JPH03218073A - Thin film semiconductor device and its manufacturing method - Google Patents
Thin film semiconductor device and its manufacturing methodInfo
- Publication number
- JPH03218073A JPH03218073A JP1325190A JP1325190A JPH03218073A JP H03218073 A JPH03218073 A JP H03218073A JP 1325190 A JP1325190 A JP 1325190A JP 1325190 A JP1325190 A JP 1325190A JP H03218073 A JPH03218073 A JP H03218073A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- temperature
- annealing
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 81
- 239000004065 semiconductor Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000137 annealing Methods 0.000 claims abstract description 89
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 15
- 230000004913 activation Effects 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 8
- 230000005669 field effect Effects 0.000 claims description 4
- 239000010408 film Substances 0.000 abstract description 19
- 150000002500 ions Chemical class 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 238000000059 patterning Methods 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010453 quartz Substances 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 239000007790 solid phase Substances 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 239000002245 particle Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004151 rapid thermal annealing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241001663154 Electron Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜半導体装置及びその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film semiconductor device and a method for manufacturing the same.
[従来の技術]
近年、大型で高解像度のアクティブマトリクス液晶表示
パネル、高速で高解像度の密着型イメージセンサ、3次
元IC等への実現に向けて、ガラス、石英などの絶縁性
非結晶基板や、多酸化珪素( S iO x・Xは1〜
3)などの絶縁性非結晶層上に、高性能な半導体素子を
形成する試みがなされている。特に、大型の液晶表示パ
ネルに於いては、低コストの要求を満たすために、廉価
な低融点ガラス基板上に薄膜トランジスタ(TPT)を
形成することが必須の要求になりつつある。従来は、低
融点ガラス基板上に形成するTPTの活性層に、例えば
Journal of Applied Physic
s Vol.65(10)p.3951(1989)等
に見られるように、非品質シリコン(a−Si)を用い
たもの、Solid State E−lectron
ics Vol.32(5) p.391(1989)
、IEEE Elec−tron Device Le
tters Vol.10(3) p.123(198
9)、工EEE Transactions on E
lectron Devices Vol.36(3)
p.529(1989)等に見られるように、多結晶
シリコン(poly−Si)を用いたものがある.また
ゲート電極には上記公知例に見られるMOや、Cr,A
l、Ti、そしてpt等の金属電極を用いたもの、不純
物をドープしたpoly−Siを用いたもの等がある.
[発明が解決しようとする課題]
TPTに於いては、低抵抗のゲート電極を得るために特
に困難な技術を必要としないP C I Osガス中で
のpoly−Si薄膜の加熱が行われてきた。更にpo
ly−Si薄膜のチャネル部へH2プラズマなどによっ
て水素を導入することにより、poly−Si薄膜の捕
獲準位を減らして抵抗率を下げたn型poly−Siゲ
ート電極を得ていた.しかしこのゲート電極を用いた場
合、nチャネルTPTに於いてはスレッシュホールド電
圧のずれ込みが起こり、オフ電流の増大が消費電力の浪
費を招くことが知られている.従来の薄膜半導体装置の
製造工程では前記のスレッシュホールド電圧のずれ込み
を軽減するため、チャネル部分にB(ボロン)イオンを
導入するなどのチャネルドーピングが行われてきた.し
かしチャネルドーピングは導入量の制御が難しい上に工
程数を一つ坩やすもとになっていた.
また、a−Si薄膜の固相成長により大粒径化したpo
ly−Si薄膜を用いて、TPTの半導体領域部分或る
いはゲート電極部分(以下この二部分を称してシリコン
質と呼ぶ)を形成する試みはあったものの、a−Si薄
膜が物質構造由来で包含する水素の脱離工程に於いて該
薄膜の空洞化を防ぐ有力な方法がなかった.そのため、
該薄膜によって形成されたシリコン質の抵抗率は、po
ly−Siを減圧下化学気相成長法(LPCVD法)な
どにより積層した薄膜によって形成されたシリコン貿の
抵抗率の低さには太刀打ちできなかった.
そこで、本発明はより簡便な方法でp型a−Si薄膜を
より低い抵抗率のp型poly−Si薄膜とするもので
あり、その目的とするところは、より高性能の薄膜半導
体装置及びその製造方法を提供するところにある.
[課題を解決するための手段1
本発明の薄膜半導体装置は、電界効果トランジスタのゲ
ート電極が結晶粒径1μm以上の結晶粒を含むp型半導
体からなることを特徴とする。[Conventional technology] In recent years, insulating amorphous substrates such as glass and quartz have been developed to realize large, high-resolution active matrix liquid crystal display panels, high-speed, high-resolution contact image sensors, 3D ICs, etc. , polysilicon (SiOx・X is 1~
Attempts have been made to form high-performance semiconductor elements on insulating amorphous layers such as 3). In particular, in large-sized liquid crystal display panels, in order to meet the demand for low cost, it is becoming essential to form thin film transistors (TPT) on inexpensive low-melting point glass substrates. Conventionally, the active layer of TPT formed on a low melting point glass substrate was
s Vol. 65(10) p. 3951 (1989), etc., using non-quality silicon (a-Si), Solid State E-electron
ics Vol. 32(5) p. 391 (1989)
, IEEE Elec-tron Device Le
tters Vol. 10(3) p. 123 (198
9), EEE Transactions on E
Lectron Devices Vol. 36(3)
p. 529 (1989), etc., which use polycrystalline silicon (poly-Si). In addition, the gate electrode is made of MO, Cr, A, etc. as seen in the above-mentioned known example.
