[go: up one dir, main page]

JPH03218430A - Focal point detection photometry device - Google Patents

Focal point detection photometry device

Info

Publication number
JPH03218430A
JPH03218430A JP2065298A JP6529890A JPH03218430A JP H03218430 A JPH03218430 A JP H03218430A JP 2065298 A JP2065298 A JP 2065298A JP 6529890 A JP6529890 A JP 6529890A JP H03218430 A JPH03218430 A JP H03218430A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
photometric
dimensional
correction coefficient
focus detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2065298A
Other languages
Japanese (ja)
Other versions
JP3116358B2 (en
Inventor
Tadao Kai
甲斐 糾夫
Tadao Takagi
忠雄 高木
Shigeyuki Uchiyama
内山 重之
Hiroyuki Iwasaki
宏之 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP02065298A priority Critical patent/JP3116358B2/en
Publication of JPH03218430A publication Critical patent/JPH03218430A/en
Application granted granted Critical
Publication of JP3116358B2 publication Critical patent/JP3116358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To obtain a photometric value with high reliability by setting a two-dimensional photometric area including the focal point detection area of two one-dimensional photoelectric converting means and interpolating the photodetection signal of this photometric area by the output signals of the two photoelectric conversion means. CONSTITUTION:At a photometry device equipped with the first pair of photoelectric conversion element trains equipped with a one-dimensional focal point detection area and the second pair of photoelectric conversion element equipped with the one-dimensional focal point detection area to cross this first pair, the two-dimensional photometric area is set while including the focal point detection areas of the two one-dimensional photoelectric conversion means. Next, the photodetection signal of the two-dimensional photometric area is interpolated based on the output signals of the two photoelectric conversion means so that the photometric value can be calculated from the interpolated photodetection signal. Therefore, there is no influence caused by the slight change of a picture angle, etc., from the output of the photoelectric conversion element train for focal point detection.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CCDラインセンサーを用いた焦点検出装置
を利用して安定性の高い測光値を得る焦点検出測光装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus detection photometer that obtains highly stable photometric values using a focus detection device using a CCD line sensor.

[従来の技術] 従来、撮影画面の中央部の焦点検出を行う焦点検出装置
の光電変換出力に基づいて中央部のスポット測光出力を
得る焦点検出測光装置が知られている。例えば特開昭6
2−188916号においては、焦点検出用に設けたC
CDラインセンサーの画素出力の全平均を算出して中央
部の測光値とする装置が開示されている。
[Prior Art] Conventionally, there has been known a focus detection photometry device that obtains a spot photometry output at the center of a photographic screen based on a photoelectric conversion output of a focus detection device that performs focus detection at the center of the photographic screen. For example, JP-A-6
In No. 2-188916, C provided for focus detection
A device is disclosed that calculates the total average of pixel outputs of a CD line sensor and uses it as a photometric value at the center.

[発明が解決しようとする課題] しかしながら、このような従来の焦点検出装置を利用し
た測光装置、所謂焦点検出測光装置にあっては、第16
図に示すように焦点検出領域100が十字形の二次元形
状を成す場合、第16図(A)に示すようにストライプ
状の輝度分布102を有する被写体の測光値を単純にラ
インセンサー画素出力の全平均から算出すると、第16
図(B)のように僅かに画角を変化させた場合、ライン
センサーの素子幅程度の僅かな画角の変化によって測光
値が大きく変動してしまい、信頼性と安定性に欠ける問
題があった。
[Problems to be Solved by the Invention] However, in a photometer using such a conventional focus detection device, a so-called focus detection photometer, the 16th
When the focus detection area 100 has a cross-shaped two-dimensional shape as shown in the figure, the photometric value of a subject having a striped brightness distribution 102 as shown in FIG. Calculated from the total average, the 16th
When the angle of view is slightly changed as shown in Figure (B), the photometric value fluctuates greatly due to a slight change in the angle of view, which is about the same as the width of the line sensor element, resulting in a problem of lack of reliability and stability. Ta.

本発明は、このような従来の問題点に鑑みてなされたも
ので、焦点検出用の光電変換素子列の出力から僅かな画
角の変化等による影響を受けない安定性と信頼性の高い
測光値を得ることができる焦点検出測光装置を提供する
ことを目的とする。
The present invention has been made in view of these conventional problems, and provides highly stable and reliable photometry that is unaffected by slight changes in the angle of view from the output of a photoelectric conversion element array for focus detection. It is an object of the present invention to provide a focus detection photometer that can obtain a value.

[課題を解決するための手段] まず本発明は、一次元的な焦点検出領域を有する第1組
の光電変換素子列と、該第1組の光電変換素子列の焦点
検出領域に交差する一次元的な焦点検出領域を有する第
2組の光電変換素子列とを少なくとも備えた焦点検出測
光装置を対象とする。
[Means for Solving the Problems] First, the present invention provides a first set of photoelectric conversion element arrays having a one-dimensional focus detection area, and a first set of photoelectric conversion element arrays having a one-dimensional focus detection area, and a first set of photoelectric conversion element arrays having a one-dimensional focus detection area. The present invention is directed to a focus detection photometry device including at least a second set of photoelectric conversion element arrays having an original focus detection area.

このような焦点検出測光装置につき本発明にあっては、
一次元的な第1及び第2の光電変換手段の焦点検出領域
を含む二次元測光領域を設定し、該二次元測光領域の受
光信号を前記第1及び第2の光電変換手段の出力信号に
基づいて補間し、該補間された受光信号から測光値を算
出する測光演算手段を設けたものである。
In the present invention, for such a focus detection photometry device,
A two-dimensional photometry area including focus detection areas of one-dimensional first and second photoelectric conversion means is set, and a light reception signal of the two-dimensional photometry area is converted into an output signal of the first and second photoelectric conversion means. A photometric calculation means is provided for interpolating based on the received light signal and calculating a photometric value from the interpolated received light signal.

ここで前記測光演算手段は、一方の光電変換手段の出力
信号から補正係数を算出する補正係数演算手段と、該補
正係数演算手段で算出された補正係数を前記他方の光電
変換手段の出力信号に掛けけ合わせた値に基づいて測光
値を算出する測光値演算手段とを設けたものである。
Here, the photometric calculation means includes a correction coefficient calculation means for calculating a correction coefficient from an output signal of one of the photoelectric conversion means, and a correction coefficient calculated by the correction coefficient calculation means for converting the correction coefficient into an output signal of the other photoelectric conversion means. A photometric value calculation means for calculating a photometric value based on the multiplied values is provided.

また前記補正係数演算手段は、一方の光電変換手段の出
力をc1、c2.  ・・・,cmとし、他方の光電変
換手段との交差領域の出力信号をC kl +  C 
k+2 +  ・・・,C*++ とじた時、補正係数
f (c)を、 1(c)=((c1+  ・・・+cm  )/ml/
t(cm.+  +=4ch.+  )/+1として算
出する。
Further, the correction coefficient calculation means converts the output of one of the photoelectric conversion means into c1, c2, . ..., cm, and the output signal of the intersection area with the other photoelectric conversion means is C kl + C
When k+2 + ..., C*++ is closed, the correction coefficient f (c) is 1(c) = ((c1+ ...+cm )/ml/
Calculate as t(cm.++=4ch.+)/+1.

また前記測光値演算手段は、前記補正係数を他方の光電
変換手段の出力の総和に掛け合わせた値を、該光電変換
手段の蓄積時間で除して測光値を求める。
Further, the photometric value calculation means calculates the photometric value by dividing a value obtained by multiplying the sum of the outputs of the other photoelectric conversion means by the correction coefficient by the accumulation time of the photoelectric conversion means.

