self-inductance proportional to the magnetic permeability is generated in the external lead terminal, which induces back electromotive force and becomes noise. Kovar and 42Alloy have a conductivity of 3.0 to 3.
.. It is as low as 5% (IACS). Therefore, this Kobar and 4
When a signal is propagated to an external lead terminal made of 2Alloy, etc., the signal propagation speed becomes extremely slow, making it impossible to accommodate semiconductor devices that drive at high speed. With the progress of higher density and higher integration of semiconductor elements to be accommodated, the number of electrodes on semiconductor elements has increased significantly, and the line width of external lead terminals that connect each electrode of semiconductor elements to an external electric circuit has increased. It is also becoming extremely thin. Therefore, the electrical resistance of the external lead terminal has become extremely large due to the low conductivity of Kovar and 42AIIoy described in (2) above, and when a signal is propagated to the external lead terminal, the external lead terminal The signal is greatly attenuated due to the electrical resistance of the device, making it impossible to accurately input the signal to the semiconductor device housed inside the device, resulting in malfunction of the semiconductor device.

(発明の目的) 本発明は上記諸欠点に鑑み案出されたものでその目的は
外部リード端子で発生するノイズ及び外部リード端子に
おける信号の減衰を極小となし、内部に収容する半導体
素子への信号の入出力を確実に行うことを可能として半
導体素子を長期間にわたり正常、且つ安定に作動させる
ことができる半導体素子収納用パッケージを提供するこ
とにある。
(Object of the Invention) The present invention was devised in view of the above-mentioned drawbacks, and its purpose is to minimize the noise generated at the external lead terminals and the attenuation of signals at the external lead terminals, and to minimize the noise generated at the external lead terminals and the attenuation of signals at the external lead terminals. It is an object of the present invention to provide a package for storing a semiconductor element, which enables reliable input and output of signals and allows the semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用パッケージを提供
することにある。
Another object of the present invention is to provide a semiconductor device storage package that can accommodate semiconductor devices that operate at high speed.

(課題を解決するための手段) 本発明は絶縁基体と蓋体とから成り、内部に半導体素子
を収容するための空所を有する容器と、該容器内に収容
される半導体素子を外部電気回路に接続するための外部
リード端子とから成る半導体素子収納用パッケージにお
いて、前記外部リード端子を透磁率210 (CGS)
以下、熱膨張係数5〜12X 10−’/ ’C1導電
率lO%(IACS)以上の導電性材料で形成したこと
を特徴とするものである。
(Means for Solving the Problems) The present invention provides a container comprising an insulating base and a lid and having a cavity for accommodating a semiconductor element therein, and an external electric circuit for connecting the semiconductor element housed in the container. In a package for storing a semiconductor element, the external lead terminal has a magnetic permeability of 210 (CGS).
Hereinafter, it is characterized by being formed of a conductive material having a thermal expansion coefficient of 5 to 12X 10-'/'C1 conductivity 1O% (IACS) or more.

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be explained in detail based on the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パッケー
ジの一実施例を示し、1は絶縁基体、2は蓋体である。
FIGS. 1 and 2 show an embodiment of the semiconductor element storage package of the present invention, where 1 is an insulating base and 2 is a lid.

この絶縁基体1と蓋体2とにより絶縁;容器3が構成さ
れる。
The insulating base 1 and the lid 2 constitute an insulating container 3.

前記絶縁基体1及び蓋体2にはそれぞれの中央部に半導
体素子を収容する空所を形成するための凹部が設けてあ
り、絶縁基体lの凹部底面には半導体素子4が樹脂、ガ
ラス、ロウ材等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center thereof to form a cavity for accommodating a semiconductor element, and the semiconductor element 4 is placed in resin, glass, or wax on the bottom of the recess of the insulating base 1. It is attached and fixed via adhesive such as material.

