[go: up one dir, main page]

JPH0321783B2 - - Google Patents

Info

Publication number
JPH0321783B2
JPH0321783B2 JP57207736A JP20773682A JPH0321783B2 JP H0321783 B2 JPH0321783 B2 JP H0321783B2 JP 57207736 A JP57207736 A JP 57207736A JP 20773682 A JP20773682 A JP 20773682A JP H0321783 B2 JPH0321783 B2 JP H0321783B2
Authority
JP
Japan
Prior art keywords
speed
vehicle speed
aimed
car
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207736A
Other languages
Japanese (ja)
Other versions
JPS5999147A (en
Inventor
Hiroshi Ito
Shigeki Hiramatsu
Mitsuru Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57207736A priority Critical patent/JPS5999147A/en
Publication of JPS5999147A publication Critical patent/JPS5999147A/en
Priority to US06/911,874 priority patent/US4771656A/en
Publication of JPH0321783B2 publication Critical patent/JPH0321783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/06Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure
    • B60K31/10Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/663Road slope

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To increase output by allowing the aimed engine revolution speed to increase when the difference between the aimed car-speed and the actual car- speed exceeds a prescribed range and to be maintained or reduced when said difference is below the prescribed range, during the time when the opening degree of a throttle valve reaches the upper limit within a control range. CONSTITUTION:During the automatic car-speed control operation, a slope ascending state is formed, and the intake negative pressure which forms the power source for an automatic car-speed control mechanism reduces, and the upper limit within a control range of the opening degree 26 of a throttle valve becomes less than 100%, for example about 70%. When the difference between the aimed car-speed Vo and the actual car-speed Vr increases over a prescribed value A1 in this case, a CPU increases the aimed engine revolution speed No or reduces the speed ratio (e) of a stepless speed change gear CVT4 and increases the actual engine revolution speed Nr, namely the outuput of an engine 1. When Vo-Vr>=A2<A with a new aimed revolution sped No or a speed ratio (e), the aimed speed No or the speed ratio (e) is kept at the value, or No is reduced and (e) is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無段変速機付き車両の車速自動制御
方法に係り、特に吸気系スロツトル弁の開度が車
速自動制御機構(オートドライブ機構)により制
御範囲の上限に達している期間における車速自動
制御方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an automatic vehicle speed control method for a vehicle with a continuously variable transmission, and in particular, a method for controlling the opening of an intake system throttle valve by an automatic vehicle speed control mechanism (auto drive mechanism). This invention relates to an automatic vehicle speed control method during a period when the upper limit of the range is reached.

従来の技術およびその課題 本出願人は車両に搭載される無段変速機を先に
特願昭57−67362号において開示しており、この
ような無段変速機を有する車両では目標機関回転
速度Noが吸気系スロツトル弁の開度、すなわち
スロツトル開度θの関数として定義されている。
Prior Art and its Problems The present applicant previously disclosed a continuously variable transmission mounted on a vehicle in Japanese Patent Application No. 57-67362, and in a vehicle equipped with such a continuously variable transmission, the target engine rotational speed is No is defined as a function of the opening degree of the intake system throttle valve, that is, the throttle opening degree θ.

また、車速自動制御機構は実際の車速Vrが目
標車速Voより大きいとスロツトル開度θを減少
させ、実際の車速Vrが目標車速Voより小さいと
スロツトル開度を増大させるが、スロツトル弁に
結合しているスロツトルケーブルを引く力として
吸気管負圧を利用している。したがつて登坂時で
は吸気管負圧が減少し、車速自動制御機構による
スロツトル開度の制御範囲の上限が100%に達せ
ず、前記先願のような無段変速機を有する車両で
は、必要な機関出力が得られないという支障があ
る。
Additionally, the automatic vehicle speed control mechanism decreases the throttle opening θ when the actual vehicle speed Vr is higher than the target vehicle speed Vo, and increases the throttle opening when the actual vehicle speed Vr is lower than the target vehicle speed Vo. The negative pressure in the intake pipe is used as the force to pull the throttle cable. Therefore, when climbing a slope, the negative pressure in the intake pipe decreases, and the upper limit of the control range of the throttle opening by the automatic vehicle speed control mechanism does not reach 100%. There is a problem in that it is not possible to obtain sufficient engine output.