[作用] このような構成を備えた本発明の焦点検出測光装置によ
れば、撮影画面中に二次元的な広がりを持つ被写体の測
光値を算出するにあたり、互いに交差したラインセンサ
ー(焦点検出素子列)の出力を掛け合わせて用い、例え
ばXY十字形の場合、Y方向のラインセンサーの素子列
出力の分布状態がX方向のラインセンサーに沿った近傍
においても成り立つとみなし、交差した少なくとも2つ
のラインセンサーのカバーするエリア、例えば矩形エリ
ア内の被写体の輝度を推定し算出する。
[Function] According to the focus detection photometry device of the present invention having such a configuration, when calculating the photometry value of a subject that has a two-dimensional spread in the shooting screen, line sensors (focus detection elements) that intersect with each other are used. For example, in the case of an XY cross, it is assumed that the distribution state of the element row output of the line sensor in the Y direction also holds in the vicinity along the line sensor in the X direction, and at least two crossed The brightness of the object within the area covered by the line sensor, for example a rectangular area, is estimated and calculated.

従って従来問題となったラインセンサーの素子幅程度の
画角の変化は、測光対象となるエリアの大きさに比べて
微小なため殆ど影響が出ないようになり、安定性の高い
測光値を得ることができる。
Therefore, changes in the angle of view due to the width of the line sensor element, which were a problem in the past, have almost no effect because they are minute compared to the size of the area to be measured, and highly stable photometric values can be obtained. be able to.

[実施例] まず第1図に示すような十字形の検出領域100を持つ
焦点検出測光装置について本発明の原理を説明する。
[Example] First, the principle of the present invention will be explained regarding a focus detection photometer having a cross-shaped detection area 100 as shown in FIG.

第1図において、十字形の検出領域100の横方向(X
方向)列の一対の受光素子列(光電変換素子列)をA列
、B列とし、縦方向(Y方向)の受光素子列をC列、D
列とする。
In FIG. 1, the horizontal direction (X
A pair of light-receiving element rows (photoelectric conversion element rows) in the vertical direction (direction) are referred to as rows A and B, and the light-receiving element rows in the vertical direction (Y direction) are rows C and D.
column.

ここでn個の受光素子を配列したA,  B列の受光出
力をAD変換して得た受光データをA=a1、  a2
,  ・●e,  anB=b1、b2,− ms,b
n とし、またm個の受光素子を配列したC列.D列の受光
出力をAD変換して得た受光データをC:c1、c2,
−●●,cm D=d1、d2,−@−,dm とする。例えばデフ中−カス量が零(合焦時)であった
場合、受光データA,  Bは同一の被写体について撮
影レンズの異なる瞳領域を通過した光束が再結像して得
られたものであるから、同一の値である。よって、被写
体の輝度情報として(A+B)/2の値を用いても良い
し、AもしくはBのどちらか一方のみでも良い。受光デ
ータC,Dについても同様である。以後は輝度情報とし
て受光データA及びCを用いることとして説明する。
Here, the light receiving data obtained by AD converting the light receiving output of the A and B rows in which n light receiving elements are arranged are A=a1, a2.
, ・●e, anB=b1, b2, - ms, b
n, and C row in which m light receiving elements are arranged. The received light data obtained by AD converting the received light output of column D is C: c1, c2,
−●●, cm D=d1, d2, −@−, dm. For example, when the amount of dust during the differential is zero (in focus), the received light data A and B are obtained by re-imaging the light beams that have passed through different pupil areas of the photographing lens for the same subject. Therefore, they are the same value. Therefore, the value of (A+B)/2 may be used as the brightness information of the subject, or only either A or B may be used. The same applies to the received light data C and D. Hereinafter, the description will be made assuming that the received light data A and C are used as the luminance information.

次に、被写体の輝度分布の一例を第2図に示す。Next, FIG. 2 shows an example of the brightness distribution of a subject.

第2図において、X軸上に受光素子列A列が並び、Y軸
上に受光素子列C列が並んでいる。X,Y軸に直交する
E軸は被写体の輝度を表す。
In FIG. 2, light-receiving element rows A are arranged on the X-axis, and light-receiving element rows C are arranged on the Y-axis. The E axis perpendicular to the X and Y axes represents the brightness of the subject.

第2図のような被写体に関する測光値として、第3図に
破線で示すように立体の平均高さ百、即ち平均被写体輝
度を採用する。ここで受光素子列A,  Cの検出領域
について注目すると、A列のデータ列a1〜a,は第4
図(A)に示すように第2図の立体のX軸断面の輝度分
布情報であり、同様にC列のデータ列01〜cffiは
第4図(B)に示すように、第2図の立体のY軸断面の
輝度分布情報である。
As the photometric value for the subject shown in FIG. 2, the average height of the three-dimensional object, 100, or the average subject brightness, as shown by the broken line in FIG. 3, is used. Now, if we pay attention to the detection areas of the light-receiving element rows A and C, the data rows a1 to a of row A are the fourth
As shown in Figure (A), it is the brightness distribution information of the X-axis cross section of the solid in Figure 2, and similarly, the data strings 01 to cffi in column C are as shown in Figure 4 (B). This is brightness distribution information of a three-dimensional Y-axis cross section.

通常の撮影においては被写体の大きさは焦点検出領域に
比べて十分大きく、また輝度の分布も撮影画面に対して
二次元的広がりをもっている。よって第3図に示した立
体の平均高さ(被写体平均輝度)“百”を求める方法と
して、互いに交差したライン状の焦点検出用の受光素子
列の出力を掛け合わせ、一方の受光素子列、例えばY軸
方向の受光素子列Cの出力分布状態が他方の受光素子列
、例えばX軸方向の受光素子列八に沿った近傍において
も成り立つとみなし、交差した2の受光素子列A,  
Cがカバーする矩形エリア内の被写体の平均輝度を算出
する方法を用いる。
In normal photographing, the size of the subject is sufficiently larger than the focus detection area, and the brightness distribution also has a two-dimensional spread with respect to the photographic screen. Therefore, as a method to find the average height (subject average brightness) of "100" of the solid shown in FIG. For example, assuming that the output distribution state of the light-receiving element row C in the Y-axis direction also holds in the vicinity of the other light-receiving element row, for example along the light-receiving element row 8 in the X-axis direction, two intersecting light-receiving element rows A,
A method of calculating the average brightness of the subject within the rectangular area covered by C is used.

いま第5図に示すようにA列の受光素子A1〜AnとC
列の受光素子C1〜Cmの交差領域に注目すると、交差
領域に存在するA,−1〜A,,1とC,1〜C k+
l との各々3つの受光素子は同一領域を測光している
。従って、交差領域のA,  C列の受光素子出力の総
和は、同一の値となる。
Now, as shown in FIG. 5, the light receiving elements A1 to An and C of row A
If we pay attention to the intersection area of the light receiving elements C1 to Cm in the column, we can see that A,-1 to A,,1 and C,1 to Ck+ exist in the intersection area.
Each of the three light receiving elements 1 and 1 measures the same area. Therefore, the sum total of the outputs of the light receiving elements in columns A and C in the intersection area becomes the same value.

( ar−+ + a H + a H。,)=( C
 *−,+ C * 十C m−+ )ここでC列の受
光素子の出力データC,〜C。
(ar-+ + aH + aH.,)=(C
*-, +C * 10C m-+) Here, output data C, ~C of the light receiving elements of column C.

は、X軸方向での受光素子Ajの測光領域近傍での被写
体のY軸方向断面の輝度分布情報とみなせる。即ち、受
光素子Ajの位置するX軸の座標位置で被写体の輝度分
布をY軸に沿って測光したデタが01〜C。で、このY
軸断面の平均測光出力である (C+ +C2 +−・−+c Il1 ) /mに対
し、A列の受光素子Ajが測光出力としてa1という測
光データを出力していることになる。
can be regarded as brightness distribution information of a cross section of the subject in the Y-axis direction in the vicinity of the photometric area of the light receiving element Aj in the X-axis direction. That is, the data obtained by measuring the luminance distribution of the subject along the Y-axis at the X-axis coordinate position where the light receiving element Aj is located is 01 to C. So, this Y
For the average photometric output of the axial section (C+ +C2 +-.-+c Il1 )/m, the light receiving elements Aj in the A row output photometric data a1 as the photometric output.

