[go: up one dir, main page]

JPH03218067A - Manufacture of microlens for solid-state image sensing element - Google Patents

Manufacture of microlens for solid-state image sensing element

Info

Publication number
JPH03218067A
JPH03218067A JP2014449A JP1444990A JPH03218067A JP H03218067 A JPH03218067 A JP H03218067A JP 2014449 A JP2014449 A JP 2014449A JP 1444990 A JP1444990 A JP 1444990A JP H03218067 A JPH03218067 A JP H03218067A
Authority
JP
Japan
Prior art keywords
solid
transparent resin
state image
resin
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014449A
Other languages
Japanese (ja)
Other versions
JP3009419B2 (en
Inventor
Masanobu Fujita
藤田 昌信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014449A priority Critical patent/JP3009419B2/en
Publication of JPH03218067A publication Critical patent/JPH03218067A/en
Application granted granted Critical
Publication of JP3009419B2 publication Critical patent/JP3009419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To make it possible to form microlenses having a large curvature, to enhance converging property and to increase the gain of a solid-state image sensing element by a method wherein an etchback is performed under the condition of a prescribed etching rate. CONSTITUTION:A transparent resin is applied on a transparent resin 8 for optical interval formation use provided on a solid-state image sensing element 1, is hardened to form a transparent resin layer 2, a photosensitive resin is applied thereon, desired parts are exposed to light, are developed and islands 3 are formed on photodetecting parts 6. Then, the islands 3 are heated, fused and are fluidized to form lens forms 4. At this time, an etching rate in the layer 2 is larger than that in the lens forms 4 and the transparent resin and the photosensitive resin, which satisfy this condition, are combined with each other and are selected. Then, if an etching of peripheral edge sides 41 of the forms 4 ends, an etchback is performed from parts 51, which are positioned at lower positions to correspond to the parts 41, of the layer 2.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、固体撮像素子用マイクロレンズの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a microlens for a solid-state image sensor.

〔従来の技術〕[Conventional technology]

従来より、間体撮像素子は、種々の形式のものが提案さ
れているが、近年になり、更に小型化、高画素化が要求
され、同時に高感度化、低雑音化の要求を満たす必要性
から、回路面あるいは、デハイス構造面からさまざまな
提案がなされてきた。
Various types of interbody image sensors have been proposed in the past, but in recent years, there has been a demand for smaller sizes and higher pixel counts, as well as the need to meet the demands for higher sensitivity and lower noise. Since then, various proposals have been made from the viewpoint of circuits and device structures.

特にデハイス構造面ではレンズの開口率を増加させる試
みが最も多い。なぜならば、固体撮像素子自体による固
有ノイズの低減には限界があるため、入射光量の増加に
よる信号強度の増加に依存する他に無いからである。
In particular, in terms of the de-heis structure, most attempts are made to increase the aperture ratio of the lens. This is because there is a limit to the reduction of inherent noise by the solid-state image sensor itself, so there is no other choice but to rely on an increase in signal strength due to an increase in the amount of incident light.

なかでも、固体撮像素子上にマイクロレンズを形成する
提案も平易な構造であるにもかかわらず、効果的な方法
の1つである。
Among these, the proposal to form a microlens on a solid-state image sensor is one of the effective methods despite its simple structure.

これについて説明すると、原理的には、第2図に示すよ
うに基板21上に形成された個々の受光部26、26・
・上にマイクロレンズ22、22・・を設け、受光部2
6、26  に対し適当な間隔を存するように固体盪像
素子21面上に設けられた透明膜28を介して、入射光
29を受光部26、26・・に集光させる。つまり、固
体撮像素子の転送部や配線部等の非受光部上の入射光を
も有効利用して実質的にレンズの開口率を増加させる方
法である。
To explain this, in principle, as shown in FIG.
・Micro lenses 22, 22, etc. are provided on the top, and the light receiving section 2
The incident light 29 is focused on the light receiving portions 26, 26, . In other words, this is a method of effectively increasing the aperture ratio of the lens by effectively utilizing incident light on non-light-receiving parts such as the transfer part and the wiring part of the solid-state image sensor.