前記絶縁基体l及び蓋体2はアルミナセラミックス、ス
テアタイトセラミックス、スピネルセラミックス、フォ
ルステライトセラミックス等から成り、絶縁基体l及び
蓋体2か例えばアルミナセラミックスから成る場合には
第1図に示すような絶縁基体l及び蓋体2に対応した形
状を有するプレス型内にアルミナセラミックスの原料粉
末を充填させるとともに一定圧力を印加して成形し、し
かる後、成形品を約1500℃の温度で焼成することに
よって製作される。
The insulating base 1 and the lid 2 are made of alumina ceramics, steatite ceramics, spinel ceramics, forsterite ceramics, etc. When the insulating base 1 and the lid 2 are made of alumina ceramics, for example, the insulation as shown in FIG. By filling raw material powder of alumina ceramics into a press mold having a shape corresponding to the base body 1 and the lid body 2 and molding it by applying a constant pressure, the molded product is then fired at a temperature of about 1500 ° C. Manufactured.

尚、前記絶縁基体l及び蓋体2を形成するアルミナセラ
ミックス、ステアタイトセラミックス、スピネルセラミ
ックス、フォルステライトセラミックスはその各々の熱
膨張係数が6.5  〜7.5×10−@/ ’C, 
7.0〜8.5X10−’/ ’C, 7.0〜8.5
×10−’/ ’C, 10.0〜11.O XIO−
”/ ’Cであり、後述する封止用ガラス部材の熱膨張
係数との関係において絶縁基体l及び蓋体2と封止用ガ
ラス部材間に大きな熱膨張係数の差が生じないようなセ
ラミックスか適宜選択使用される。
The alumina ceramics, steatite ceramics, spinel ceramics, and forsterite ceramics forming the insulating base 1 and the lid 2 each have a coefficient of thermal expansion of 6.5 to 7.5×10-@/'C,
7.0~8.5X10-'/'C, 7.0~8.5
×10-'/'C, 10.0-11. OXIO-
” / 'C, and is made of ceramic that does not cause a large difference in thermal expansion coefficient between the insulating base l and the lid 2 and the sealing glass member in relation to the thermal expansion coefficient of the sealing glass member described later. Select and use as appropriate.

また前記絶縁基体l及び蓋体2にはその相対向する主面
に封止用のガラス部材6か予め被着形成されており、該
絶縁基体l及び蓋体2の各々の被着されている封土用ガ
ラス部材6を加熱溶融させ一体化させることにより絶縁
容器3内の半導体素子4を気密に封止する。
Further, a sealing glass member 6 is formed in advance on the opposing main surfaces of the insulating base l and the lid 2, and each of the insulating base l and the lid 2 is coated with a glass member 6 for sealing. The semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the earthenware glass member 6 to integrate it.

前記絶縁基体l及び蓋体2の相対向する主面に被着され
る封止用ガラス部材6は、例えばホウケイ酸鉛系のガラ
スから成り、原料粉末としての酸化鉛(PbO) 70
〜90 Wt%、酸化ホウ素(B20z)tz〜13 
Wt%、シリカ(Si02) 0.5〜3.0Wt%及
びアルミナ(Ai’ 203) 0.5〜3.0Wt%
を混合するとともに該混合粉末を950〜1100゜C
の温度て加熱溶融させることによって製作される。この
ホウケイ酸鉛系のガラスはその熱膨張係数がlθ〜12
XlO−’/”Cてあり、上記ガラスにチタン酸鉛(P
bTiOa) ,βユークリプタイト(Li2Al2S
i208)、コージライト(Mg2A14Si501f
i)、ジルコン(ZrSi04) 、酸化スズ(SnO
2)、ウイレマイト( Zn2Si04)等を20〜5
0Wt%を添加含有させるとその熱膨張係数か5.0〜
10. O X 10−@/’Cの範囲に可変される。
The sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2 is made of lead borosilicate glass, for example, and contains lead oxide (PbO) 70 as a raw material powder.
~90 Wt%, boron oxide (B20z)tz~13
Wt%, silica (Si02) 0.5 to 3.0 Wt% and alumina (Ai' 203) 0.5 to 3.0 Wt%
and the mixed powder at 950-1100°C.
It is manufactured by heating and melting at a temperature of . This lead borosilicate glass has a coefficient of thermal expansion of lθ~12
XlO-'/''C, and lead titanate (P) is added to the above glass.
bTiOa), β-eucryptite (Li2Al2S
i208), cordierite (Mg2A14Si501f
i), zircon (ZrSi04), tin oxide (SnO
2), Willemite (Zn2Si04) etc. 20-5
When 0 Wt% is added, the coefficient of thermal expansion is 5.0~
10. It is variable in the range of OX 10-@/'C.