よって、X軸上のAj対応位置でのY軸スライス断面の
平均測光データal’ は次式のように表すことができ
る。
Therefore, the average photometric data al' of the Y-axis slice section at the position corresponding to Aj on the X-axis can be expressed as the following equation.

a ,  =(c, +C2・・・+cm )/m(C
k−1 ”Ck +chv+ )X(c+/f(ch−
+ +Cm +Ch−t )Xml1+−1+i+ +
al−1 )X(c, +c2 +−+cm)/((c
.−, +ck+Ch.+ )xml4a , x3x
( c, +e2・・・+cm )/ t(am−, 
+c, +Ch−+ ) Xml”ar Xi(Cl 
+C2 +・・−+cm )/ml/ ((ch−+ 
+ch +Ch++ )/31・a,Xf  (C) +・・・十cm) +c2 ・ ・ ・ (1) ここでf (c)は補正係数であり、従って前記第1式
より補正係数f (c)は、 1(c) ”i(Ct +e2+−+c− )/+nl/t(ch
−+ +eh +el++ )/31・・・ (2) として求められる。
a, = (c, +C2...+cm)/m(C
k-1 ”Ck +chv+ )X(c+/f(ch-
+ +Cm +Ch-t)Xml1+-1+i+ +
al-1 )X(c, +c2 +-+cm)/((c
.. −, +ck+Ch. +) xml4a, x3x
(c, +e2...+cm)/t(am-,
+c, +Ch−+ ) Xml”ar Xi(Cl
+C2 +...-+cm )/ml/ ((ch-+
+ch +Ch++ )/31・a, is 1(c) ”i(Ct +e2+-+c-)/+nl/t(ch
−+ +eh +el++ )/31... (2) It is obtained as follows.

同様にA 7−1対応位置、AI+1対応位置、八』−
2対応位置、・・・A1対応位置、An対応位置でもA
j対応位置と相似なY軸方向の輝度分布と考えて良く、
平均測光データとして、a+−+ ’  =81−IX
 f (C)a+−+ ’  =3,,X f (c)
a,’  =a,xf  (c) が得られる。よって矩形領域の平均測光データは、次式
ようになる。
Similarly, A 7-1 corresponding position, AI+1 corresponding position, 8''-
2 corresponding position, A1 corresponding position, An corresponding position also A
It can be thought of as a luminance distribution in the Y-axis direction that is similar to the j-corresponding position,
As average photometric data, a+-+' = 81-IX
f (C)a+-+' = 3,,X f (c)
a,'=a,xf (c) is obtained. Therefore, the average photometric data of the rectangular area is expressed by the following formula.

a’ = (a+ +a2+−・+a,)X f (c
)/n・・・(3) この第(3)式は最終的に次式のようにまとめられる。
a' = (a+ +a2+-・+a,)X f (c
)/n...(3) This equation (3) is finally summarized as the following equation.

a’l(a,  +−+a.  )x(c,  十−+
軸 )X31/inXmX(cm−+ +ck +Ck
−+ )l     ” ’  (4)そして、第(4
)式から算出された値をCCD蓄積時間で除して所定の
係数を掛けることにより測光値を得ることができる。
a'l(a, +-+a.)x(c, ten-+
Axis )X31/inXmX(cm-+ +ck +Ck
−+ )l ” ' (4) and (4th
) The photometric value can be obtained by dividing the value calculated from the formula by the CCD storage time and multiplying the result by a predetermined coefficient.

?上が本発明による測光値算出の原理であり、これを実
現するためのアルゴリズムのフロー図を第6図に示す。
? The above is the principle of photometric value calculation according to the present invention, and a flowchart of the algorithm for realizing this is shown in FIG.

まず、第6図ステップSl(以下ステップは省略する)
のようにA列の受光素子A1〜Anからの画素出力a1
〜a,の積算値Σaを算出する。
First, Fig. 6 Step Sl (steps are omitted below)
The pixel output a1 from the light receiving elements A1 to An in column A is as follows.
Calculate the integrated value Σa of ~a.

次に82に進み、C列の受光素子01〜Cmからの画素
出力01〜C■の積算値ΣCを算出する。
Next, the process proceeds to 82, where the integrated value ΣC of the pixel outputs 01 to C■ from the light receiving elements 01 to Cm in column C is calculated.

次に83で縦横となるA列とC列のオーバーラップ部分
のC列の3つの画素出力C k−1〜C k+1より縦
横列オーバーラップ部の画素出力積算値Sを算出する。
Next, in step 83, the pixel output integrated value S of the vertical and horizontal column overlap portion is calculated from the three pixel outputs C k-1 to C k+1 of column C in the overlap portion of column A and column C, which are vertical and horizontal.

次にS4のように矩形領域の平均測光データa゛を算出
し、最後に85のように平均測光データa゜をCCD蓄
積時間Tで除して所定の係数Bを掛け測光値を算出する
Next, as shown in S4, the average photometric data a' of the rectangular area is calculated, and finally, the average photometric data a' is divided by the CCD accumulation time T and multiplied by a predetermined coefficient B to calculate the photometric value, as shown in 85.

次に、第7図を用いて本発明の焦点検出測光装置を一眼
レフカメラに適用した場合の実施例を説明する。
Next, an embodiment in which the focus detection photometry device of the present invention is applied to a single-lens reflex camera will be described with reference to FIG.

第7図において、カメラボディ20に対して交換可能な
レンズ10が着脱自在にマウントに装着されている。レ
ンズ10を装着した状態において、被写体から到達する
撮影光束は撮影レンズ11を通ってカメラボディ20に
設けられたメインミラ21により一部は反射されてファ
インダーに導かれ、他の一部はメインミラー21を透過
してサブミラー22により反射され焦点検出測光用の光
束としてAFモジュール30に導かれる。
In FIG. 7, a lens 10 that is replaceable with respect to a camera body 20 is detachably mounted on a mount. When the lens 10 is attached, a part of the photographic light beam arriving from the subject passes through the photographic lens 11 and is reflected by the main mirror 21 provided on the camera body 20 and guided to the finder, and the other part is reflected by the main mirror 21. The light is transmitted through the sub-mirror 22, reflected by the sub-mirror 22, and guided to the AF module 30 as a light beam for focus detection photometry.

AFモジュール30の構成の一例を第8図に示す。An example of the configuration of the AF module 30 is shown in FIG.

第8図において、AFモジュール30は視野マスク31
、フィールドレンズ32及び2組の一対の再結像レンズ
28A.28Bと29A,29Bから成る焦点検出光学
系25と、2組の一対の受光部38A,38Bと39A
,39Bから成るCCD等の光電変換手段35とから構
成されている。
In FIG. 8, the AF module 30 is connected to a field mask 31.
, field lens 32 and two pairs of re-imaging lenses 28A. A focus detection optical system 25 consisting of 28B, 29A, and 29B, and two pairs of light receiving sections 38A, 38B, and 39A.
, 39B, and a photoelectric conversion means 35 such as a CCD.