この固体1最像素子用のマイクロレンズの製造方法は、
大別して加熱熔融法(例えば、特開昭59−14758
6号公報参照)と製版塗布法(例えば、特公昭6 2−
5 1 5 0 4号公報参照)の2通りがある。即ち
、加熱熔融法は、第3図(A)乃至(D>により説明す
ると、固体撮像素子2工上に光学的間隔形成用の透明膜
28を形成したのち(同図(A)) 、熱熔融性を有す
る透明なボジ型惑光性樹脂23を塗布し(同図(B))
 、これを製版して受光部26、26・・上にアイラン
ド24、24・・を形成し(同図(C)) 、これを加
熱熔融して凸レンズ形状25、25・・ (同図CD)
)を形成するもので、これによると集光性の良いレンズ
が形成される。
The manufacturing method of this microlens for solid state 1 most imaging element is as follows:
Broadly divided, heat melting method (for example, JP-A-59-14758
(see Publication No. 6) and the plate-making coating method (for example, Tokuko Sho 6 2-
There are two methods (see Publication No. 51504). That is, the heat melting method will be explained with reference to FIGS. 3(A) to 3(D). After forming a transparent film 28 for forming an optical distance on the solid-state image sensor 2 (see FIG. 3(A)), heat melting is performed. A transparent positive-type photolactic resin 23 having meltability is applied ((B) in the same figure).
This is plate-made to form islands 24, 24, etc. on the light-receiving parts 26, 26, etc. (same figure (C)), and this is heated and melted to form convex lens shapes 25, 25, etc. (same figure CD).
), which forms a lens with good light-gathering properties.

製版塗布法は第4図(A)乃至(D)に示すように、固
体撮像素子21上に同様な透明膜28を形成(同図(A
))Lた後、透明な感光性樹脂23を塗布し(同図(B
)) 、これを製版して受光部26、26・・上にアイ
ラント′24、24・・を形成し(同図(C) )、ア
イランド24、24・・上に更に透明な樹脂25を塗布
し、凸レンズ形状25を形成するもので(同図(D))
、これによると集光性は加熱溶融法によるものよりも不
利である。
The plate-making coating method forms a similar transparent film 28 on the solid-state image sensor 21, as shown in FIGS. 4(A) to 4(D).
)) After applying the transparent photosensitive resin 23 (as shown in the same figure (B)
)) This is made into a plate to form eyelants 24, 24, etc. on the light-receiving parts 26, 26, etc. ((C) in the same figure), and a transparent resin 25 is further applied on the islands 24, 24, and so on. and forms a convex lens shape 25 ((D) in the same figure).
According to this method, the light-gathering property is less favorable than that obtained by the heating melting method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

加熱熔融法により形成されるマイクロレンズは、曲率が
大きくとれ、集光性の点で有利な反面、次に掲げる様な
問題点を有していた。
Although microlenses formed by the heating melting method have a large curvature and are advantageous in terms of light gathering ability, they have the following problems.

まず、第1番目には、加熱熔融法で製造されるマイクロ
レンズ自体の物性の問題がある。即ち、この方法による
と、マイクロレンズを形成するポジ型感光性樹脂は、3
次元架橋されていない熱可塑性樹脂であるため、再加熱
によりマイクロレンズが変形する点(耐熱性)で不利な
うえ、耐薬品性の面でも劣るものであった。
First, there is a problem with the physical properties of the microlens itself, which is manufactured by the heating melting method. That is, according to this method, the positive photosensitive resin forming the microlens has 3
Since it is a thermoplastic resin that is not dimensionally crosslinked, it is disadvantageous in that the microlenses are deformed by reheating (heat resistance) and is also inferior in terms of chemical resistance.

第2番目には、マイクロレンズ用として使用し得る感光
性樹脂の種類が限られるとともに、良好な光学的特性(
例えば、高屈折率物質)を得ることは困難であった。即
ち、加熱熔融法によるマイクロレンズ用材料は、可視域
において特定波長の光を吸収しないばかりではなく、ポ
ジ型感光性樹脂(ネガ型感光性樹脂であると、光露光に
より架橋し、熱可塑性が失われる。)でなければならず
、このような怒光性樹脂はDeep − UV用のボジ
型感光性樹脂がわずかにある程度でその選択使用の巾が
著しく狭かった。
Second, the types of photosensitive resins that can be used for microlenses are limited, and they also have good optical properties (
For example, it has been difficult to obtain high refractive index materials. In other words, microlens materials made by heating and melting not only do not absorb light at specific wavelengths in the visible range, but also have positive-working photosensitive resins (negative-working photosensitive resins are crosslinked by light exposure and lose their thermoplasticity). ), and the scope of selective use of such photosensitive resins has been extremely narrow, with only a few bright-type photosensitive resins for deep-UV use.