There are those using metal electrodes such as L, Ti, and PT, and those using poly-Si doped with impurities. [Problem to be solved by the invention] In TPT, a poly-Si thin film has been heated in PCI Os gas, which does not require particularly difficult techniques, in order to obtain a low-resistance gate electrode. Ta. Further po
By introducing hydrogen into the channel region of the poly-Si thin film using H2 plasma, etc., an n-type poly-Si gate electrode with lower resistivity was obtained by reducing the trap levels of the poly-Si thin film. However, it is known that when this gate electrode is used, a shift in threshold voltage occurs in an n-channel TPT, and an increase in off-state current leads to wasted power consumption. In the conventional manufacturing process of thin film semiconductor devices, channel doping, such as introducing B (boron) ions into the channel portion, has been carried out in order to reduce the above-mentioned shift in threshold voltage. However, it is difficult to control the amount of channel doping introduced, and the number of steps required is one. In addition, the po
Although there have been attempts to form the semiconductor region or gate electrode part of TPT (hereinafter these two parts will be referred to as silicon material) using an a-Si thin film, the material structure of the a-Si thin film is insufficient. There was no effective method to prevent cavitation of the thin film during the desorption process of the contained hydrogen. Therefore,
The resistivity of the silicon material formed by the thin film is po
It was not possible to compete with the low resistivity of silicon, which is formed by thin films of ly-Si deposited by low-pressure chemical vapor deposition (LPCVD). Therefore, the present invention aims to convert a p-type a-Si thin film into a p-type poly-Si thin film with lower resistivity using a simpler method, and its purpose is to provide higher performance thin-film semiconductor devices and their use. The purpose is to provide manufacturing methods. [Means for Solving the Problems 1] The thin film semiconductor device of the present invention is characterized in that the gate electrode of the field effect transistor is made of a p-type semiconductor containing crystal grains having a crystal grain size of 1 μm or more.
また、本発明の薄膜半導体装置の製造方法は、不純物を
含む非晶質半導体薄膜を形成する工程と、該薄膜をアニ
ールして多結晶半導体薄膜化する工程と、該薄膜をアニ
ールして該薄膜中に含まれる不純物を活性化する工程と
を少なくとも含むことを特長とする.
そして、本発明の薄膜半導体装置の製造方法は、上記製
造方法によって、結晶粒径1μm以上の結晶粒を含むp
型半導体から成る電界効果トランジスタのゲート電極を
形成したことを特長とする.更に本発明の薄膜半導体装
置の製造方法は、不純物イオン活性化アニール工程に於
いて、アニル前の温度から設定アニール温度まで昇温す
る際の昇温速度に上限値を定めたことを特長とする.[
実施例]
第1図(a)〜(d)は、本発明の実施例における薄膜
半導体装置の製造工程図の一例である.この第1図にお
いては、薄膜半導体素子としてTPTを形成する場合を
例示している。Further, the method for manufacturing a thin film semiconductor device of the present invention includes a step of forming an amorphous semiconductor thin film containing impurities, a step of annealing the thin film to form a polycrystalline semiconductor thin film, and annealing the thin film to form the thin film. The feature is that it includes at least a step of activating impurities contained therein. The method for manufacturing a thin film semiconductor device of the present invention includes a method for manufacturing a thin film semiconductor device using the above manufacturing method.
The feature is that the gate electrode of a field effect transistor made of a type semiconductor is formed. Furthermore, the method for manufacturing a thin film semiconductor device of the present invention is characterized in that an upper limit is set for the temperature increase rate when increasing the temperature from the pre-annealing temperature to the set annealing temperature in the impurity ion activation annealing step. .. [
Embodiment] FIGS. 1(a) to 1(d) are examples of manufacturing process diagrams of a thin film semiconductor device in an embodiment of the present invention. In FIG. 1, a case where a TPT is formed as a thin film semiconductor element is illustrated.
まず、石英基板上100にプラズマCVD法(PCVD
法)またはLPCVD法により、真性a一Si薄膜を約
1000〜1500人積層する。First, a plasma CVD method (PCVD) was applied on a quartz substrate.
About 1,000 to 1,500 intrinsic a-Si thin films are laminated by the LPCVD method or the LPCVD method.
このa−Si薄膜をTFTの半導体領域101にパタニ
ングした後、固相成長法またはアエールなどの手段によ
り大粒径化する(第1図(a)).この場合、大粒径化
の後にパタニングしてもよい。After patterning this a-Si thin film into the semiconductor region 101 of the TFT, the grain size is increased by means such as solid phase growth or aeral (FIG. 1(a)). In this case, patterning may be performed after increasing the grain size.