このような構成において撮影レンズ11の射出瞳16に
含まれる光軸17に対して対称な2組の領域18A,1
8Bと領域19A.19Bを通る光束は、第1図に示し
たような焦点検出領域全体に対応した開口形状を有する
視野マスク31付近で一次像を形成する。視野マスク3
1の開口部に形成された一次像の一部は更にフィールド
レンズ32及び2組の再結像レンズ28A,28Bと2
9A.29Bにより光電変換手段35の2組の受光部3
8A,38Bと39A,39B上に各々一対の二次像と
して形成される。
In such a configuration, two sets of regions 18A, 1 are symmetrical with respect to the optical axis 17 included in the exit pupil 16 of the photographic lens 11.
8B and area 19A. The light beam passing through 19B forms a primary image near the field mask 31, which has an aperture shape corresponding to the entire focus detection area as shown in FIG. Field of vision mask 3
A part of the primary image formed in the first aperture is further transmitted through a field lens 32 and two sets of re-imaging lenses 28A, 28B and 2.
9A. 29B, two sets of light receiving sections 3 of the photoelectric conversion means 35
A pair of secondary images are formed on 8A, 38B and 39A, 39B, respectively.

公知のように光電変換手段35上で対をなした二次像の
受光部並び方向の相対的位置関係を検出することにより
、撮影レンズのデフォーカス量を検出できる。
As is well known, the amount of defocus of the photographic lens can be detected by detecting the relative positional relationship of the paired secondary images in the direction in which the light receiving sections are arranged on the photoelectric conversion means 35.

第9図は光電変換手段35上での受光部配置構成を示す
。受光部3gA,38Bは各々n個の受光素子A1〜A
nSBl〜Bnから成り、一次像がフィルム面と一致し
ているとき(合焦時)、対応する受光素子、即ちA1と
B1、A2とB2、・・・との出力が等しくなるように
配置されている。受光部39A.39Bについても同様
である。
FIG. 9 shows the arrangement of the light receiving section on the photoelectric conversion means 35. The light receiving sections 3gA and 38B each include n light receiving elements A1 to A.
nSBl to Bn, and are arranged so that when the primary image coincides with the film surface (in focus), the outputs of the corresponding light receiving elements, that is, A1 and B1, A2 and B2, etc., are equal. ing. Light receiving section 39A. The same applies to 39B.

受光部38A.38B.39A,39Bを形成する受光
素子は、フォトダイオード等の電荷蓄積型素子によって
構成されており、光電変換手段35上の照度に応じた電
荷蓄積時間だけ電荷蓄積を行うことにより受光素子出力
を適正な出力レベルに制御することができる。
Light receiving section 38A. 38B. The light-receiving elements forming 39A and 39B are composed of charge storage elements such as photodiodes, and the light-receiving element output is adjusted to an appropriate level by accumulating charge for a charge accumulation time corresponding to the illuminance on the photoelectric conversion means 35. The output level can be controlled.

再び第7図を参照するに、センサー制御手段40はCP
UIOOのボートP3からの電荷蓄積開始及び終了指令
を受け取り、指令に応じた制御信号を光電変換手段35
に与えることにより光電変換手段35の電荷蓄積時間を
制御する。また、転送クロツク信号等を光電変換手段3
5に与え受光素子信号出力を時系列的にCPUIOOに
転送するとともに、受光素子信号出力の転送開始に同期
した同期信号をCPUIOOのボートP3に送る。
Referring again to FIG. 7, the sensor control means 40
Receives charge accumulation start and end commands from boat P3 of UIOO, and converts control signals according to the commands to photoelectric conversion means 35.
The charge accumulation time of the photoelectric conversion means 35 is controlled by giving . In addition, the transfer clock signal etc. is transferred to the photoelectric conversion means 3.
5 and transfers the light receiving element signal output to the CPUIOO in time series, and also sends a synchronization signal synchronized with the start of transfer of the light receiving element signal output to the boat P3 of the CPUIOO.

CPUIOOはこの信号に同期して内蔵したAD変換手
段によりボートP1に入力する受光素子出力信号のAD
変換を開始し、受光素子数に応じたAD変換データを得
る。AD変換が終了すると、得られたデータに対して本
出願人による特開昭60−37513号に開示された3
点内挿法等によりデフォーカス量を検出する。
CPUIOO synchronizes with this signal and uses the built-in AD conversion means to AD convert the light receiving element output signal input to boat P1.
Conversion is started and AD conversion data corresponding to the number of light receiving elements is obtained. When the AD conversion is completed, the obtained data is converted into
The amount of defocus is detected using a point interpolation method or the like.

CPUIOOはデータを処理してデフォーカス量を算出
すると、デフォーカス量に基づきAF表示手段50の表
示部51.52,53.54の表示形態をポートP2を
用いて制御する。また、AFモード選択手段76の設定
情報(AFモード、MFモード)はCPUIOOのポー
トPllに送られ、AFモード設定時、C P U 1
. 0 0は該デフォーカス量に基づきAFモータ60
の駆動方向及び駆動量をボートPL2を用いて制御して
、撮影レンズ駆動系65を介して撮影レンズ11を合焦
点に移動させる。
After processing the data and calculating the defocus amount, the CPU IOO controls the display form of the display sections 51.52, 53.54 of the AF display means 50 based on the defocus amount using the port P2. Further, the setting information (AF mode, MF mode) of the AF mode selection means 76 is sent to port Pll of CPUIOO, and when setting the AF mode, CPU 1
.. 0 0 is the AF motor 60 based on the defocus amount.
The driving direction and amount of driving are controlled using the boat PL2, and the photographing lens 11 is moved to the focal point via the photographing lens drive system 65.

CPUIOOはデフォーカス量の算出と並行もしくは時
系列的に前後して、得られたデータに基づき第6図に示
したアルゴリズムに従ってデータ処理を行い測光値を算
出する。また、スポット測光値以外の測光値は、ポート
P5に送られる測光手段90の出力信号により算出する
。CPUIOOは、ポートP9に送られる測光モード選
択手段78のスポット測光かその他の測光モードかの設
定情報に基づいて、測光表示手段80の表示部81.8
2の表示形態をポートP4を用いて制御する。更に、ボ
ートP10に送られるAEモード選択手段77の設定情
報(マニュアル、シャッター優先AE,絞り優先AE,
プログラムAE、デーライトシンクロ等)によっては、
算出された測光値よりCPUIOOはシャッター制御手
段70、絞り制御手段72及びストロボ制御手段74を
ボ}P6〜P8を用いて単独にもしくは並列的に制御し
、適正露光をフィルムに与える。
In parallel with or chronologically following the calculation of the defocus amount, the CPUIOO performs data processing according to the algorithm shown in FIG. 6 based on the obtained data and calculates a photometric value. Further, photometric values other than spot photometric values are calculated based on the output signal of the photometric means 90 sent to port P5. The CPUIOO selects the display section 81.8 of the photometry display means 80 based on the setting information of spot photometry or other photometry mode of the photometry mode selection means 78 sent to port P9.
2 is controlled using port P4. Further, setting information of the AE mode selection means 77 (manual, shutter priority AE, aperture priority AE,
Depending on the program AE, daylight synchro, etc.),
Based on the calculated photometric value, the CPUIOO controls the shutter control means 70, the aperture control means 72, and the strobe control means 74 using buttons P6 to P8, either singly or in parallel, to provide proper exposure to the film.

以上が本発明にかかる焦点検出測光装置を一眼レフカメ
ラに適用した実施例の構成及び動作の概要である。
The above is an overview of the configuration and operation of an embodiment in which the focus detection photometry device according to the present invention is applied to a single-lens reflex camera.

次に、本発明の測光値算出方法が従来の測光値算出方法
に比べ安定性が高いことを説明する。
Next, it will be explained that the photometric value calculation method of the present invention is more stable than the conventional photometric value calculation method.

従来例として、測光データの算出を受光素子データの総
平均として求める方法が知られている。
As a conventional example, a method is known in which photometric data is calculated as a total average of light-receiving element data.