第3番目には、加熱熔融法であっても、レンズの得られ
る曲率に限界があるという点である。即ち、レンズの曲
率は、レンズの専有面積が小さく、レンズの厚みが大な
る程、大きくなるので、原理的には、この様になるよう
にレンズを設計すれば良いが、実際は、レンズの専有面
積に対し、レンズの厚みが大なる場合、加熱熔融時に熱
によるダレのためレンズの専有面積が広がり、隣接する
レンズ同士が融合して曲率が低下する。
Thirdly, even with the heat melting method, there is a limit to the curvature that can be obtained for the lens. In other words, the curvature of the lens increases as the area occupied by the lens becomes smaller and the thickness of the lens increases.In principle, the lens should be designed in such a way, but in reality, If the thickness of the lens is large relative to its area, the exclusive area of the lens will expand due to sagging due to heat during heating and melting, and adjacent lenses will fuse together, resulting in a decrease in curvature.

他方、製版塗布法によるマイクロレンズは、前記した加
熱熔融法の問題点のうち、第1番目、第2番目の問題点
については有利な方法といえるが、レンズの曲率が加熱
熔融法によるよりも更に小さく、集光性といったレンズ
本来の目的の具現化には不利であった。
On the other hand, microlenses produced using the plate coating method can be said to be advantageous in terms of the first and second problems of the heat-melting method described above, but the curvature of the lens is smaller than that produced by the heat-melting method. Furthermore, it was small and disadvantageous in realizing the original purpose of the lens, such as light-gathering properties.

本発明は、上記した問題に鑑みてなされたもので、その
目的とするところは、加熱熔融法もしくは製版塗布法に
よって得られたマイクロレンズ形状をさらにエソチバソ
ク法を用いて形成置換し、もって良好なレンズ特性に関
する物性面において優れた性質を有する物質の選択適用
の幅を大幅に拡大することを可能とするばかりではなく
、材料のエッチング速度の違いを利用して、レンズの曲
率を一層増大させ得る固体撮像素子用マイクロレンズの
製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to further form and replace the microlens shape obtained by the heat melting method or the plate coating method using the Esochibasoku method, thereby creating a better shape. This not only makes it possible to greatly expand the range of applications for selecting materials that have excellent physical properties related to lens properties, but also makes it possible to further increase the curvature of the lens by utilizing the difference in etching speed of the materials. An object of the present invention is to provide a method for manufacturing a microlens for a solid-state image sensor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴とするところは、固体撮像素子の受光面に
、少なくとも硬化させた透明樹脂もし《は透明無機膜を
被着させ、更に固体擾像素子に設けたそれぞれの受光部
に対応するように感光性樹脂を用いてアイランドを形成
し、これを加熱熔融してレンズ状に形成するか、もしく
は遇明樹脂を塗布、硬化してレンズ状に形成した後、エ
ノチノ\ノク法にて透明樹脂もしくは透明無機膜をレン
ズ状に形成する工程を含む固体盪像素子用マイクロレン
ズの製造方法において、その透明樹脂もしくは透明無機
膜のエッチング速度が、惑光性樹脂のエッチング速度よ
りも大なる条件を満足するような透明樹脂もしくは透明
無機膜及び感光性樹脂を用いてエノチバノクするように
構成した点にある。
The present invention is characterized in that at least a hardened transparent resin or transparent inorganic film is coated on the light-receiving surface of the solid-state image sensor, and furthermore, the light-receiving surface of the solid-state image sensor is coated with a transparent inorganic film, and the light-receiving surface of the solid-state image sensor is coated with at least a transparent inorganic film. Form an island using a photosensitive resin and heat and melt it to form a lens shape, or apply and harden a light resin to form a lens shape, and then apply a transparent resin using the Enochino\Noku method. Alternatively, in a method for manufacturing a microlens for a solid-state imaging device, which includes a step of forming a transparent inorganic film into a lens shape, the etching rate of the transparent resin or transparent inorganic film is higher than the etching rate of the photosensitive resin. The present invention is constructed using a satisfactory transparent resin or transparent inorganic film and photosensitive resin.