前記封止用ガラス部材6はその熱膨張係数か5.0〜1
2X10−’/’Cてあり、絶縁基体l及び蓋体2の各
々の熱膨張係数と近似することから絶縁基体l及び蓋体
2の各々に被着されている封止用ガラス部材6を加熱溶
融させ一体化させることにより絶縁容器3内の半導体素
子4を気密に封止する際、絶縁基体l及び蓋体2と封止
用ガラス部材6との間には両者の熱膨張係数の相違に起
因する熱応力が発生することは殆となく、絶縁基体1と
蓋体2とを封止用ガラス部材6を介し強固に接合するこ
とが可能となる。
The sealing glass member 6 has a thermal expansion coefficient of 5.0 to 1.
2X10-'/'C, which approximates the coefficient of thermal expansion of each of the insulating base 1 and the lid 2, so the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 is heated. When the semiconductor element 4 in the insulating container 3 is hermetically sealed by melting and integrating, there is a difference in thermal expansion coefficient between the insulating base l and the lid 2 and the sealing glass member 6. There is almost no thermal stress caused by this, and it becomes possible to firmly join the insulating base 1 and the lid 2 via the sealing glass member 6.

尚、前記封止用ガラス部材6は例えば、ホウケイ酸鉛系
ガラスの粉末に適当な有機溶剤、溶媒を添加して得たガ
ラスペーストを従来周知の厚膜手法を採用することによ
り絶縁基体1及び蓋体2の相対向する主面に被着形成さ
れる。
The sealing glass member 6 is formed by applying a conventionally known thick film method to a glass paste obtained by adding an appropriate organic solvent or solvent to powder of lead borosilicate glass, thereby forming the insulating substrate 1 and the glass paste. They are formed on the opposing main surfaces of the lid body 2.

また前記封止用ガラス部材6はホウケイ酸鉛系のガラス
に限定されるものではなく、熱膨張係数か5〜12X1
0−’/’Cの範囲のガラスであればいかなるものでも
使用することかできる。
Further, the sealing glass member 6 is not limited to lead borosilicate glass, and has a thermal expansion coefficient of 5 to 12X1.
Any glass in the range 0-'/'C can be used.

前記絶縁基体lと蓋体2との間には導電性材料から成る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電極がポンディングワイヤ7を介し
電気的に接続され、外部リード端子5を外部電気回路に
接続することによって半導体素子4が外部電気回路に接
続されることになる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base l and the lid 2.
Each electrode of the semiconductor element 4 is electrically connected via a bonding wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リード端子5は絶縁基体lと蓋体2の相対向す
る主面に被着させた封止用ガラス部材6を溶融一体化さ
せ、絶縁容器3を気密封止する際に同時に絶縁基体lと
蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrating the sealing glass member 6 attached to the opposing main surfaces of the insulating base l and the lid 2, and simultaneously sealing the insulating base l when the insulating container 3 is hermetically sealed. and the lid body 2.