算出式は、下記のようになる。The calculation formula is as follows.

a  = (a, +a2+−+a. +C, +c2
・・・+cm )/(n+m)ここで、第10図に示す
輝度分布をもつ被写体を考える。最初の測光時、n=9
9個の受光素子A1〜A99の受光データal〜a99
が第11図(A)の値をもち、また、m=49個の受光
素子C1〜C49の受光データ01〜c49が第11図
(B)の値であったとする。
a = (a, +a2+-+a. +C, +c2
...+cm )/(n+m) Now, consider an object having the luminance distribution shown in FIG. At the first photometry, n=9
Light reception data al to a99 of nine light receiving elements A1 to A99
Suppose that has the value shown in FIG. 11(A), and light reception data 01 to c49 of m=49 light receiving elements C1 to C49 have the values shown in FIG. 11(B).

この場合、従来方法による測光データa”及び本発明に
よる測光データa゜は各々次のようになる。
In this case, the photometric data a'' according to the conventional method and the photometric data a゜ according to the present invention are as follows.

[従来] a  =(a,+a2+・=+a,JC1 +C2+・
”c49) / (99+49)= f (200x9
9) + (50x23) + (200X26) +
 /148=25150/14g =177 [本発明] a’ = ((at  +−=・十899] X (C
I  +−+C49J X31/ i(99X49X 
( c24+c25+c26)1= [(200X99
)+f(50X23)+(200X26)lX3]/ 
+99X49X (200X3) 1=130 次に、撮影画角を僅かに変化させると、その後の測光で
第12図のような受光素子データが得られ、従来データ
a”及び本発明のデータa゜は次のようになる。
[Conventional] a = (a, +a2+・=+a, JC1 +C2+・
”c49) / (99+49)= f (200x9
9) + (50x23) + (200x26) +
/148=25150/14g =177 [This invention] a' = ((at +-=・1899] X (C
I +-+C49J X31/i (99X49X
(c24+c25+c26)1=[(200X99
)+f(50X23)+(200X26)lX3]/
+99 x 49 x (200 become that way.

[従来] a  =t(50x99)+(50x26)+(200
x23))/14873 U本発明コ a’ l(50X99)Xi(50d6)+(200x
23)lX3]/ +99X49X (50X3) 1
・120 この具体例で明らかなように、従来の方法によれば僅か
な画角の変化によって測光データが59%も低くなるの
に対して、本発明の方法によれば9%の変化に収まる。
[Conventional] a = t (50x99) + (50x26) + (200
x23))/14873 U Invention Core a' l(50X99)Xi(50d6)+(200x
23)lX3]/ +99X49X (50X3) 1
・120 As is clear from this specific example, according to the conventional method, the photometric data decreases by 59% due to a slight change in the angle of view, whereas according to the method of the present invention, the change is reduced to 9%. .

画角の変化に対する本発明の方法による測光値変化は従
来より一般的なSPD受光素子を用いたスポット測光方
式の測光値変化と近く、従来よりの使用感と同等で違和
感が少ないため撮影者にとって操作性がよい。
The change in photometric value according to the method of the present invention in response to a change in the angle of view is similar to the change in the photometric value of the spot metering method using a conventional SPD light receiving element, which is similar to the conventional method, and there is no discomfort for the photographer, as it is similar to the conventional method. Easy to operate.

以上のように、本発明による焦点検出測光装置は安定性
の高い操作性良好な測光値を得られるが、測光値の算出
方法は上記に限定されるものではない。
As described above, the focus detection photometer according to the present invention can obtain photometric values with high stability and good operability, but the method for calculating photometric values is not limited to the above.

前述した本発明の算出方法の応用例として、受光素子の
位置に対応して受光素子データに重み付け係数を掛け合
わせれば、中央部重点式のスポット測光装置や下方重点
式のスポット測光装置とすることも可能である。
As an application example of the calculation method of the present invention described above, by multiplying the light receiving element data by a weighting coefficient in accordance with the position of the light receiving element, a center-weighted spot photometer or a downward-weighted spot photometer can be obtained. is also possible.

以下に、重み付け係数を掛け合わせる応用例を説明する
An application example of multiplying weighting coefficients will be described below.

C列の受光素子C1〜Cmの画素出力C,〜c1に対す
る重み付け係数をV l ””” V mとすれば、補
正係数f (c)を求める前記第(2)式は次式のよう
に改められる。
If the weighting coefficient for the pixel outputs C, ~c1 of the light-receiving elements C1 to Cm in column C is V l """ V m, then the above equation (2) for calculating the correction coefficient f (c) is as follows: It can be changed.

f(c)・[(  ▼,XC,)+(v2 XC2 )
+−+(  vm Xc,,  月/(▼1+▼2+・
・・+▼、)1 /[{(▼*−+ xck−1 )+(vi XCm 
)+(wb−+ xck−1 )1/( vl−1 +
Vh +Vh.+ )1・ ・ ・ (5) 次に、A列の受光素子A1〜Anの画素出力a1〜a,
に対する重み付け係数をu1〜u,とすれば、任意の位
置のAi対応位置でのY紬スライス断面の重み付け係数
付きの平均測光データ?1′ は次式になる。
f(c)・[(▼,XC,)+(v2 XC2)
+-+( vm Xc,, Month/(▼1+▼2+・
・・+▼, )1 /[{(▼*-+ xck-1 )+(vi XCm
)+(wb-+xck-1)1/(vl-1+
Vh +Vh. +)1・・・・(5) Next, the pixel outputs a1 to a of the light receiving elements A1 to An in column A,
If the weighting coefficients are u1 to u, then the average photometric data with weighting coefficients of the Y Tsumugi slice section at any position corresponding to Ai? 1′ becomes the following equation.

at ’  =l1、Xal xf (c)    一
〇・ (6)よって、A列の受光素子A1〜An及びC
列の受光素子01〜Cmより構成される矩形領域の平均
測光データを求める前記第(3)式は、iに対応する重
み付けを受けて次式になる。
at' = l1, Xal xf (c) 10. (6) Therefore, the light receiving elements A1 to An and C of row A
The above-mentioned equation (3) for calculating the average photometric data of the rectangular area constituted by the light receiving elements 01 to Cm in the column is weighted according to i and becomes the following equation.

a’■[i( ul Xa+ 14(++2 Xa2)
+−+(o. xa, )lXf(c)]/(u+ +
l+2 +−+I+. )        φ参〇 (
7)重み付け係数u1〜u.及びv1〜V.は、連続的
に滑らかに変化する変数でもよいし、計算の簡略のため
、いくつかの区間を設定して段階的に重み付けが変化す
るように値を設定しても良い。
a'■[i( ul Xa+ 14(++2 Xa2)
+−+(o. xa, )lXf(c)]/(u+ +
l+2 +-+I+. ) φsan〇 (
7) Weighting coefficients u1 to u. and v1-V. may be a variable that changes continuously and smoothly, or in order to simplify the calculation, several intervals may be set and the values may be set so that the weighting changes stepwise.

中央重点式の一例をあげるならば、第17図(A)〜(
C)に示すように、A列の受光素子Al〜An及びC列
の受光素子01〜Cmを各々3つの区間に分け、各区間
ごとの重み付け係数を下記のように設定すればよい。
To give an example of the center-weighted method, Fig. 17 (A) to (
As shown in C), the light receiving elements Al to An in the A column and the light receiving elements 01 to Cm in the C column are each divided into three sections, and the weighting coefficients for each section may be set as follows.

A列(Al 〜An)については、第17図(A)のよ
うに下記の3つの区間に対して重み付けを行う。; 区間      l≦i<(n/3): ul =1区
間  (n/3)≦1≦I(2xn)/31 : u,
・2区間    1(2Xn)/31 <i≦n: u
.・IC列(Cl〜Cm)についても同様に、第17図
(B)のように重み付けを行う。; 区間      1≦” (m/3) : 71 =1
区間  (Ql/3)≦+≦((2xml/31 : 
V. =il区間     {(2χm) /31 <
 1≦m:  y, =1よって、上記の如くA列及び
C列について重み付けを行うと、矩形領域の測光感度分
布(重み付けによる相対感度)形状は、第17図(C)
に示すようになる。
Regarding column A (Al to An), the following three sections are weighted as shown in FIG. 17(A). ; Section l≦i<(n/3): ul = 1 section (n/3)≦1≦I(2xn)/31: u,
・2 sections 1(2Xn)/31 <i≦n: u
..・Similarly, the IC columns (Cl to Cm) are weighted as shown in FIG. 17(B). ; Section 1≦” (m/3): 71 = 1
Interval (Ql/3)≦+≦((2xml/31:
V. =il interval {(2χm) /31 <
1≦m: y, =1 Therefore, when weighting is performed for columns A and C as described above, the shape of the photometric sensitivity distribution (relative sensitivity due to weighting) in the rectangular area is as shown in FIG. 17 (C).
It becomes as shown in .