〔作用〕[Effect]

固体盪像素子の受光面に少なくとも硬化させた遇明樹脂
もしくは遇明無機膜を被着させ、更に固体撮像素子に設
けたそれぞれの受光部に対応するように惑光性樹脂を用
いてアイランドを形成し、このアイランドを加熱熔融し
てレンズ状に形成するか、又は透明樹脂を塗布、硬化し
てレンズ状に形成した後、上記した透明樹脂もしくは透
明無機膜の工,チング速度が、感光性樹脂のエッチング
速度よりも大なる条件を満足する透明樹脂もしくは透明
無機膜及び惑光性樹脂を用いてこれらをエノチハノクす
る。これにより、感光性樹脂がエッチングされるにつれ
、透明樹脂もしくは透明無機膜がより大きなエッチング
速度でエソチングされるので、怒光性樹脂で形成したレ
ンズ形状よりも曲率の大きなレンズが形成される。
Apply at least a hardened light-receiving resin or a light-receiving inorganic film to the light-receiving surface of the solid-state image sensor, and further form islands using photoreceptive resin so as to correspond to each light-receiving portion provided on the solid-state image sensor. After the island is formed into a lens shape by heating and melting, or by coating and curing a transparent resin, the processing speed of the transparent resin or transparent inorganic film is determined by the photosensitivity. These are etched using a transparent resin or a transparent inorganic film that satisfies conditions greater than the etching rate of the resin, and a photosensitive resin. As a result, as the photosensitive resin is etched, the transparent resin or the transparent inorganic film is etched at a higher etching rate, so that a lens having a larger curvature than the lens shape formed from the photosensitive resin is formed.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図(A)乃至(E)は本発明の一実施例の工程順序
を示すもので、固体撮像素子1に設けた光学的間隔形成
用の透明樹脂8の上にレンズ形成材料となる透明樹脂を
塗布し、これを硬化させて透明樹脂層2を形成しく第1
図(A))、その上に感光性樹脂を塗布し、所望部を光
露光、現像して、固体撮像素子1の受光部6、6・・上
にアイランド3、3・・を形成する(同図(B))。次
いで、アイランド3、3 ・を加熱熔融し、流動化させ
て惑光性樹脂によるレンズ形状4、4・・を形成ずる(
同図(C))。その際、透明樹脂層2のエッチング速度
は感光性樹脂によるレンズ形状4、4・・のエッチング
速度よりも大であることが必要である。そして、この要
件を充足する透明樹脂及び感光性樹脂を組み合わせ選択
することが必要である。また、両者の膜厚の関係は、下
弐(1)になることが望ましい。
1(A) to (E) show the process order of one embodiment of the present invention, in which a transparent resin serving as a lens forming material is placed on a transparent resin 8 for forming an optical distance provided on a solid-state image sensor 1. The first step is to apply a resin and harden it to form a transparent resin layer 2.
(Fig. (A)), a photosensitive resin is applied thereon, and desired areas are exposed to light and developed to form islands 3, 3, etc. on the light-receiving areas 6, 6,... of the solid-state image sensor 1 ( Same figure (B)). Next, the islands 3, 3 . are heated and melted and fluidized to form lens shapes 4, 4 . . . of the photoreceptive resin (
Same figure (C)). At this time, the etching rate of the transparent resin layer 2 needs to be higher than the etching rate of the lens shapes 4, 4, etc. formed by the photosensitive resin. It is necessary to select a combination of a transparent resin and a photosensitive resin that satisfy this requirement. Further, it is desirable that the relationship between the film thicknesses of the two is as shown below (1).

即ち、(透明樹脂層2のエッチング速度)/(感光性樹
脂によるレンズ形状4のエッチング速度)≦(透明樹脂
層2の模厚)/(感光性樹脂によるレンズ形状4の膜厚
)・・ (1)例えば、透明樹脂層2のエッチング速度
が0,5(μm/IIin)4光性樹脂によるレンズ形
状4のエンチング速度が、0.25 ( p m/Il
in)で、その膜厚が1μmであれば、遇明樹脂層2の
膜厚は2μm以上であることが望ましい。
That is, (etching rate of transparent resin layer 2) / (etching rate of lens shape 4 made of photosensitive resin) ≦ (model thickness of transparent resin layer 2) / (film thickness of lens shape 4 made of photosensitive resin)... 1) For example, the etching rate of the transparent resin layer 2 is 0.5 (μm/IIin), and the etching rate of the lens shape 4 made of the photoresist is 0.25 (pm/IIin).
In), if the film thickness is 1 μm, it is desirable that the film thickness of the Yumei resin layer 2 is 2 μm or more.