前記外部リード端子5は42Alloy (Ni−Co
合金)から成る芯体の外表面に非磁性体金属である銅(
Cu)を被着させたもの、非磁性体金属である銅(Cu
)から成る芯体の外表面にクロムー鉄合金(Cr−Fe
合金)、ニッケルー鉄合金(Ni−Fe合金)、ニッケ
ルーコバルトー鉄合金(Ni−Co−Fe合金)を被着
させたもの、或いは板状の鉄(Fe)もしくはインバー
合金(36. 5Wt%Ni−63. 5Wt%Fe合
金)の上下面に非磁性体金属である銅(Cu)を接合さ
せたもの、非磁性体金属である銅(CiJ)にカーボン
やアルミナセラミックス等の無機物を含有させたもの等
から成り、その透磁率は210 (CGS)以下、導電
率はlO%(IACS)以上、熱膨張係数は5〜12X
10−’/ ’Cの導電性材料から成る。
The external lead terminal 5 is made of 42Alloy (Ni-Co
The outer surface of the core is made of copper (alloy), which is a non-magnetic metal.
Coated with copper (Cu), a non-magnetic metal
) is coated with chromium-iron alloy (Cr-Fe) on the outer surface of the core.
alloy), nickel-iron alloy (Ni-Fe alloy), nickel-cobalt iron alloy (Ni-Co-Fe alloy), or plate-shaped iron (Fe) or invar alloy (36.5 Wt%Ni) -63. 5Wt%Fe alloy) with copper (Cu), a non-magnetic metal, bonded to the top and bottom surfaces, and copper (CiJ), a non-magnetic metal, containing inorganic substances such as carbon and alumina ceramics. The magnetic permeability is 210 (CGS) or less, the electrical conductivity is 10% (IACS) or more, and the thermal expansion coefficient is 5 to 12X.
10-'/'C conductive material.

前記外部リード端子5はその透磁率か210(CGS)
以下であり、透磁率が低いことから外部リード端子5に
電流が流れたとしても外部リード端子5中には大きな自
己インダクタンスが発生することはなく、その結果、前
記自己インダクタンスにより誘発される逆起電力に起因
したノイズを極小となし、内部に収容する半導体素子4
を常に正常に作動されることができる。
The magnetic permeability of the external lead terminal 5 is 210 (CGS).
Since the magnetic permeability is low, even if a current flows through the external lead terminal 5, a large self-inductance is not generated in the external lead terminal 5, and as a result, the back electromotive force induced by the self-inductance is Semiconductor element 4 that minimizes noise caused by electric power and houses it inside.
It can always be operated normally.

また前記外部リード端子5はその導電率が10%(IA
CS)以上であり、電気を流し易いことから外部リード
端子5の信号伝搬速度を極めて速いものとなすことかで
き、絶縁容器3内に収容した半導体素子4を高速駆動さ
せたとしても半導体素子4と外部電気回路との間におけ
る信号の出し入れは常に安定、且つ確実となすことかで
きる。
Further, the conductivity of the external lead terminal 5 is 10% (IA
CS) As above, since electricity can easily flow, the signal propagation speed of the external lead terminal 5 can be made extremely high, and even if the semiconductor element 4 housed in the insulating container 3 is driven at high speed, the semiconductor element 4 The input and output of signals between the terminal and the external electric circuit can always be carried out stably and reliably.

また同時に外部リード端子5の導電率が高いことから外
部リード端子5の線幅が細くなったとしても外部リード
端子5の電気抵抗を低く抑えることができ、その結果、
外部リード端子5における信号の減衰を極小として内部
に収容する半導体素子4に外部電気回路から供給される
電気信号を正確に入力することができる。
At the same time, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the electrical resistance of the external lead terminal 5 can be kept low, and as a result,
By minimizing the attenuation of the signal at the external lead terminal 5, it is possible to accurately input the electrical signal supplied from the external electrical circuit to the semiconductor element 4 housed inside.

また更に、前記外部リード端子5はその熱膨張係数か5
〜12X10−@/ ’Cであり、封止用ガラス部材6
の熱膨張係数と近似することから外部リード端子5を絶
縁基体1と蓋体2の間に封止用ガラス部材6を用いて固
定する際、外部リード端子5と封止用ガラス部材6との
間には両者の熱膨張係数の相違に起因する熱応力が発生
することはなく、外部リード端子5を封止用ガラス部材
6て強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a thermal expansion coefficient of 5.
~12X10-@/'C, and the sealing glass member 6
When the external lead terminal 5 is fixed between the insulating base 1 and the lid 2 using the sealing glass member 6, the thermal expansion coefficient of the external lead terminal 5 and the sealing glass member 6 is approximated by Thermal stress due to the difference in coefficient of thermal expansion between the two does not occur, and the external lead terminal 5 can be firmly fixed to the sealing glass member 6.