また、アニールに於いては、後に述べるゲート電極形成
時のp型a−Si薄展のp型poly−Si薄膜化の際
のアニール方法を用いてもよい.続いて、熱酸化を行い
Si薄膜上にゲート絶縁膜であるSi02102を約3
00〜500人形成する.ここでは、熱酸化以外にスパ
ッタ法を用いてもよい。また、ゲート絶縁膜の材料とし
てはSi02に限らず窒化シリコンその他の絶縁性シリ
コン化合物でもよい。そして、基板上及び該ゲート絶縁
膜上にPCVD法を用いて、p型a−Sil03を約3
000〜7000A積層する(第1図(b))このp型
a−Sil03の積層工程に於いては、PCVD法以外
にμ波プラズマCVD法、スパツタ法などを用いてもよ
いし、また、真性a−Si(若しくはp型a−Si、若
しくはn型a−Si)薄膜中へSiイオンインブランテ
ーションを行うなどしてもよい.本実施例では、PCV
D法の場合を説明する。PCVD法では、p型a−Si
薄膜の成膜ガスとしてS i H a及びH2ガス、そ
してホール導入のドーピングガスとしてはB 2 H
sガスを用いた。p型a−Si薄膜の成膜条件は、基板
温度180〜250℃、真空槽内圧0.8Torrで、
周波数13.56MHzのRF電源を用いた。また、B
2H6、SiH4の流量比は[B2Hsl/ [3 i
H4] ”3 X 1 0−’〜3 X 1 0−2
となるように設定した.但し、成膜条件はこれに限定さ
れるものではない.ここで、アニールを行い、p型a−
Si薄膜中に含まれる水素を脱離させ、且つ該薄膜成膜
時に添加したB原子を活性化させ、且つ該薄膜を多結晶
薄膜化(poly−Si薄膜化)させる。アニールは、
第一のアニールと、第二のアニールとからなり、本実施
例では両アニールともN2アニールを行った.まず、ア
ニールに際してはアニール炉の予熱は最低限に抑え低温
挿入を行う。大量生産に於いては、連続工程となるため
直前パッチの余熱が残っていることも考えられるが、こ
の場合でも一旦炉を冷やして但温挿入する方が望ましい
。第一のアニールは、p型a−Si薄膜が大気中に取り
出された場合酸素等を吸着し、以って該薄膜の膜買低下
をもたらすことを防止することを主たる目的として行う
.p型a−Si薄膜の成膜後のアニール工程は連続工程
則ち真空槽をブレイクせずに窒素ガスを導入しそのまま
熱処理する工程であることが望ましく、その場合第一の
アニールは省くこともできる。第一のアニールは熱処理
温度300℃以上が望ましく、400〜500℃で特に
大きな効果が得られた.尚、該薄膜の緻密化のみを目的
とするならば熱処理温度300゜C未満でも効果がある
。第二のアニールは、p型a−Si薄膜を大粒径化し、
該薄膜の抵抗率を減少させ以って該薄膜が後に担うゲー
ト電極としての役割を十分果たさせることを目的として
行う.第二のアニールは熱処理温度550〜650℃で
数時間〜72時間行ったが、特に40時間以上で望まし
い効果が得られた。第二のアニールによって、水素の脱
離と結晶成長が起こり、1〜3μm(40時間以上で2
〜3μm)の大粒径のp型po1y−Si薄膜が形成さ
れる.尚、両アニールとも、アニール前の温度から設定
アニール温度に達するまでの昇温速度を毎分2 0 d
e g. よりも遅くして行う(毎分5 d e
g. よりも遅くすると特に望ましい).その理由と
するところは、前記昇温速度よりも速く所定のアニール
温度まで昇温すると、特に300℃を越えてから顕著な
現象であるが、p型a−Si薄膜中に欠陥を生じ易くな
り、延いては該薄膜の剥離を来す事もあるからである。Further, in the annealing, the annealing method used for thinning p-type poly-Si from p-type a-Si thinning during gate electrode formation, which will be described later, may be used. Next, thermal oxidation is performed to form a gate insulating film of about 30% Si02102 on the Si thin film.
Form 00 to 500 people. Here, a sputtering method may be used instead of thermal oxidation. Further, the material of the gate insulating film is not limited to Si02, but may be silicon nitride or other insulating silicon compounds. Then, using the PCVD method, about 30% of p-type a-Sil03 is deposited on the substrate and the gate insulating film.
000 to 7000A (Fig. 1(b)) In this p-type a-Sil03 lamination process, a μ-wave plasma CVD method, a sputtering method, etc. may be used in addition to the PCVD method, and an intrinsic Si ion implantation may be performed into the a-Si (or p-type a-Si, or n-type a-Si) thin film. In this example, the PCV
The case of method D will be explained. In the PCVD method, p-type a-Si
S i H a and H2 gas are used as the thin film forming gas, and B 2 H is used as the doping gas for introducing holes.
s gas was used. The conditions for forming the p-type a-Si thin film were a substrate temperature of 180 to 250°C and a vacuum chamber internal pressure of 0.8 Torr.