また、下方重点式の例をあげるならば、第7図にて不図
示の姿勢検知手段等によってCPUIOOが、C列の受
光素子CI方向が天で、Cm方向が地であると判断した
ときに、各区間ごとの重み付け係数を下記のように設定
すればよい。
In addition, to give an example of the downward focusing method, in FIG. 7, when the CPUIOO determines by an attitude detection means (not shown) that the C direction of the light receiving elements in the C row is the sky and the Cm direction is the ground. , the weighting coefficient for each section may be set as follows.

A列について; 区間      1≦1< (n/3) : 01 =
1区間  (n/3)≦1≦((2Xn)/31 : 
u, =2区間    1(2Xn)/31 <i≦n
: L =1C列について: 区間      1≦i<(m/3): V+ =1区
間  (m/3)≦1≦l(2Xm)/31 : v.
 =2区間     1 (2Xm) /31 < i
≦m:  v,  =2なお、区間の分割は3つに限ら
れるものではなく、重み付け係数の割り付けも上記に限
定されるものではない。
Regarding column A; interval 1≦1< (n/3): 01 =
1 section (n/3)≦1≦((2Xn)/31:
u, = 2 sections 1(2Xn)/31 <i≦n
: Regarding L = 1C column: Section 1≦i<(m/3): V+ = 1 section (m/3)≦1≦l(2Xm)/31: v.
= 2 sections 1 (2Xm) /31 < i
≦m: v, =2 Note that the division of the section is not limited to three, and the allocation of weighting coefficients is not limited to the above.

重み付け係数は受光素子データの特性によりCPUIO
Oが自動的に選択してもよいし、測光モード選択手段7
8やAFモード選択手段76に連動して選択されるよう
になっていてもよい。
The weighting coefficient is determined by the CPUIO depending on the characteristics of the light receiving element data.
O may be selected automatically, or the photometry mode selection means 7
8 or the AF mode selection means 76.

重み付け係数は複数設定可能であり、係数によって第1
3図(A)〜(C)に示すように、測光表示手段80に
おいて中央重点度の設定に応じ、地図の等高線表示に類
して、中央重点度の低い場合、第13図(A)のように
、中央重点度が中程度の場合、第13図(B)のように
、中央重点度が高い場合、第13図(C)のように表示
を行なう。
Multiple weighting coefficients can be set, and depending on the coefficient
As shown in FIGS. 3(A) to 3(C), depending on the setting of the center weight on the photometric display means 80, similar to the contour line display of a map, when the center weight is low, the display shown in FIG. 13(A) is displayed. 13(B) when the central emphasis is medium, and as shown in FIG. 13(C) when the central importance is high.

また、受光素子データの出力コントラストが第10図(
B)や第11図(B)の例よりも更に極端で、低出力部
のデータの信頼性が極めて低い場合や、明らかに被写体
の連続性が無いと判断された場合は、測光値算出の領域
を限定するようにしても良い。例えば、A列の最後の受
光データan近傍での出力が極めて低い場合や、最初の
受光データa1近傍及び最後の受光データan近傍での
出力が極めて低い場合は、第14図(A)に示す測光表
示手段80の領域表示から第14図(B)及び(C)に
示す限定された測光値算出領域を表示するようにする。
In addition, the output contrast of the light receiving element data is shown in Figure 10 (
Even more extreme than the examples in B) and Figure 11 (B), if the reliability of the data in the low output area is extremely low, or if it is determined that there is clearly no continuity of the subject, the photometric value calculation may be The area may be limited. For example, if the output near the last received light data an in column A is extremely low, or if the output near the first received light data a1 and the last received light data an is extremely low, the output is shown in FIG. 14 (A). From the area display of the photometric display means 80, the limited photometric value calculation area shown in FIGS. 14(B) and 14(C) is displayed.

また、本発明にかかる焦点検出測光装置の測光値算出ア
ルゴリズムの例として、先ず縦方向の受光素子列の素子
出力から補正係数を求め、その後横方向の受光素子列の
素子出力の和に掛け合わせて測光データを算出するアル
ゴリズムを示したが、その逆で先ず横方向の受光素子列
の素子出力から補正係数を求め、その後縦方向の受光素
子列の素子出力の和に掛け合わせて測光データを算出す
る?ルゴリズムを用いてもよいことは勿論である。
Furthermore, as an example of the photometric value calculation algorithm of the focus detection photometer according to the present invention, first, a correction coefficient is obtained from the element outputs of the vertical light receiving element rows, and then the correction coefficient is multiplied by the sum of the element outputs of the horizontal light receiving element rows. We have shown an algorithm for calculating photometric data, but in reverse, we first find a correction coefficient from the element outputs of the horizontal photodetector arrays, and then multiply it by the sum of the element outputs of the vertical photodetector arrays to calculate the photometric data. calculate? Of course, an algorithm may also be used.

具体的には、第6図の83における縦横となるA,  
C列オーバーラップ部の画素出力積算値Sをall〜a
j1より算出しても構わない。
Specifically, A, which is the vertical and horizontal direction at 83 in FIG.
The pixel output integrated value S of the C column overlap part is all ~ a
It may be calculated from j1.

( a+ + +a, +a,, )と(Ck+ +C
i +ck.I )は同一の値であるから、算出された
測光データも同一になる。
(a+ + +a, +a,, ) and (Ck+ +C
i +ck. I) have the same value, so the calculated photometric data will also be the same.

また、本実施例は類似二次元形状の検出領域として十字
形の例をもって説明したが、第15図のようなH形の場
合には、Y軸方向の輝度分布情報としてC列の受光デー
タ01〜C、とE列の受光データe1〜e■を用いて、
受光素子列C1〜CmとE1〜Emに挟まれた領域につ
いては、本発明の明細書に説明した方法でC1〜c,よ
り求めた補正係数g (c)と、e1〜e6より求めた
補正係数g (e)の中間的値を用いてa,〜a,に掛
け合わせても良い。
Furthermore, although this embodiment has been described using a cross-shaped detection area as a similar two-dimensional shaped detection area, in the case of an H-shaped detection area as shown in FIG. ~C, and using the received light data e1~e■ of column E,
For the area sandwiched between the light-receiving element rows C1-Cm and E1-Em, the correction coefficient g (c) obtained from C1-c and the correction coefficient g (c) obtained from e1-e6 using the method explained in the specification of the present invention. It is also possible to multiply a, ~a, using an intermediate value of the coefficient g (e).