これに対し、特開昭57−121713号公報に記載さ
れているように、有段の自動変速機を備えた車両
に設けられた車速自動制御機構が提案されてい
る。この種の車速自動制御機構では、その車速自
動制御機構によるスロツトル開度の制御にも関わ
らず、車両の駆動力が不足して目標車速と実際の
車速との差が解消できない場合、たとえば、車速
自動制御機構によつてスロツトル開度がその100
%に到達せず駆動力が不足する登坂路走行の場合
には、実際の車速が目標車速から低下すると、有
段式自動変速機をたとえば4速から3速に段階的
にシフトダウンさせることにより駆動力の低下を
補つて定速度走行を可能とする機能が備えられて
おり、また、上記車速自動制御機構では、自動変
速機のシフトダウンおよびシフトアツプを煩雑に
繰り返すようなオンオフ信号が出力されても、シ
フトダウン信号が一定時間出力されるようにし
て、シフトアツプ→車速低下→シフトダウン→車
速上昇→シフトアツプの繰返しによる車両のハン
チングが解消されるようになつている。
In response to this, an automatic vehicle speed control mechanism provided in a vehicle equipped with a stepped automatic transmission has been proposed, as described in Japanese Patent Application Laid-open No. 57-121713. With this type of automatic vehicle speed control mechanism, when the difference between the target vehicle speed and the actual vehicle speed cannot be resolved due to insufficient driving force of the vehicle despite the throttle opening degree controlled by the automatic vehicle speed control mechanism, for example, when the vehicle speed The throttle opening is adjusted to 100 degrees by the automatic control mechanism.
% and driving power is insufficient, when the actual vehicle speed decreases from the target vehicle speed, the stepped automatic transmission is shifted down in stages from, for example, 4th gear to 3rd gear. The vehicle is equipped with a function that compensates for the drop in driving force and enables constant speed driving, and the automatic vehicle speed control mechanism does not output on/off signals that cause the automatic transmission to repeatedly downshift and upshift. Also, by outputting a downshift signal for a certain period of time, hunting of the vehicle due to repetition of upshifting→vehicle speed decrease→shiftdown→vehicle speed increase→shiftup can be eliminated.

発明が解決すべき課題 ところで、上記従来の車速自動制御機構では登
坂走行時において実際の車速Vrが目標車速Voか
ら低下した場合には、有段式変速機を段階的にシ
フトダウンさせることにより、登坂走行時の出力
を得るように構成されているため、不要に機関回
転速度を高めた走行となつて燃費が低下するとと
もに、段階的なシフトダウンによるシヨツクの発
生によつて運転性が損なわれる場合があつたので
ある。
Problems to be Solved by the Invention By the way, in the conventional vehicle speed automatic control mechanism described above, when the actual vehicle speed Vr decreases from the target vehicle speed Vo when traveling uphill, the stepped transmission is downshifted in stages. Since it is configured to obtain output when driving uphill, the engine rotation speed is unnecessarily high, resulting in lower fuel efficiency, and drivability is impaired due to shock caused by gradual downshifts. The situation was right.

本発明は以上の事情を背景として為されたもの
であり、その目的とするところは、不要に機関回
転速度を高めた登坂走行による燃費の低下を防止
し、しかも段階的なシフトダウンによるシヨツク
によつて運転性が損なわれない車速自動制御方法
を提供することにある。
The present invention has been made against the background of the above-mentioned circumstances, and its purpose is to prevent a decrease in fuel efficiency due to hill-climbing that unnecessarily increases the engine rotational speed, and to prevent shocks caused by gradual downshifts. Therefore, it is an object of the present invention to provide an automatic vehicle speed control method that does not impair drivability.