次いで、酸素プラズマ等を用いて、レンズ形状4、4・
・のエッチングを開始する。これにより、レンズ形状4
、4・・の表面から工,チングされ、レンズ形状4、4
・ の周縁部41、41・・のエッチングが終了すると
、周縁部41、41・・と対応する下方位置に位置する
透明樹脂層2の部分51、51・・からエノチバソクが
開始される。
Next, using oxygen plasma or the like, the lens shape 4, 4.
・Start etching. As a result, lens shape 4
, 4... is machined from the surface of the lens shape 4, 4.
- When the etching of the peripheral edges 41, 41, . . . is completed, etching is started from the portions 51, 51, .

上記したように這明樹脂層2のエッチング速度はレンズ
形状4のエソチング速度よりも大であるため、透明樹脂
層2の部分51、51・・は第1図(D)に示すように
エッチング途中のレンズ形状4′、4′・・の曲率より
も大なる曲率を有するように形成される。この第1図(
D)に示すように、エソチング途中のレンズ形状4′、
4′・・とレンズ形状4、4・・の形状に形状置換され
たエフチハノク部分51、51・・とを有するものをマ
イクロレンズとして用いることも出来る。しかし、一般
的には更にエッチバンク途中のレンズ形状4′、4′・
・が完全に除去される迄工,チバソク工程を続行し、第
1図(E)に示すように透明樹脂層2のみによるレンズ
形状5′、5′・を形成し、固体撮像素子1にマイクロ
レンズが形成される。
As mentioned above, since the etching speed of the transparent resin layer 2 is higher than the etching speed of the lens shape 4, the portions 51, 51, etc. of the transparent resin layer 2 are etched in the middle of etching as shown in FIG. 1(D). It is formed to have a larger curvature than the curvature of the lens shapes 4', 4', . This figure 1 (
As shown in D), the lens shape 4' during etching,
It is also possible to use as a microlens a microlens having 51, 51, . . . whose shape is replaced with the lens shape 4, 4, . However, in general, the lens shape 4', 4',
Continue the chiba-soku process until . is completely removed, and as shown in FIG. A lens is formed.

なお、上記実施例で述べた透明樹脂に換えて透明無機被
膜を用いることが可能であり、また製版塗布法により透
明樹脂を塗布、硬化させてアイランドを形成することも
できる。
Note that it is possible to use a transparent inorganic coating in place of the transparent resin described in the above embodiments, and it is also possible to form islands by applying and curing the transparent resin using a plate coating method.

以下に、実例を用いて本発明を更に具体的に説明するが
、この実例に示す材料に何ら限定されることなく、所望
材料を適宜組み合わせることにより、広く応用できるこ
とは言う迄もない。
The present invention will be explained in more detail below using examples, but it goes without saying that the invention is not limited to the materials shown in these examples and can be widely applied by appropriately combining desired materials.

実施例 常法により製造したインターライン型CCD(水平方向
の画素幅3,0μm、水平方向の転送幅9.0μm)を
基板に用い、その表面にアクリル系熱硬化型樹脂を5μ
mの膜厚にて塗布し、140℃にて熱硬化させた。この
上にノポラ・ノク系ポジ型感光性樹脂を1.5μmの膜
厚にて塗布し、乾燥させ、所定のパターンを有するフォ
トマスクを介して露光、現像し、固体撮像素子の受光部
上にアイランドを形成した。さらに、160℃にて30
分間加熱し、前記のアイランドを加熱熔融さ廿凸レンズ
形状を形成した。
Example An interline CCD (horizontal pixel width 3.0 μm, horizontal transfer width 9.0 μm) manufactured by a conventional method was used as a substrate, and 5 μm of acrylic thermosetting resin was applied to the surface of the interline CCD (horizontal pixel width 3.0 μm, horizontal transfer width 9.0 μm).
The coating was applied to a film thickness of m and was thermally cured at 140°C. On top of this, Nopola Noku type positive photosensitive resin is applied to a film thickness of 1.5 μm, dried, exposed through a photomask with a predetermined pattern, developed, and placed on the light receiving part of the solid-state image sensor. formed an island. Furthermore, at 160℃
The island was heated to melt and form a convex lens shape.

次いで、5%のフロン13を添加した酸素ガスをエソチ
ャントとして、IKWのパワーにてプラズマを発生させ
、5分間ドライエソチングしたところ、上層のレンズ形
状のノポラノク系ボジ型惑光性樹脂が完全にエッチング
除去され、厚さ3μmのアクリル系熱硬化型樹脂の凸レ
ンズが形成された。
Next, using oxygen gas added with 5% Freon-13 as an esochant, plasma was generated using the power of IKW and dry ethoching was performed for 5 minutes. As a result, the upper layer of lens-shaped Nopolanok-based photolactic resin was completely removed. After removal by etching, a convex lens made of thermosetting acrylic resin with a thickness of 3 μm was formed.