具体的に説明するならば、A列とC列との交差領域のC
列の受光データをC,−1〜Ck.l としたときに0
1〜C,より求められる補正係数g (c)は次式のよ
うになる。
To be more specific, C in the intersection area of column A and column C
The light reception data of the column is C, -1 to Ck. 0 when l
1 to C, the correction coefficient g (c) obtained from the following equation.

g (C) +(CI +c, +=−+c。)/ml/ f(ck
−1 +Ck +Cb−+ )/31・・・ (8) 一方、A列とE列との交差領域のE列の受光データをe
,−1〜e,.1とすれば、e1〜e.,,より求めら
れる補正係数g(e)は同様に次式のようになる。
g (C) + (CI +c, +=-+c.)/ml/ f(ck
-1 +Ck +Cb-+ )/31... (8) On the other hand, the light reception data of column E in the intersection area of column A and column E is
, -1~e,. 1, e1 to e. The correction coefficient g(e) obtained from , , is similarly expressed as the following equation.

g (C) ・{(e+ +e2+−+e− )/ml/i(ek−
, +eb +ek−+ )/31・・・ (9) 上記2つの補正係数の中間的値として単純平均を用いる
こととすれば、a1〜a,,に掛け合わせる補正係数は
、 g(c,e)Ig(c)+g(!)l/2     e
 @ @ (1 0)となり、任意の位置のAi対応位
置でのY軸スライス断面の重み付け係数付きの平均測光
データa1 は次式になる。
g (C) ・{(e+ +e2+-+e-)/ml/i(ek-
, +eb +ek-+ )/31... (9) If a simple average is used as the intermediate value of the above two correction coefficients, the correction coefficient to be multiplied by a1 to a,, is g(c, e )Ig(c)+g(!)l/2 e
@ @ (1 0), and the average photometric data a1 with a weighting coefficient of the Y-axis slice section at an arbitrary position corresponding to Ai is given by the following formula.

a.’  =u.xa.xf  (c)よって、最終的
に矩形領域の平均測光データは次式のようになる。
a. ' = u. xa. xf (c) Therefore, the average photometric data of the rectangular area is finally given by the following equation.

a’ = I(a,  +a2 +=−+a,)Xg 
(c,e)l/n・[f(al +a2+・・十a, 
) X31 / (nxmx2) ]X[FC! +(
2+−+c、)/ (Cm−+ +Ch +Ch−+ 
)IN(6, +e2+−+6、)/(ek−1 +e
k +ek.I )11・・・ (11) なお、中間的値の補正係数の求め方は上記に限定される
ものではない。また、計算の簡略化のために、g (c
)とg (e)とが略同一と見なせる場合においては、 g (c.  e) =g (c) としてもよい。この場合、第(8)式は第(4)式と同
じになる。また、 g (c.e)=g (e) とした場合でも同様なことは、自明である。また、前記
重み付け係数を併せて掛け合わせ可能なことも勿論であ
る。
a' = I(a, +a2 +=-+a,)Xg
(c, e) l/n・[f(al +a2+...10a,
) X31 / (nxmx2) ]X[FC! +(
2+-+c, )/ (Cm-+ +Ch +Ch-+
)IN(6, +e2+-+6,)/(ek-1 +e
k+ek. I)11... (11) Note that the method for determining the intermediate value correction coefficient is not limited to the above method. Also, to simplify calculation, g (c
) and g (e) can be considered to be substantially the same, g (c. e) = g (c). In this case, equation (8) is the same as equation (4). Furthermore, it is obvious that the same holds true even when g (c.e)=g (e). It goes without saying that the weighting coefficients can also be multiplied together.

また、a,〜a。のC列及びE列よりの距離に応じて補
間補正係数h (i)を求め、a,”wa,に掛け合わ
せても良い。
Also, a, ~a. The interpolation correction coefficient h (i) may be determined according to the distance from columns C and E of , and multiplied by a, "wa,".

以下に、補間補正係数h (i)の求め方を説明する。The method for determining the interpolation correction coefficient h(i) will be explained below.

上記第(5)式により求めた補正係数g (C)は、A
列の受光素子A1の測光領域近傍での被写体のY軸方向
断面の輝度分布情報に基づく補正係数である。また、上
記第(6)式により求めた補正係数g (e)は、A列
の受光素子Anの測光領域近傍での被写体のY軸方向断
面の輝度分布情報に基づく補正係数である。
The correction coefficient g (C) obtained by the above equation (5) is A
This is a correction coefficient based on brightness distribution information of a cross section in the Y-axis direction of the subject in the vicinity of the photometric area of the light receiving element A1 in the column. Further, the correction coefficient g (e) obtained by the above equation (6) is a correction coefficient based on the luminance distribution information of the Y-axis direction cross section of the subject in the vicinity of the photometry area of the light receiving elements An of the A row.

よってX軸上のA列の受光素子A1〜Anのうち、任意
の位置のAi対応位置でのY軸スライス断面の平均測光
データa+゛は、AiがA1に近ければ、 at ’  =a+ xg (c) とみなせ、AiがAnに近ければ、 at ’  ==3,Xg (e) とみなせる。また、AiがA1とAnとの中間に位置す
る場合は、 a L ’ = a + x Ig(c) +g(e)
l/2とみなせる。
Therefore, among the light receiving elements A1 to An in row A on the X axis, the average photometric data a+' of the Y axis slice section at a position corresponding to Ai at an arbitrary position is as follows: at' = a+ xg (if Ai is close to A1) c) If Ai is close to An, it can be considered that at' ==3,Xg (e). Also, if Ai is located between A1 and An, a L' = a + x Ig(c) +g(e)
It can be regarded as l/2.

以上の関係から、連続的な位置を表すiの関数としての
補間補正係数h (i)を式として表すと、次式になる
From the above relationship, the interpolation correction coefficient h (i) as a function of i representing continuous position can be expressed as the following formula.

b(i)II(n−i+I)Xg(c)l+ I(i−
1)Xg(e)l]/n(1≦i≦n) ・・・ (12) よって、任意の位置のAi対応位置でのY軸スライス断
面の平均測光データa+’ は、次式で表せる。
b(i)II(n-i+I)Xg(c)l+I(i-
1) .

al’=h(i)Xal     −−−(13)また
、受光素子列C1〜Cm,El〜Em及びA1〜Anよ
り構成される矩形領域の平均測光データは、次式のよう
になる。
al'=h(i)Xal---(13) Furthermore, the average photometric data of the rectangular area formed by the light receiving element arrays C1 to Cm, El to Em, and A1 to An is expressed by the following equation.

!’=((!, Xh(1))+( a2Xh(2+)
+.+( 1, xh(n))l/n・・・ (14) なお、補間補正係数h (i)の求め力は上記に限定さ
れるものではない。例えば、計算の簡略化のために、A
列の受光素子A1〜Anを3つの区間に分け、各区間ご
との補間補正係数h (i)を下記の数値で代表させて
もよい。
! '=((!, Xh(1))+( a2Xh(2+)
+. +(1, xh(n))l/n... (14) Note that the ability to find the interpolation correction coefficient h(i) is not limited to the above. For example, to simplify calculation, A
The light receiving elements A1 to An in the row may be divided into three sections, and the interpolation correction coefficient h (i) for each section may be represented by the following numerical value.

?間     1≦1<(n/3) :h(i)=g(
c)区間 (n/3)≦i≦f(2xn)/31 :h
(i)Ig(c)+gfe)l/2区間   t(2X
n)/31 <i≦n : h (i) ■g (e)
また、区間の分割も3つに限るものではない。また、前
記重み付け係数を併せて掛け合わせ可能なことも勿論で
ある。
? Between 1≦1<(n/3): h(i)=g(
c) Section (n/3)≦i≦f(2xn)/31 :h
(i) Ig(c)+gfe)l/2 section t(2X
n)/31 <i≦n: h (i) ■g (e)
Furthermore, the division of the section is not limited to three. It goes without saying that the weighting coefficients can also be multiplied together.