課題を解決するための第1の手段 かかる目的を達成するための第1発明の要旨と
するところは、吸気系スロツトル弁開度が車速自
動制御機構による制御範囲の上限に達している期
間において、実際の車速Vrと目標車速Voとを比
較し、Vo−Vr≧A1(但し、A1は正の所定値)で
あれば、目標機関回転速度Noを上記目標車速Vo
と実際の車速Vrとの偏差Vo−Vrに応じてその増
大側へ徐々に変更することにある。
First Means for Solving the Problems The gist of the first invention for achieving the above object is that during a period when the intake system throttle valve opening reaches the upper limit of the control range by the automatic vehicle speed control mechanism, The actual vehicle speed Vr is compared with the target vehicle speed Vo, and if Vo−Vr≧A1 (however, A1 is a positive predetermined value), the target engine rotation speed No is set to the target vehicle speed Vo.
and the actual vehicle speed Vr according to the deviation Vo−Vr.

作用および第1発明の効果 このようにすれば、吸気系スロツトル弁の開度
が車速自動制御機構によるる制御範囲による上限
に達している走行期間においてVo−Vr≧A1とな
ると、目標機関回転速度Noがその増大側へ徐々
に変更される。このため、無段変速機の速度比が
減少させられて無段変速機が減速側へシフトさせ
られるので、登坂時においても車両の機関回転速
度が高められて機関出力および車両の駆動力が充
分に得られる。したがつて、上記のように目標機
関回転速度Noが、目標車速Voと実際の車速Vr
との偏差Vo−Vrに応じてその増大側へ徐々に変
更されることから、たとえば登坂走行時において
目標車速Vo付近の車速を維持するための機関出
力が得られるように必要かつ充分に無段変速機の
速度比が変化させられるで、段階的なシフトダウ
ンをする場合に比較して、不要な機関回転速度上
昇よる燃費の低下が回避される。しかも、従来の
ような段階的なシフトダウンによるシヨツクを伴
うことなく実際の車速Vrを目標車速Voに近づけ
るための駆動力を得ることができる。
Operation and Effects of the First Invention With this arrangement, when Vo−Vr≧A1 during the driving period in which the opening degree of the intake system throttle valve reaches the upper limit of the control range of the automatic vehicle speed control mechanism, the target engine rotational speed No is gradually changed to its increasing side. For this reason, the speed ratio of the continuously variable transmission is reduced and the continuously variable transmission is shifted to the deceleration side, so the engine rotational speed of the vehicle is increased even when climbing a slope, and the engine output and driving force of the vehicle are sufficient. can be obtained. Therefore, as mentioned above, the target engine speed No is different from the target vehicle speed Vo and the actual vehicle speed Vr.
Since the deviation is gradually changed to the increasing side according to the deviation Vo - Vr from By changing the speed ratio of the transmission, a decrease in fuel efficiency due to an unnecessary increase in engine speed can be avoided, compared to a case where downshifting is performed in stages. Moreover, the driving force for bringing the actual vehicle speed Vr closer to the target vehicle speed Vo can be obtained without the shock caused by stepwise downshifting as in the conventional case.

課題を解決するための第2の手段 前記の目的を達成するための第2発明の要旨と
するところは、吸気系スロツトル弁開度が車速自
動制御機構による制御範囲の上限に達している期
間において、実際の車速Vrと目標車速Voとを比
較し、Vo−Vr≧A1(但し、A1は正の所定値)で
あれば、無段変速機の速度比eを上記目標車速
Voと実際の車速Vrとの偏差Vo−Vrに応じてそ
の減少側へ徐々に変更することにある。
Second Means for Solving the Problems The gist of the second invention for achieving the above object is that during a period when the intake system throttle valve opening reaches the upper limit of the control range by the automatic vehicle speed control mechanism. , the actual vehicle speed Vr is compared with the target vehicle speed Vo, and if Vo−Vr≧A1 (however, A1 is a positive predetermined value), the speed ratio e of the continuously variable transmission is set to the target vehicle speed.
The purpose is to gradually change the deviation between Vo and the actual vehicle speed Vr to the decreasing side according to the deviation Vo - Vr.