An RF power source with a frequency of 13.56 MHz was used. Also, B
The flow rate ratio of 2H6 and SiH4 is [B2Hsl/[3 i
H4] "3 X 1 0-'~3 X 1 0-2
I set it so that However, the film forming conditions are not limited to these. Here, annealing is performed to form a p-type a-
Hydrogen contained in the Si thin film is desorbed, B atoms added at the time of forming the thin film are activated, and the thin film is made into a polycrystalline thin film (poly-Si thin film). Anil is
It consists of a first annealing and a second annealing, and in this example, both annealings were N2 annealing. First, during annealing, preheating of the annealing furnace is kept to a minimum and low-temperature insertion is performed. In mass production, since it is a continuous process, residual heat from the previous patch may remain, but even in this case, it is preferable to cool the furnace once and insert it into the warmer state. The primary purpose of the first annealing is to prevent the p-type a-Si thin film from adsorbing oxygen, etc. when taken out into the atmosphere, thereby reducing the film quality of the thin film. It is desirable that the annealing process after forming the p-type a-Si thin film be a continuous process, that is, a process in which nitrogen gas is introduced without breaking the vacuum chamber and heat treatment is performed as it is; in that case, the first annealing may be omitted. can. The first annealing is preferably performed at a heat treatment temperature of 300°C or higher, and a particularly large effect was obtained at 400-500°C. Incidentally, if the purpose is only to densify the thin film, it is effective even if the heat treatment temperature is less than 300°C. The second annealing increases the grain size of the p-type a-Si thin film,
This is done with the purpose of reducing the resistivity of the thin film so that the thin film can sufficiently fulfill its role as a gate electrode later on. The second annealing was performed at a heat treatment temperature of 550 to 650° C. for several hours to 72 hours, and particularly desirable effects were obtained after 40 hours or more. The second annealing causes hydrogen desorption and crystal growth, resulting in a growth of 1-3 μm (2 μm over 40 hours).
A p-type poly-Si thin film with large grain size (~3 μm) is formed. For both annealing, the temperature increase rate from the pre-anneal temperature to the set annealing temperature was 20 d/min.
e g. (5 d e per minute)
g. (It is especially desirable to make it slower than The reason for this is that when the temperature is raised to a predetermined annealing temperature faster than the temperature rise rate mentioned above, defects are more likely to occur in the p-type a-Si thin film, which is a noticeable phenomenon especially after the temperature exceeds 300°C. This is because, as a result, peeling of the thin film may occur.
アニール終了後、大粒径化によりp型poly−Si薄
膜となったp型a−Si薄膜をゲート電極104の形状
にパタニングする(第1図(C)).このとき、該ゲー
ト電極の抵抗率は、1x 1 0−’ 〜3 x 1
0−3Ω−cmであり、従来のLPCVD法を用いて成
膜した、粒径1μm以上の結晶粒を包含しないn型po
ly−Si薄膜のパタニングによって形成したゲート電
極の抵抗率、2.5xlO−”Ω・cmと比較しても殆
ど遜色が無い.尚、p型a−Si薄膜のバタニングは第
一のアニールの前に行っても良いし、可能ならば第一の
アニールと第二のアニールとの間で行っても良い。また
、第一のアニールは省くこともできる.更に、アニール
はN2アニールに限らず、レーザービームアニール、ラ
ビッドサーマルアニール等も用いられる.レーザービー
ムアニール、ラビッドサーマルアニールを用いる場合に
は、N2アニールと比較してアニール時間を短縮できる
という利点がある.続いてイオンインブランテーション
を行う.pチャネルTPTの場合はB(ボロン)イオン
を、nチャネルTPTの場合はP(燐)イオンを用い、
ゲート電極をマスクとしゲート絶縁膜を通じて半導体領
域101にソース領域105、及びドレイン領域106
、及びチャネル領域107を形成する(第1図(d))
. ここで、活性化アニールを行う.活性化アニール
は、N2ガス雰囲気中で、ソース領域及びドレイン領域
のBイオンまたはPイオンの活性化を促す目的で行う.
ところがこの活性化は、p型poly−Si薄膜となっ
たp型a−Si薄膜のパタニングによるゲート電極中の
Bイオンをも同時に活性化させることが判った.そして
、ゲート電極の結晶粒界界面も低抵抗化され、ゲート電
極全体の抵抗率の低下が達成できるのである.活性化ア
ニールの設定アニール温度条件は600℃〜1100℃
であるが900℃以上が特に望ましい.600℃程度で
もゲート電極の抵抗率は多少は下がる.活性化アニール
に於いて、アニール前の温度から設定アニール温度まで
の昇温速度条件は毎分2 0 d e g. 以下(
望ましくtよ毎分5 d e g. 以下)である.
その理由とするところは、もし前期昇温速度限界よりも
速く昇温すると、非結晶買中の未結晶の部分が余り結晶
化せず、縦しんば結晶化してきたとしても多数の結晶核
が発生して微細多結晶粒構造となってしまい、またp型
a−Si薄膜であった層から残留水素が急速に脱離し該
層が空洞化してしまうことさえあるからであり、これは
シリコン質の抵抗率を上げる結果につながる.そこで、
本実施例では活性化アニールに於けるアニール前の温度
から設定アニール温度に達するまでの昇温方法について
言及する。第2図(a)〜(d)は、本発明の実施例に
於ける薄膜半導体装置の活性化アニール工程での昇温方
法の模式図である。第2図(a)は、アニール前の温度
[T+]から設定アニール温度[T2]まで昇温する場
合の模式図である.設定アニール温度[T2]としては
、600°C〜1100℃(望ましくは900℃〜11
00℃)を採る。After the annealing, the p-type a-Si thin film, which has become a p-type poly-Si thin film by increasing the grain size, is patterned into the shape of the gate electrode 104 (FIG. 1(C)). At this time, the resistivity of the gate electrode is 1 x 1 0-' to 3 x 1
0-3 Ω-cm, formed using the conventional LPCVD method, and does not contain crystal grains with a grain size of 1 μm or more.