かくして、この半導体素子収納用パッケージによれば、
絶縁基体1の凹部底面に半導体素子4を取着固定すると
ともに該半導体素子4の各電極をボンディングワイヤ7
により外部リード端子5に接続させ、しかる後、絶縁基
体lと蓋体2とを該絶縁基体■及び蓋体2の相対向する
主面に予め被着させておいた封止用ガラス部材6を溶融
一体化させることによって接合させ、これによって最終
製品としての半導体装置が完成する。
Thus, according to this package for storing semiconductor elements,
A semiconductor element 4 is attached and fixed to the bottom of the recess of the insulating substrate 1, and each electrode of the semiconductor element 4 is connected to a bonding wire 7.
After that, the sealing glass member 6 is connected to the external lead terminal 5 by the insulating base 1 and the lid 2, which have been previously attached to the opposing main surfaces of the insulating base 1 and the lid 2. They are joined by melting and integrating, thereby completing a semiconductor device as a final product.

(発明の効果) 本発明の半導体素子収納用パッケージによれば、半導体
素子を外部回路に接続する外部リード端子を透磁率で2
10 (CGS)以下、導電率が10%(IACS)以
上、熱膨張係数が5〜12X10−’/ ”Cの導電性
材料が形成したことから外部リード端子に電流を流した
としても該外部リード端子中に大きな自己インダクタン
スが発生することはなく、その結果、前記自己インダク
タンスにより誘発される逆起電力に起因したノイズを極
小となし、内部に収容する半導体素子を常に正常に作動
させることが可能となる。
(Effects of the Invention) According to the semiconductor element storage package of the present invention, the external lead terminals that connect the semiconductor element to the external circuit have a magnetic permeability of 2.
10 (CGS) or less, conductivity of 10% (IACS) or more, and thermal expansion coefficient of 5 to 12X10-'/''C, so even if a current is passed through the external lead terminal, the external lead will not work. A large self-inductance is not generated in the terminal, and as a result, the noise caused by the back electromotive force induced by the self-inductance is minimized, and the semiconductor elements housed inside can always operate normally. becomes.

また外部リード端子の信号伝搬速度を極めて速いものと
なすことができ、絶縁容器内に収容した半導体素子を高
速駆動させたとしても半導体素子と外部電気回路との間
における信号の出し入れを常に安定、且つ確実となすこ
とが可能となる。
In addition, the signal propagation speed of the external lead terminal can be made extremely fast, so that even if the semiconductor element housed in the insulating container is driven at high speed, the signal input and output between the semiconductor element and the external electric circuit is always stable. Moreover, it becomes possible to do so reliably and reliably.

更に外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低く抑えることがてき、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することが可能となる。
Furthermore, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low, and as a result, the attenuation of the signal at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. It becomes possible to accurately input the supplied electrical signal.

また更に、外部リード端子はその熱膨張係数が絶縁基体
、蓋体及び封止用ガラス部材の各々の熱膨張係数と近似
し、絶縁基体と蓋体との間に外部リード端子を挟み、各
々を封止用ガラス部材て取着接合したとしても絶縁基体
及び蓋体と封止用ガラス部材との間、外部リード端子と
封止用ガラス部材との間のいずれにも熱膨張係数の相違
に起因する熱応力は発生せず、すべてを強固に取着接合
することも可能となる。
Furthermore, the coefficient of thermal expansion of the external lead terminal is close to that of each of the insulating base, the lid, and the sealing glass member, and the external lead terminal is sandwiched between the insulating base and the lid, and each Even if the sealing glass member is attached and bonded, there may be differences in thermal expansion coefficients between the insulating base and lid and the sealing glass member, and between the external lead terminal and the sealing glass member. No thermal stress is generated, and it is possible to firmly attach and join everything.