前記のエッチング速度をそれぞれ測定したところ、アク
リル系熱硬化型樹脂は0.6 (μm / min)、
ノボラノク系ポジ型感光性樹脂は0.  3(μm/m
in)であった。
When the above etching rates were measured, the acrylic thermosetting resin was 0.6 (μm/min);
Novolanok type positive photosensitive resin has 0. 3 (μm/m
in).

このようにして得られた凸レンズの厚みは、3μmであ
り、1レンズ当たりの占有面積が変わっていないので、
アクリル系熱硬化型樹脂の曲率を増大させることができ
た。
The thickness of the convex lens thus obtained was 3 μm, and the area occupied by each lens remained unchanged.
It was possible to increase the curvature of the acrylic thermosetting resin.

また、この実施例で得られた固体撮像素子と、加熱熔融
法によって形成した1.5μmの厚さを有する凸レンズ
を、他の条件が同一の固体逼像素子に実装し評価したと
ころ、1.4倍の利得増加が認められ、マイクロレンズ
の曲率増大に伴う感度の向上が確認された。
In addition, when the solid-state imaging device obtained in this example and a convex lens having a thickness of 1.5 μm formed by a heating melting method were mounted on a solid-state imaging device under the same other conditions and evaluated, 1. A four-fold increase in gain was observed, confirming that sensitivity improved as the curvature of the microlens increased.

なお、上記実施例に示した透明樹脂以外の透明樹脂のエ
ッチング速度の数値を以下に示すが、この数値はエッチ
ング条件により全く異なり、単に以下に示す装置、エッ
チング条件の下での一例を示すものである。勿論、透明
樹脂のうち、怒光性を有するタイプのものがあるが、要
は感光性樹脂と透明樹脂とのエッチング条件が上記した
条件を満足するように感光性樹脂と透明樹脂とを選択組
み合わせすることにより、本発明を実施することができ
るのである。
Note that the values of the etching speed of transparent resins other than the transparent resin shown in the above examples are shown below, but these values vary depending on the etching conditions, and are merely an example under the equipment and etching conditions shown below. It is. Of course, there are types of transparent resins that are photosensitive, but the key is to select and combine the photosensitive resin and transparent resin so that the etching conditions for the photosensitive resin and transparent resin satisfy the above conditions. By doing so, the present invention can be implemented.

(1)装置:平行平板型(カソードカソプル型)のドラ
イエッチング装置。
(1) Equipment: Parallel plate type (cathode cassopple type) dry etching equipment.

(2)エッチング条件:IKW  RF  5Pa酸素
ガス使用。
(2) Etching conditions: IKW RF 5Pa oxygen gas used.

(3)工,チング連度:()内は惑光性樹脂の種別を示
す。
(3) Technique, Ching Reaction: The number in parentheses indicates the type of photosensitive resin.