The resistivity of the gate electrode formed by patterning the ly-Si thin film is almost comparable to that of 2.5xlO-''Ωcm.The patterning of the p-type a-Si thin film was performed before the first annealing. or, if possible, between the first annealing and the second annealing.Also, the first annealing can be omitted.Furthermore, annealing is not limited to N2 annealing. Laser beam annealing, rapid thermal annealing, etc. are also used.When using laser beam annealing and rapid thermal annealing, there is an advantage that the annealing time can be shortened compared to N2 annealing.Next, ion implantation is performed. In the case of p-channel TPT, B (boron) ions are used, and in the case of n-channel TPT, P (phosphorus) ions are used.
A source region 105 and a drain region 106 are connected to the semiconductor region 101 through the gate insulating film using the gate electrode as a mask.
, and form a channel region 107 (FIG. 1(d))
.. Here, activation annealing is performed. Activation annealing is performed in an N2 gas atmosphere for the purpose of promoting activation of B ions or P ions in the source and drain regions.
However, it has been found that this activation also activates B ions in the gate electrode due to patterning of the p-type a-Si thin film, which has become a p-type poly-Si thin film. The resistance of the crystal grain boundaries of the gate electrode is also reduced, making it possible to reduce the resistivity of the entire gate electrode. The setting annealing temperature condition for activation annealing is 600℃~1100℃
However, a temperature of 900°C or higher is particularly desirable. Even at temperatures around 600°C, the resistivity of the gate electrode decreases somewhat. In activation annealing, the heating rate condition from the temperature before annealing to the set annealing temperature is 20 d e g per minute. below(
Preferably 5 d e g. (below).
The reason for this is that if the temperature is raised faster than the temperature increase rate limit in the first stage, the uncrystallized portion of the amorphous material will not crystallize very much, and even if it does crystallize vertically, many crystal nuclei will be generated. This is because residual hydrogen may rapidly desorb from the layer that was a p-type a-Si thin film, causing the layer to become hollow. This will lead to an increase in the rate. Therefore,
In this embodiment, a method of increasing the temperature from the pre-anneal temperature to the set annealing temperature in activation annealing will be described. FIGS. 2(a) to 2(d) are schematic diagrams of a temperature raising method in the activation annealing process of a thin film semiconductor device in an embodiment of the present invention. FIG. 2(a) is a schematic diagram when the temperature is increased from the pre-annealing temperature [T+] to the set annealing temperature [T2]. The set annealing temperature [T2] is 600°C to 1100°C (preferably 900°C to 110°C).
00℃).
また[T+]から[T2]に至る際の昇温速度として毎
分20deg. (望ましくは毎分5deg.)より
遅い速度を採るのは前述の通りである, [T1]は
[T2]より低い温度である。尚、昇温速度は常に一定
である必要はなく、前記の範囲内で変動しても構わない
.第2図(b)は、アニール前の温度[T+]から設定
アニール温度[T2]まで昇温する際に、 [T+コ<
[T3] < [T2]であるような温度[T3]で
昇温速度を変える場合の模式図である.設定アニール温
度[T2]としては、600℃〜1100℃(望ましく
は900℃〜1100℃)を採る.ある温度[T3]は
、設定アニル温度[T2]よりも低い範囲内で、800
℃〜1000℃程度であり、この温度[T3]を越えて
後は毎分5 d e g. 以下の速度で昇温する方
が望ましい.また、アニール前の温度から、設定アニル
温度[T2]と700゜Cとの低い方の温度までは毎分
1 0 d e g. より迷い昇温速度でも構わな
いが、この場合でも毎分2 0 d e g. 以下
の昇温速度の方が望ましい.温度[T3]は、アニール
に当たって一点のみ採るばかりでなく、複数採っても構
わないし、アニール前の温度[T1]から、設定アニー
ル温度[T2]に至るまでの昇温速度を、連続的に変化
させても構わない.[T1]は[T3]より低い温度で
ある.尚、昇温速度は常に一定である必要はなく、前記
の範囲内で変動しても構わない。第2図(C)は、アニ
ール前の温度[T+]から設定アニール温度[T2]ま
で昇温する際に、[’r+コ<[T3コ< [T2]で
あるような温度[T3コで一旦昇温を休止し、一定時間
の後に再び昇温を始める場合の模式図である。設定アニ
ール温度[T2]としては、600゜C〜1100℃(
望ましくは900℃〜1100℃)を採る。ある温度[
T3]は、設定アニール温度[T2]よりも低い範囲内
で、600℃〜900℃程度である。この温度[T3]
の状態で、例えば10分〜1時間温度を一定に保つ。或
るいは、温度[T3]は常に一定の必要はなく、例えば
毎分5 d e g. 以下でゆっくり昇温しでも構
わないし、2〜3 d e g. 程度温度[T3]
を中心として変動しても構わない。この、温度[T3]
で温度を一定に保つか若しくは、温度[T3]からゆっ
くり昇温するか若しくは、温度[T3]を中心として2
〜3 d e g. 変動するかで、シリコン質の結
晶性を損なわずに活性化を行うことが出来る。アニール
前の温度[T+]から温度[T3]に至るまでの昇温速
度は毎分2 0 d e g. 以下(望ましくは毎
分5 d e g. 以下)であり、温度[T3]か
ら設定アニール温度[T2]に至るまでの昇温速度は、
前記昇温速度範囲よりも毎分30 d e g. を