【図面の簡単な説明】[Brief explanation of drawings]

第I図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図てある。 l:絶縁基体   2:蓋体
FIG. I is a sectional view showing an embodiment of the semiconductor element storage package of the present invention, and FIG. 2 is a plan view of the package shown in FIG. 1, viewed from the top surface of the insulating base. l: Insulating base 2: Lid body

Claims (1)

【特許請求の範囲】[Claims] 絶縁基体と蓋体とから成り、内部に半導体素子を収容す
るための空所を有する容器と、該容器内に収容される半
導体素子を外部電気回路に接続するための外部リード端
子とから成る半導体素子収納用パッケージにおいて、前
記外部リード端子を透磁率210(CGS)以下、熱膨
張係数5〜12×10^−^6/℃、導電率10%(I
ACS)以上の導電性材料で形成したことを特徴とする
半導体素子収納用パッケージ。
A semiconductor consisting of a container consisting of an insulating base and a lid and having a cavity for accommodating a semiconductor element therein, and an external lead terminal for connecting the semiconductor element housed in the container to an external electric circuit. In the device housing package, the external lead terminals have a magnetic permeability of 210 (CGS) or less, a thermal expansion coefficient of 5 to 12 x 10^-^6/℃, and an electrical conductivity of 10% (I
A package for storing semiconductor elements, characterized in that it is formed of a conductive material of ACS) or higher.
JP16748490A 1989-08-25 1990-06-26 Package for storing semiconductor elements Pending JPH03218660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748490A JPH03218660A (en) 1989-08-25 1990-06-26 Package for storing semiconductor elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21922889 1989-08-25
JP1-219228 1989-08-25
JP16748490A JPH03218660A (en) 1989-08-25 1990-06-26 Package for storing semiconductor elements

Publications (1)

Publication Number Publication Date
JPH03218660A true JPH03218660A (en) 1991-09-26

Family

ID=26491507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748490A Pending JPH03218660A (en) 1989-08-25 1990-06-26 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JPH03218660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977261A1 (en) * 1998-07-30 2000-02-02 Mitsubishi Denki Kabushiki Kaisha Pressure contact type semiconductor device and power application device
JP2006302990A (en) * 2005-04-18 2006-11-02 Kyocera Corp Image pickup device storage package and image pickup apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921051A (en) * 1982-07-26 1984-02-02 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit device
JPS60242653A (en) * 1984-05-16 1985-12-02 Daido Steel Co Ltd Composite material for lead frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921051A (en) * 1982-07-26 1984-02-02 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit device
JPS60242653A (en) * 1984-05-16 1985-12-02 Daido Steel Co Ltd Composite material for lead frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977261A1 (en) * 1998-07-30 2000-02-02 Mitsubishi Denki Kabushiki Kaisha Pressure contact type semiconductor device and power application device
JP2006302990A (en) * 2005-04-18 2006-11-02 Kyocera Corp Image pickup device storage package and image pickup apparatus

Similar Documents

Publication Publication Date Title
JPH03218660A (en) Package for storing semiconductor elements
JP2678509B2 (en) Package for storing semiconductor elements
JP2742616B2 (en) Package for storing semiconductor elements
JP2742618B2 (en) Package for storing semiconductor elements
JP2742612B2 (en) Package for storing semiconductor elements
JP2691304B2 (en) Package for storing semiconductor elements
JP2736454B2 (en) Package for storing semiconductor elements
JP2736453B2 (en) Package for storing semiconductor elements
JP2736461B2 (en) Package for storing semiconductor elements
JP2691305B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JP2742617B2 (en) Package for storing semiconductor elements
JP2736463B2 (en) Package for storing semiconductor elements
JP2691309B2 (en) Package for storing semiconductor elements
JP2747613B2 (en) Package for storing semiconductor elements
JP2736455B2 (en) Package for storing semiconductor elements
JP2736462B2 (en) Package for storing semiconductor elements
JP2742613B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JP2736452B2 (en) Package for storing semiconductor elements
JP2691308B2 (en) Package for storing semiconductor elements
JP2736460B2 (en) Package for storing semiconductor elements
JP2742614B2 (en) Package for storing semiconductor elements
JP2742615B2 (en) Package for storing semiconductor elements
JPH03167848A (en) Package for semiconductor-element