(a)アクリル 0.28,cam/min (UV露光一ネガ型) (b)ウレタン 0.16,cam/min (惑光性のもの無し) (c)ポリイミド 0.14,cam/min (UV露光一ネガ型) (d)クロロメチル化ポリスチレン 0.1 0μm/min (Deep−UV露光一不ガ
型) (e)ポリグリシジルメタクリレート 0.40μm/min (Deep− UV露光一ボジ型、エックス線及び 電子線露光一ネガ型) (f)ノポランク系樹脂 0.14μm/min (UV露光一 ポジ型) 〔発明の効果〕 以上述べたように本発明によれば、固体盪像素子の受光
面に、少なくとも硬化させた透明樹脂もしくは透明無機
膜を被着させ、更に固体逼像素子に設けたそれぞれの受
光部に対応するように感光性樹脂を用いてアイランドを
形成し、これを加熱熔融してレンズ形状に形成するか、
又は透明樹脂を塗布、硬化してレンズ状に形成した後、
エソチバソク法にて透明樹脂もし《は透明無機膜又は透
明樹脂をレンズ状に形成する工程を含む固体撮像素子用
マイクロレンズの製造方法において、透明樹脂もしくは
透明無機膜のエッチング速度が、感光性樹脂のエソチン
グ速度よりも大なる条件を満足する透明樹脂もしくは透
明無機膜及び怒光性樹脂を用いてエッチバノクを行うよ
うに構成したので、加熱熔融法あるいは製版塗布法によ
って形成されたマイクロレンズでは得られない大きな曲
率を有するマイクロレンズを形成することができ、この
ため集光性を高め、固体撮像素子の利得を大きく稼ぐこ
とが可能となる優れた効果を奏するものである。
(a) Acrylic 0.28, cam/min (UV exposure - negative type) (b) Urethane 0.16, cam/min (no photolactic material) (c) Polyimide 0.14, cam/min (UV (d) Chloromethylated polystyrene 0.1 0 μm/min (Deep-UV exposure, negative type) (e) Polyglycidyl methacrylate 0.40 μm/min (Deep- UV exposure, positive type, X-ray and (Electron beam exposure - negative type) (f) Noporank resin 0.14 μm/min (UV exposure - positive type) [Effects of the Invention] As described above, according to the present invention, on the light receiving surface of the solid-state image element, At least a hardened transparent resin or transparent inorganic film is applied, and islands are formed using a photosensitive resin so as to correspond to the respective light-receiving areas provided on the solid-state imaging element, and this is heated and melted to form a lens. Form into a shape or
Or after coating and curing a transparent resin to form a lens shape,
In a method for manufacturing microlenses for solid-state imaging devices, which includes a step of forming a transparent resin or transparent inorganic film or transparent resin into a lens shape using the Esochibasoku method, the etching rate of the transparent resin or transparent inorganic film is higher than that of the photosensitive resin. Since the structure is configured to perform etching using a transparent resin or transparent inorganic film that satisfies conditions greater than the etching speed, and a photosensitive resin, microlenses formed by heat melting or plate coating methods cannot be used. It is possible to form a microlens with a large curvature, which has an excellent effect of improving light convergence and increasing the gain of the solid-state image sensor.

さらに、エソチバフク法を用いているため、固体撮像素
子用のマイクロレンズとしての優れた物性を有する材料
の選択を可能とし、このため固体逼像素子用マイクロレ
ンズの信転性を一層向上することが可能となる他、マイ
クロレンズの形成に際し高温を必要とする工程が無いた
め、固体逼像素子に有機カラーフィルターを具備したカ
ラー固体撮像素子にマイクロレンズを形成する場合にも
好適である。
Furthermore, since the Esochibafuku method is used, it is possible to select materials with excellent physical properties for microlenses for solid-state imaging devices, which can further improve the reliability of microlenses for solid-state imaging devices. In addition, since there is no step that requires high temperature when forming microlenses, it is also suitable for forming microlenses in color solid-state imaging devices in which solid-state imaging devices are equipped with organic color filters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)乃至(E)は本発明の製造方法の実施例を
工程順に示す図、第2図は従来のマイクロレンズ付き固
体撮像素子の一例を示す図、第3図(A)乃至(D)は
加熱一熔融法による従来の固体撮像素子用マイクロレン
ズの製造方法を工程順に示す図、第4図(A)乃至(D
)は製版塗布法による従来の固体撮像素子用マイクロレ
ンズの製造方法を工程順に示す図である。 1・・固体撮像素子、2・・透明樹脂層、3・・感光性
樹脂により形成されたアイランド、4・・加熱熔融によ
り形成されたレンズ形状、4′・エッチング途中の惑光
性樹脂のレンズ形状、4■・・レンズ形状40周縁部、
5・・エソチング途中の透明樹脂層のレンズ形状、5l
・・レンズ周縁部4lと対応位置に位置する透明樹脂層
2、6・・受光部、8・・受光部6に対し光学的間隔を
形成するための透明膜、 出  廓  人 大日本印刷株式会社
1(A) to (E) are diagrams showing an example of the manufacturing method of the present invention in the order of steps, FIG. 2 is a diagram showing an example of a conventional solid-state image sensor with a microlens, and FIG. 3(A) to (D) is a diagram showing the conventional manufacturing method of a microlens for a solid-state image sensor using a heating-melting method in the order of steps, and Figures 4 (A) to (D
) is a diagram illustrating a conventional method of manufacturing a microlens for a solid-state image sensor using a plate-making coating method in order of steps. 1. Solid-state image sensor, 2. Transparent resin layer, 3. Island formed of photosensitive resin, 4. Lens shape formed by heating and melting, 4'. Lens of photosensitive resin in the middle of etching. Shape, 4 ■... Lens shape 40 peripheral part,
5. Lens shape of transparent resin layer during etching, 5l
...Transparent resin layer 2, 6 located at a position corresponding to the lens peripheral portion 4l...Light-receiving section, 8...Transparent film for forming an optical distance to the light-receiving section 6, Dai Nippon Printing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 固体撮像素子の受光面に、少なくとも硬化させた透明樹
脂もしくは透明無機膜を被着させ、更に該固体撮像素子
に設けたそれぞれの受光部に対応するように感光性樹脂
を用いてアイランドを形成し、加熱熔融してレンズ状に
形成するか、又は透明樹脂を塗布、硬化してレンズ状に
形成した後、エッチバック法にて該透明樹脂もしくは透
明無機膜をレンズ状に形成する工程を含む固体撮像素子
用マイクロレンズの製造方法において、上記透明樹脂も
しくは透明無機膜のエッチング速度が、上記感光性樹脂
のエッチング速度よりも大なる条件を満足するような透
明樹脂もしくは透明無機膜及び感光性樹脂を用いてエッ
チバックを行うことを特徴とする固体撮像素子用マイク
ロレンズの製造方法。
At least a cured transparent resin or a transparent inorganic film is applied to the light-receiving surface of the solid-state image sensor, and islands are further formed using a photosensitive resin so as to correspond to the respective light-receiving parts provided on the solid-state image sensor. A solid that includes the step of heating and melting to form a lens shape, or coating and curing a transparent resin to form a lens shape, and then forming the transparent resin or transparent inorganic film into a lens shape using an etchback method. In the method for manufacturing a microlens for an image sensor, a transparent resin or a transparent inorganic film and a photosensitive resin are used such that the etching rate of the transparent resin or transparent inorganic film is greater than the etching rate of the photosensitive resin. 1. A method of manufacturing a microlens for a solid-state image sensor, the method comprising performing etch-back using a microlens.
JP2014449A 1990-01-23 1990-01-23 Method for manufacturing microlens for solid-state imaging device Expired - Lifetime JP3009419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014449A JP3009419B2 (en) 1990-01-23 1990-01-23 Method for manufacturing microlens for solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014449A JP3009419B2 (en) 1990-01-23 1990-01-23 Method for manufacturing microlens for solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03218067A true JPH03218067A (en) 1991-09-25
JP3009419B2 JP3009419B2 (en) 2000-02-14