上限として、速くなっても構わない。Also, the temperature increase rate from [T+] to [T2] is 20 degrees per minute. (Preferably 5 degrees per minute.) The slower speed is adopted as described above, and [T1] is a lower temperature than [T2]. Note that the heating rate does not always have to be constant, and may vary within the above range. Figure 2(b) shows that when increasing the temperature from the pre-annealing temperature [T+] to the set annealing temperature [T2], [T+ko<
This is a schematic diagram when the heating rate is changed at a temperature [T3] where [T3] < [T2]. The set annealing temperature [T2] is 600°C to 1100°C (preferably 900°C to 1100°C). A certain temperature [T3] is within a range lower than the set annealing temperature [T2], 800
℃ to about 1000℃, and after exceeding this temperature [T3], the speed is 5 d e g. It is preferable to increase the temperature at the following rate. Also, from the temperature before annealing to the lower of the set annealing temperature [T2] and 700°C, the rate is 10 d e g. Although a more flexible heating rate is acceptable, even in this case it is 20 d e g. The following heating rate is preferable. The temperature [T3] can be measured not only at one point during annealing, but also at multiple points, and the temperature increase rate from the temperature [T1] before annealing to the set annealing temperature [T2] can be continuously changed. I don't mind if you let me. [T1] is a lower temperature than [T3]. Note that the temperature increase rate does not always need to be constant, and may vary within the above range. Figure 2 (C) shows that when increasing the temperature from the temperature [T+] before annealing to the set annealing temperature [T2], the temperature [T3 FIG. 3 is a schematic diagram of a case where the temperature increase is temporarily stopped and the temperature increase is started again after a certain period of time. The set annealing temperature [T2] is 600°C to 1100°C (
The temperature is preferably 900°C to 1100°C. A certain temperature [
T3] is approximately 600°C to 900°C within a range lower than the set annealing temperature [T2]. This temperature [T3]
The temperature is kept constant for 10 minutes to 1 hour, for example. Alternatively, the temperature [T3] does not always need to be constant, for example, at 5 d e g. You can slowly raise the temperature at 2 to 3 d e g. Degree temperature [T3]
It does not matter if it fluctuates around . This temperature [T3]
Either keep the temperature constant at , or slowly raise the temperature from temperature [T3], or increase the temperature at 2 with temperature [T3] as the center.
~3 d e g. By varying the amount, activation can be performed without impairing the crystallinity of the silicon material. The temperature increase rate from the temperature [T+] before annealing to the temperature [T3] is 20 d e g. (preferably 5 d e g. per minute or less), and the temperature increase rate from temperature [T3] to set annealing temperature [T2] is:
30 d e g. It doesn't matter if it's faster, with an upper limit of .
また、温度[T3]は複数存在してもよく、その方が活
性化の効果が高い,[T+]は[T3]より低い温度で
ある。尚、昇温速度は常に一定である必要はなく、前記
の範囲内で変動しても構わない。Further, there may be a plurality of temperatures [T3], which has a higher activation effect, and [T+] is a temperature lower than [T3]. Note that the temperature increase rate does not always need to be constant, and may vary within the above range.
第2図(d)は、アニール前の温度[T1]から設定ア
ニール温度[T2]まで昇温する際に、一旦設定アニー
ル温度[T2]まで昇湿した後、連続して若しくはアニ
ールを開始した後(図では連続しての場合を示してある
)、アニールにかかる時間に比して短い時間で[T4]
> [T2]であるような温度[T4]に昇温し、再
びアニールにかかる時間に比して短い時間で設定アニー
ル温度[T2]に降温しでアニールを行う場合の模式図
である.設定アニール温度[T2]としては、600℃
〜1100℃(この場合は600℃〜950℃の時有効
な結果が得られ、特に望ましい)を採る.アニール前の
温度[’r+]から一旦設定アニール温度に至るまでの
昇温速度は毎分2 0 d e g. 以下で、特に
毎分5 d e g. 以下であることが望ましい.
また、設定アニール温度[T2]から温度[T4]まで
昇温するとき及び温度[T4]から設定アニール温度[
T2]まで降温するときの速度は、毎分10deg.〜
毎分4 0 d e g. の範囲内にあることが望
ましい.急激な昇温には、ランブアニール、レーザービ
ームアエールなどのラビッドサーマルアニールが最も適
している。この場合は毎分40deg.以上の昇温も可
能となる.温度[T4]まで昇温することで、シリコン
質中の残留水素を完全に抜くことができ、設定アニール
温度[T2]での活性化アニールをより完全なものとす
ることが出来る。これは設定アニール温度[T2]が6
00℃〜950゜Cの範囲内の時、特に有効な昇温方法
である.この時温度[T4]としては、設定アニール温
度[T2]より但い範囲で900℃〜1100℃が望ま
しい。 [’r+]は[T2]より低い温度である。Figure 2 (d) shows that when the temperature is raised from the pre-annealing temperature [T1] to the set annealing temperature [T2], the humidity is raised to the set annealing temperature [T2] and then the annealing is started continuously or after the temperature is raised to the set annealing temperature [T2]. After that (the figure shows a continuous case), [T4] is completed in a shorter time than the time required for annealing.