作用および第2発明の効果 このようにすれば、吸気系スロツトル弁の開度
が車速自動制御機構による制御範囲の上限に達し
ている走行期間においてVo−Vr≧A1となると、
無段変速機の速度比eが減少側へ徐々に変更され
る。このため、無段変速機の速度比が減少させら
れて無段変速機が減速側へシフトさせられるの
で、登坂時においても機関回転速度が高められて
機関出力および車両駆動力が充分に得られる。し
たがつて、上記のように無段変速機の速度比e
が、目標車速Voと実際の車速Vrとの偏差Vo−
Vrに応じてその減少側へ徐々に変更されること
から、たとえば登坂走行時において目標車速Vo
付近の車速を維持するための機関出力が得られる
ように必要かつ充分に無段変速機の速度比が変化
させられるので、段階的なシフトダウンをする場
合に比較して、不要な機関回転速度上昇による燃
費の低下が回避される。しかも、従来のような段
階的なシフトダウンによるシヨツクを伴うことな
く実際の車速Vrを目標車速Voに近づけるための
駆動力を得ることができる。
Operation and Effect of the Second Invention In this way, when Vo−Vr≧A1 during the driving period when the opening degree of the intake system throttle valve reaches the upper limit of the control range by the automatic vehicle speed control mechanism,
The speed ratio e of the continuously variable transmission is gradually changed to the decreasing side. Therefore, the speed ratio of the continuously variable transmission is reduced and the continuously variable transmission is shifted to the deceleration side, so the engine rotational speed is increased even when climbing a slope, and sufficient engine output and vehicle driving force can be obtained. . Therefore, as mentioned above, the speed ratio e of the continuously variable transmission
is the deviation Vo− between the target vehicle speed Vo and the actual vehicle speed Vr.
For example, when driving uphill, the target vehicle speed Vo
Since the speed ratio of the continuously variable transmission is changed as necessary and sufficient to obtain the engine output to maintain the nearby vehicle speed, unnecessary engine rotational speed is reduced compared to the case of gradual downshifting. A decrease in fuel efficiency due to the rise is avoided. Moreover, the driving force for bringing the actual vehicle speed Vr closer to the target vehicle speed Vo can be obtained without the shock caused by stepwise downshifting as in the conventional case.

なお速度比eは本明細書において次のように定
義する。
Note that the speed ratio e is defined in this specification as follows.

e=Nout/Nin ただしNout:無段変速機の出力軸の回転速度 Nin:無段変速機の入力軸の回転速度 図面を参照して本発明の実施例を説明する。 e=Nout/Nin However, Nout: rotational speed of the output shaft of the continuously variable transmission Nin: Rotational speed of the input shaft of the continuously variable transmission Embodiments of the present invention will be described with reference to the drawings.