Family

ID=11861345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014449A Expired - Lifetime JP3009419B2 (en) 1990-01-23 1990-01-23 Method for manufacturing microlens for solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3009419B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
WO2020059569A1 (en) * 2018-09-19 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
US12100724B2 (en) 2018-09-19 2024-09-24 Sony Semiconductor Solutions Corporation Optical element, optical element array, lens group, electronic apparatus, and method of producing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
WO2020059569A1 (en) * 2018-09-19 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
US12100724B2 (en) 2018-09-19 2024-09-24 Sony Semiconductor Solutions Corporation Optical element, optical element array, lens group, electronic apparatus, and method of producing optical element

Also Published As

Publication number Publication date
JP3009419B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US7427799B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
CN100587960C (en) Image sensor and manufacturing method thereof
JP3178629B2 (en) Solid-state imaging device and method of manufacturing the same
KR100835439B1 (en) Image sensor and manufacturing method thereof
KR100223853B1 (en) Structure of solid-state image sensor and manufacturing of the same
KR100710208B1 (en) CMOS image sensor and its manufacturing method
JP3672663B2 (en) Solid-state imaging device and manufacturing method thereof
EP0523825B1 (en) A solid-state imaging device provided with microlenses
JPH06194502A (en) Microlens and microlens array and their production
JP3269644B2 (en) Manufacturing method of micro lens
JPH02103962A (en) Solid-state image sensing device and manufacture thereof
JPH03190166A (en) Manufacture of solid-state image sensing element microlens
JPH03218067A (en) Manufacture of microlens for solid-state image sensing element
JP3747682B2 (en) Solid-state imaging device and manufacturing method thereof
JP4465750B2 (en) Manufacturing method of solid-state imaging device
JP2988556B2 (en) Microlens manufacturing method and semiconductor device manufacturing method
JP3845634B2 (en) Manufacturing method of CMOS image sensor
JP2604890B2 (en) Method for manufacturing solid-state imaging device
JP2969842B2 (en) Method for manufacturing solid-state imaging device
EP0661757B1 (en) Solid-state imaging device and method of manufacturing the same
JPH08298315A (en) Solid-state image pickup device and its manufacture
JP2000260970A (en) Solid-state imaging device and method of manufacturing the same
JPS61199659A (en) solid-state image sensor
JPH06302794A (en) Manufacture of solid-state image sensing element
JP2001356202A (en) Microlens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11