This is a schematic diagram of a case where the temperature is raised to a temperature [T4] such that the temperature is [T2], and then annealing is performed by lowering the temperature to a set annealing temperature [T2] in a shorter time than the time required for annealing again. The set annealing temperature [T2] is 600℃
~1100°C (in this case, effective results can be obtained at temperatures between 600°C and 950°C, which is particularly desirable). The temperature increase rate from the temperature ['r+] before annealing to the set annealing temperature is 20 d e g. Below, in particular, 5 d e g. The following is desirable.
Also, when increasing the temperature from the set annealing temperature [T2] to the temperature [T4] and from the temperature [T4] to the set annealing temperature [
The rate at which the temperature is lowered to T2 is 10deg/min. ~
40 d e g per minute. It is desirable that the value be within the range of . For rapid temperature increases, rapid thermal annealing such as lamp annealing and laser beam aeration is most suitable. In this case, 40 degrees per minute. It is also possible to increase the temperature even further. By raising the temperature to the temperature [T4], residual hydrogen in the silicon can be completely removed, and activation annealing at the set annealing temperature [T2] can be made more complete. This is because the set annealing temperature [T2] is 6.
This is a particularly effective method of raising the temperature within the range of 00°C to 950°C. At this time, the temperature [T4] is preferably 900° C. to 1100° C. within the range of the set annealing temperature [T2]. ['r+] is a lower temperature than [T2].
尚、昇温速度は常に一定である必要はなく、前記の範囲
内で変動しても構わない.また、以上に示した昇温方法
は、第2図(a)〜(d)の説明に限定されるものでは
ない。第2図(a)〜(d)の各々を組み合わせて使う
ことも可能である.従来の水素化poly−Siはキャ
リアとして電子を極く少量含むため、ゲート電極として
n型poly−Siを使用すると、pチャネルTPTの
場合は問題が無いが、nチャネルTPTではスレッシュ
ホールド電圧が−IVほどにずれ込む現象がみられる.
これはオフ電流を上げる結果につながり、発熱若しくは
消費電力の肥大につながるため望ましくない.このため
従来は、ゲート絶縁膜とチャネル領域との界面付近にあ
る電荷を打ち消すためのチャネル処理工程を必要として
いた.しかし、主たるチャネル処理工程であるチャネル
ドーピングはドーブ量の制御が雌しく、ドーピング過剰
による膜質劣化から、TPT作動時電流の低下などもし
ばしば起こる.本発明のp型poly−Si薄膜となっ
たp型a−Si薄膜のパタニングによるゲート電極を用
いれば、nチャネルTPTばかりでなくpチャネルTP
Tに於いてもスレッシュホールド電圧のずれ込みは起こ
らないのでチャネル処理工程を省くことが出来、且つ特
性の良いTPTを得ることが出来る.
[発明の効果]
本発明の薄膜半導体装置及びその製造方法によれば、従
来のTPTが抱えていたスレッシュホールド電圧のずれ
込みを、工程数を増やすことなく低減することが出来る
.
また、本発明の薄膜半導体装置及びその製造方法によれ
ば、結晶粒径が大きく結晶粒界界面に不純物を捕獲しに
くいSi薄膜を成膜することが出来る. そして、本
発明の薄膜半導体装置及びその製造方法によれば、良好
な特性を持つ半導体薄膜を従来の工程よりも容易に製造
できるので、歩留りの向上、製造時間の短縮も達成でき
る.Note that the heating rate does not always have to be constant, and may vary within the above range. Moreover, the temperature raising method shown above is not limited to the explanation of FIGS. 2(a) to 2(d). It is also possible to use a combination of each of Figures 2 (a) to (d). Conventional hydrogenated poly-Si contains a very small amount of electrons as carriers, so if n-type poly-Si is used as the gate electrode, there is no problem in the case of p-channel TPT, but in n-channel TPT, the threshold voltage is - There is a phenomenon where it deviates to about IV.
This is undesirable because it leads to an increase in off-state current, leading to heat generation and increased power consumption. For this reason, conventionally, a channel treatment process was required to cancel the charges near the interface between the gate insulating film and the channel region. However, in channel doping, which is the main channel processing step, it is difficult to control the amount of dope, and excessive doping often causes deterioration of film quality and a decrease in current during TPT operation. If a gate electrode formed by patterning a p-type a-Si thin film, which has become the p-type poly-Si thin film of the present invention, can be used not only for n-channel TPT but also for p-channel TP.
Since the threshold voltage does not shift even at T, the channel processing step can be omitted and a TPT with good characteristics can be obtained. [Effects of the Invention] According to the thin film semiconductor device and the manufacturing method thereof of the present invention, it is possible to reduce the shift in threshold voltage that occurs in conventional TPTs without increasing the number of steps. Further, according to the thin film semiconductor device and the manufacturing method thereof of the present invention, it is possible to form a Si thin film that has a large crystal grain size and is difficult to trap impurities at the grain boundary interface. According to the thin film semiconductor device and the method for manufacturing the same of the present invention, a semiconductor thin film with good characteristics can be manufactured more easily than in conventional processes, so that it is possible to improve the yield and shorten the manufacturing time.