実施例 第1図において、機関1のクランク軸2にクラ
ツチ3を介して無段変速機(以下CVTと称す
る。)4の入力軸5へ接続されている。1対の入
力側デイスク6a,6bは互いに対向的に設けら
れ、一方の入力側デイスク6aは入力軸5に軸線
方向へ相対移動可能に設けられ、他方の入力側デ
イスク6bは入力軸5に固定されている。また、
1対の出力側デイスク7a,7bも互いに対向的
に設けられ、一方の出力側デイスク7aは出力軸
8に固定され、他方の出力側デイスク7bは出力
軸8に軸線方向へ移動可能に設けられている。ベ
ルト9は、等脚台形の横断面を有し、入力側デイ
スク6a,6bと出力側デイスク7a,7bの間
に掛けられている。入力側デイスク6a,6bの
対向面、および出力側デイスク7a,7bの対向
面は半径方向外方へ進むに連れて両者間の距離が
増大するようなテーパ断面に形成される。対向面
間の距離の増減に関係して、入力側および出力側
デイスク6a,6b,7a,7bにおけるベルト
9の掛かり半径が増減し、速度比および伝達トル
クが変化する。オイルポンプ14は油溜め15か
ら吸込んだオイルを調圧弁16へ送る。リニアソ
レノイド式の調圧弁16はドレイン17へのオイ
ルの排出量を制御して油路18のライン圧を制御
する。油路18は出力側デイスク7bの油圧サー
ボへ接続されている。リニアソレノイド式流量制
御弁19は入力側デイスク6a,6b間の押圧力
を増大させて速度比を増大させる場合には入力側
デイスク6aの油圧サーボへの油路20と油路1
8との間の流通断面積を増大し、かつ油路20と
ドレン17との接続を断ち、入力側デイスク6
a,6b間の押圧力を減少させて速度比を減少さ
せる場合には油路18と20との接続を断ち、油
路20とドレン17との間の流通断面積を制御す
る。回転角センサ23,24はそれぞれ入力側デ
イスク6bおよび出力側デイスク7aの回転速度
を検出する。出力側デイスク7bのサーボ油圧、
すなわちライン圧はベルト9が滑らずにトルク伝
達を確保できる最小の圧力に制御され、ポンプ1
4の駆動損失が抑制される。入力側デイスク6a
へのオイルの流量によりCVT4の速度比が制御
される。なお出力側デイスク7bのサーボ油圧≧
入力側デイスク6aのサーボ油圧であるが、サー
ボピストンの受圧面積は入力側>出力側であり、
1以上の速度比が実現可能である。水温センサ2
5は機関1の冷却水温度を検出する。スロツトル
開度センサ26は、加速ペダル27に連動する吸
気系スロツトル弁の開度を検出する。シフト位置
センサ28は座席29近傍のシフトレバーのレン
ジを検出する。
Embodiment In FIG. 1, a crankshaft 2 of an engine 1 is connected to an input shaft 5 of a continuously variable transmission (hereinafter referred to as CVT) 4 via a clutch 3. A pair of input side disks 6a and 6b are provided opposite to each other, one input side disk 6a is provided so as to be movable relative to the input shaft 5 in the axial direction, and the other input side disk 6b is fixed to the input shaft 5. has been done. Also,
A pair of output side disks 7a and 7b are also provided opposite to each other, one output side disk 7a is fixed to the output shaft 8, and the other output side disk 7b is provided on the output shaft 8 so as to be movable in the axial direction. ing. The belt 9 has an isosceles trapezoidal cross section and is stretched between the input side disks 6a, 6b and the output side disks 7a, 7b. The opposing surfaces of the input side disks 6a, 6b and the opposing surfaces of the output side disks 7a, 7b are formed into tapered cross sections such that the distance between them increases as they proceed radially outward. In relation to an increase or decrease in the distance between the opposing surfaces, the radius of engagement of the belt 9 on the input side and output side disks 6a, 6b, 7a, 7b increases or decreases, and the speed ratio and the transmitted torque change. The oil pump 14 sends oil sucked from the oil reservoir 15 to the pressure regulating valve 16. A linear solenoid type pressure regulating valve 16 controls the amount of oil discharged to the drain 17 to control the line pressure of the oil passage 18 . The oil passage 18 is connected to a hydraulic servo of the output side disk 7b. When increasing the speed ratio by increasing the pressing force between the input side disks 6a and 6b, the linear solenoid type flow control valve 19 connects the oil path 20 and the oil path 1 to the hydraulic servo of the input side disk 6a.
8, and cut off the connection between the oil passage 20 and the drain 17.
In order to reduce the speed ratio by reducing the pressing force between a and 6b, the oil passages 18 and 20 are disconnected and the flow cross-sectional area between the oil passage 20 and the drain 17 is controlled. Rotation angle sensors 23 and 24 detect the rotation speeds of input side disk 6b and output side disk 7a, respectively. Servo hydraulic pressure of output side disk 7b,
In other words, the line pressure is controlled to the minimum pressure that ensures torque transmission without the belt 9 slipping, and the pump 1
4 drive loss is suppressed. Input side disk 6a
The speed ratio of CVT 4 is controlled by the flow rate of oil to. Note that the servo oil pressure of the output side disk 7b≧
Regarding the servo oil pressure of the input side disk 6a, the pressure receiving area of the servo piston is input side>output side,
Speed ratios of 1 or more are possible. Water temperature sensor 2
5 detects the cooling water temperature of the engine 1. The throttle opening sensor 26 detects the opening of an intake system throttle valve that is linked to the accelerator pedal 27. The shift position sensor 28 detects the range of the shift lever near the seat 29.