[発明の効果] 以上説明したように本発明の焦点検出測光装置によれば
、僅かな画角の変化による測光値の大きな変動を回避で
き、安定した測光値が高い精度で得られる。また従来の
スポット測光と類似した特性を有するため、操作性も良
い。
[Effects of the Invention] As described above, according to the focus detection photometry device of the present invention, it is possible to avoid large fluctuations in photometry values due to slight changes in the angle of view, and stable photometry values can be obtained with high accuracy. Furthermore, since it has characteristics similar to conventional spot photometry, it has good operability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の検出領域の説明図; 第2図、第3図は被写体の輝度分布の例の説明図第4図
は第2.3図に対応した受光素子出力の説明図; 第5図は検出領域の部分拡大図; 第6図は本発明による焦点検出測光装置の厠光値演算に
関するブロック図; 第7図は本発明による焦点検出測光装置の構成図;第8
図は本発明に用いられる検出光学系の説明図;第9図は
光電変換手段の構成図; 第10図は別の被写体の輝度分布の例の説明図:第11
図及び第12図は第10図に対応した受光素子出力の説
明図 第13図は測光モード表示手段の応用例の説明図;第1
4図は測光モード表示手段の別の応用例の説明図; 第15図は別の検出領域の例の説明図;第16図は画角
を僅かに変化させたときの従来の問題を説明するため被
写体の一例を示す説明図;第17図(A)〜(C)は重
み付け係数を掛け合わせた応用例の感度分布形状の説明
図である。 [主要部分の符号の説明] 10:撮影レンズ 20 カメラボディ 30・AFモジュール 50・AF表示 60:AFモータ 80:測光モード表示 100:CPU
Fig. 1 is an explanatory diagram of the detection area of the present invention; Figs. 2 and 3 are explanatory diagrams of an example of the luminance distribution of a subject; Fig. 4 is an explanatory diagram of the light receiving element output corresponding to Figs. 2.3; FIG. 5 is a partially enlarged view of the detection area; FIG. 6 is a block diagram related to light value calculation of the focus detection photometer according to the present invention; FIG. 7 is a block diagram of the focus detection photometer according to the present invention;
Figure 9 is an explanatory diagram of the detection optical system used in the present invention; Figure 9 is a configuration diagram of the photoelectric conversion means; Figure 10 is an explanatory diagram of an example of the brightness distribution of another subject:
Fig. 12 is an explanatory diagram of the light receiving element output corresponding to Fig. 10. Fig. 13 is an explanatory diagram of an application example of the photometry mode display means;
Figure 4 is an explanatory diagram of another application example of the photometry mode display means; Figure 15 is an explanatory diagram of another example of the detection area; Figure 16 is an illustration of the conventional problem when the angle of view is slightly changed. FIGS. 17(A) to 17(C) are explanatory diagrams showing an example of a sensitivity distribution shape in an applied example in which weighting coefficients are multiplied. [Explanation of symbols of main parts] 10: Photographing lens 20 Camera body 30, AF module 50, AF display 60: AF motor 80: Metering mode display 100: CPU

Claims (4)

【特許請求の範囲】[Claims] (1)一次元的な焦点検出領域を有する第1の光電変換
手段と、該第1の光電変換手段の焦点検出領域に交差す
る一次元的な焦点検出領域を有する第2の光電変換手段
とを少なくとも具備した焦点検出測光装置において、 一次元的な前記第1及び第2の光電変換手段の焦点検出
領域を含む二次元測光領域を設定し、該二次元測光領域
の受光信号を前記第1及び第2の光電変換手段の出力信
号に基づいて補間し、該補間された受光信号から前記二
次元測光領域の測光値を算出する測光演算手段を備えた
ことを特徴とする焦点検出測光装置。
(1) A first photoelectric conversion means having a one-dimensional focus detection area, and a second photoelectric conversion means having a one-dimensional focus detection area intersecting the focus detection area of the first photoelectric conversion means. In a focus detection photometry device comprising at least and a photometric calculation unit that performs interpolation based on the output signal of the second photoelectric conversion unit and calculates the photometric value of the two-dimensional photometric area from the interpolated light reception signal.
(2)前記測光演算手段は、前記一方の光電変換手段の
出力信号から補正係数を算出する補正係数演算手段と、
該補正係数演算手段で算出された補正係数を前記他方の
光電変換手段の出力信号に掛け合わせた値に基づいて測
光値を算出する測光値演算手段とを備えたことを特徴と
した焦点検出測光装置。
(2) The photometric calculation means includes correction coefficient calculation means for calculating a correction coefficient from the output signal of the one photoelectric conversion means;
and a photometric value calculating means for calculating a photometric value based on a value obtained by multiplying the output signal of the other photoelectric conversion means by the correction coefficient calculated by the correction coefficient calculating means. Device.
(3)前記補正係数演算手段は、一方の光電変換手段の
出力を(c1、c2、・・・、cm)とし、他方の光電
変換手段との交差領域の出力信号を (ck+1、ck+2、・・・、ck+i)とした時、
補正係数f(c)を、 f(c)=((c_1+・・・+c_m)/m)/((
c_k_+_1+・・・+c_k_+_i)/i)とし
て算出することを特徴とする請求項1記載の焦点検出測
光装置。
(3) The correction coefficient calculation means sets the output of one photoelectric conversion means to (c1, c2, . ..., ck+i),
The correction coefficient f(c) is expressed as f(c)=((c_1+...+c_m)/m)/((
The focus detection photometry device according to claim 1, wherein the calculation is performed as c_k_+_1+...+c_k_+_i)/i).
(4)前記測光値演算手段は、前記補正係数を前記一方
の光電変換手段の出力の総和に掛け合わせた後に、該光
電変換手段の蓄積時間で除して測光値を求めることを特
徴とする請求項1記載の焦点検出測光装置。
(4) The photometric value calculation means calculates the photometric value by multiplying the sum of the outputs of the one photoelectric conversion means by the correction coefficient, and then dividing by the accumulation time of the photoelectric conversion means. The focus detection photometry device according to claim 1.
JP02065298A 1989-11-14 1990-03-15 Focus detection photometer Expired - Lifetime JP3116358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02065298A JP3116358B2 (en) 1989-11-14 1990-03-15 Focus detection photometer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29564689 1989-11-14
JP1-295646 1989-11-14
JP1-305499 1989-11-24
JP30549989 1989-11-24
JP02065298A JP3116358B2 (en) 1989-11-14 1990-03-15 Focus detection photometer

Publications (2)

Publication Number Publication Date
JPH03218430A true JPH03218430A (en) 1991-09-26
JP3116358B2 JP3116358B2 (en) 2000-12-11

Family

ID=27298740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02065298A Expired - Lifetime JP3116358B2 (en) 1989-11-14 1990-03-15 Focus detection photometer

Country Status (1)

Country Link
JP (1) JP3116358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033975A (en) * 2009-08-05 2011-02-17 Nikon Corp Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033975A (en) * 2009-08-05 2011-02-17 Nikon Corp Imaging apparatus

Also Published As

Publication number Publication date
JP3116358B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
US8730374B2 (en) Focus detection apparatus
CN101662588B (en) Image sensing apparatus, image sensing system and focus detection method
JPH07117645B2 (en) Focus detection device
JPS61279829A (en) Photometric device for camera
EP1654515B1 (en) Inclination angle detection device and inclination angle detection method
US6577344B2 (en) Focus state detection apparatus with image sensing device controls
JP2886865B2 (en) Focus state detection device
JPH03218430A (en) Focal point detection photometry device
JPH09184965A (en) Focus detector and optical instrument using the same
JPH04235512A (en) Focus detecting device having grouping function
JPH01109331A (en) Camera
JPH11223761A (en) Camera with focus detector
JPH03164727A (en) Focus detecting photometric device
JP4950634B2 (en) Imaging apparatus and imaging system
JPS626206B2 (en)
JP3133416B2 (en) Photometric device
JP2004012493A (en) Focus detector
JP3230759B2 (en) Distance measuring device
JPH04215631A (en) Split photometric device for camera
JPH06288820A (en) Light measuring device of camera
JPH11202193A (en) Focus detecting device and camera with focus detecting device
JP3427215B2 (en) Camera TTL metering device
JP4186243B2 (en) Camera with focus detection device
JPH0812069B2 (en) Distance detector
JPH03103727A (en) Photometry device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10