第1図(a)〜(d)は本発明の実施例に於ける薄膜半
導体装置の製造工程図の一例である。
第2図(a)〜(d)は本発明の実施例に於ける昇温方
法(一部降温方法)の模式図である.00・・・・・・
石英基板
01・・・・・・半導体領域
02・・・・・・ゲート絶縁膜
03・・・・・・p型a−Si薄膜
04・・・・・・p型poly−Si薄膜ゲート電極0
5・・・・・・ソース領域
06・・・・・・ドレイン領域
07・・・・・・チャネル領域
以 上FIGS. 1(a) to 1(d) are examples of manufacturing process diagrams of a thin film semiconductor device in an embodiment of the present invention. FIGS. 2(a) to 2(d) are schematic diagrams of a temperature raising method (partially a temperature lowering method) in an embodiment of the present invention. 00...
Quartz substrate 01...Semiconductor region 02...Gate insulating film 03...P-type a-Si thin film 04...P-type poly-Si thin film gate electrode 0
5...Source region 06...Drain region 07...Channel region and above
Claims (4)
μm以上の結晶粒を含むp型半導体から成ることを特徴
とする薄膜半導体装置。(1) The gate electrode of a field effect transistor has a crystal grain size of 1
A thin film semiconductor device comprising a p-type semiconductor containing crystal grains of μm or more.
、該薄膜をアニールして多結晶半導体薄膜化する工程と
、該薄膜をアニールして該薄膜中に含まれる不純物を活
性化する工程とを少なくとも含むことを特長とする薄膜
半導体装置の製造方法。(2) A step of forming an amorphous semiconductor thin film containing impurities, a step of annealing the thin film to form a polycrystalline semiconductor thin film, and a step of annealing the thin film to activate the impurities contained in the thin film. A method for manufacturing a thin film semiconductor device, comprising at least the following.
て、結晶粒径1μm以上の結晶粒を含むp型半導体から
成る電界効果トランジスタのゲート電極を形成したこと
を特長とする薄膜半導体装置の製造方法。(3) Manufacturing a thin film semiconductor device characterized in that a gate electrode of a field effect transistor made of a p-type semiconductor containing crystal grains with a crystal grain size of 1 μm or more is formed by the method for manufacturing a thin film semiconductor device according to claim 2. Method.
ール前の温度から設定アニール温度まで昇温する際の昇
温速度に上限値を定めたことを特長とする請求項2記載
若しくは請求項3記載の薄膜半導体装置の製造方法。(4) In the impurity ion activation annealing step, an upper limit value is set for the temperature increase rate when increasing the temperature from the pre-annealing temperature to the set annealing temperature. A method for manufacturing a thin film semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1325190A JPH03218073A (en) | 1990-01-23 | 1990-01-23 | Thin film semiconductor device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1325190A JPH03218073A (en) | 1990-01-23 | 1990-01-23 | Thin film semiconductor device and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03218073A true JPH03218073A (en) | 1991-09-25 |
Family
ID=11827993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1325190A Pending JPH03218073A (en) | 1990-01-23 | 1990-01-23 | Thin film semiconductor device and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03218073A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190135472A (en) * | 2017-04-27 | 2019-12-06 | 어플라이드 머티어리얼스, 인코포레이티드 | Low dielectric constant and low resistive OP stack for 3D NAND applications |
-
1990
- 1990-01-23 JP JP1325190A patent/JPH03218073A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190135472A (en) * | 2017-04-27 | 2019-12-06 | 어플라이드 머티어리얼스, 인코포레이티드 | Low dielectric constant and low resistive OP stack for 3D NAND applications |
JP2020518136A (en) * | 2017-04-27 | 2020-06-18 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Low dielectric constant oxide and low resistance OP stack for 3D NAND applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0608503B1 (en) | A semiconductor device and its manufacturing method | |
JP2001210828A (en) | Manufacturing method of thin-film semiconductor device | |
JP2001102587A (en) | Thin film transistor and fabrication thereof and method for forming semiconductor thin film | |
JP3359691B2 (en) | Method for manufacturing thin film transistor | |
JPWO2005119788A1 (en) | Field effect transistor and manufacturing method thereof | |
JPH0738118A (en) | Method of manufacturing thin film transistor | |
JPH03218073A (en) | Thin film semiconductor device and its manufacturing method | |
JPH11102861A (en) | Manufacture of polycrystalline silicon thin film | |
JPH06291039A (en) | Amorphous-semiconductor formation substrate and manufacture of polycrystalline-semiconductor formation substrate using it | |
JP2864623B2 (en) | Method for manufacturing semiconductor device | |
JPH11145484A (en) | Manufacture of thin-film transistor | |
JP2001223359A (en) | Method of manufacturing thin film semiconductor device | |
JP3055170B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH04186634A (en) | Manufacture of thin film semiconductor device | |
JP3278237B2 (en) | Method for manufacturing thin film transistor | |
JP3333489B2 (en) | Method for manufacturing thin film transistor | |
JP2904984B2 (en) | Display device manufacturing method | |
JPH0613607A (en) | Polycrystalline silicon thin-film transistor | |
JP2994700B2 (en) | Method for manufacturing polycrystalline silicon thin film and semiconductor device | |
JP2000114541A (en) | Manufacture of semiconductor element | |
JP2699578B2 (en) | Method of manufacturing semiconductor thin film and method of manufacturing thin film transistor using the same | |
JPH07240527A (en) | Manufacture of thin film transistor | |
JPH0513439A (en) | Method of manufacturing thin film transistor | |
JPH03219643A (en) | Manufacturing method of semiconductor device | |
JPH03132074A (en) | Manufacture of thin film and thin-film transistor |