第2図は電子制御装置のブロツク図である。
CPU3、RAM33、ROM34、I/F(インタ
フエース)35、A/D(アナログ/デジタル変
換器)36、およびD/A(デジタル/アナログ
変換器)37はバス38により互いに接続されて
いる。回転角センサ23,24およびシフト位置
センサ28の出力パルスはインタフエース35へ
送られ、水温センサ25およびスロツトル開度セ
ンサ26のアナログ出力はA/D36へ送られ、
D/A37の出力は調圧弁16および流量制御弁
19へ送られる。
FIG. 2 is a block diagram of the electronic control unit.
The CPU 3, RAM 33, ROM 34, I/F (interface) 35, A/D (analog/digital converter) 36, and D/A (digital/analog converter) 37 are connected to each other by a bus 38. The output pulses of the rotation angle sensors 23, 24 and the shift position sensor 28 are sent to the interface 35, the analog outputs of the water temperature sensor 25 and the throttle opening sensor 26 are sent to the A/D 36,
The output of the D/A 37 is sent to the pressure regulating valve 16 and the flow rate control valve 19.

第3図はスロツトル開度θ、すなわち吸気系ス
ロツトル弁の開度θと目標機関回転速度Noと関
係を示している。CVT付き車両では機関の要求
馬力をスロツトル開度θの関数と定義し、各要求
馬力を最小の燃料消費率で達成できる機関回転速
度が目標回転速度Noとして設定されている。
FIG. 3 shows the relationship between the throttle opening θ, that is, the opening θ of the intake system throttle valve, and the target engine rotational speed No. In a vehicle equipped with a CVT, the required horsepower of the engine is defined as a function of the throttle opening θ, and the engine rotation speed that can achieve each required horsepower with the minimum fuel consumption rate is set as the target rotation speed No.

車速自動制御機構の非作動期間では運転者によ
る加速ペダルの踏み込みの量によつて指示される
スロツトル開度θに関係して目標機関回転速度
Noが計算される。こうして実際の機関回転速度
Nrが目標機関回転速度Noとなるように流量制御
弁19から入力側デイスク6aの油圧サーボへ送
られるオイルの流量が制御され、これにより
CVT4の速度比eが変更される。なお非作動期
間の制御の詳細は前述の先願としての特願昭57−
67362号等に記載されているとおりである。
During the non-operation period of the automatic vehicle speed control mechanism, the target engine rotational speed is determined in relation to the throttle opening θ, which is indicated by the amount of depression of the accelerator pedal by the driver.
No is calculated. Thus the actual engine speed
The flow rate of oil sent from the flow control valve 19 to the hydraulic servo of the input side disk 6a is controlled so that Nr becomes the target engine rotation speed No.
The speed ratio e of CVT4 is changed. The details of the control during the non-operating period can be found in the aforementioned earlier patent application, 1982-
As stated in No. 67362, etc.

車速自動制御機構の作動期間では実際の車速
Vrが目標車速Voとなるようにスロツトル開度θ
が制御される。すなわちスロツトル開度θの制御
範囲内ではVr<Voの場合はスロツトル開度θを
増大させ、Vr>Voの場合はスロツトル開度θを
減少させる。
During the operation period of the automatic vehicle speed control mechanism, the actual vehicle speed
Throttle opening θ so that Vr becomes the target vehicle speed Vo
is controlled. That is, within the control range of the throttle opening θ, when Vr<Vo, the throttle opening θ is increased, and when Vr>Vo, the throttle opening θ is decreased.

車速自動制御機構の作動期間に車両が登坂状態
になると、車速自動制御機構の力源としての吸気
管負圧が異常に低下し、車速自動制御機構がスロ
ツトルケーブルを引く最大力が減少し、スロツト
ル開度の制御範囲の上限θuが第3図に示される
ように、100%未満、例えば約70%になることが
ある。この場合にVo−VrA1(ただしA1は正の
所定値)になると、目標機関回転速度Noを増大
させるか、あるいはCVT4の速度比e(N=
Nout/Nin)を減少させる。この結果、実際の
機関回転速度Nrが増大し、すなわち機関出力が
増大し、車速Vrも増大する。新たな目標機関回
転速度Noあるいは速度比eにおいてVo−Vr<
A2(ただしA2は正の所定値であり、A2<A1)で
あればNoあるはeはその値に維持されるか、No
は減少され、eは増大される。
When the vehicle climbs a slope while the automatic vehicle speed control mechanism is operating, the negative pressure in the intake pipe, which is the force source of the automatic vehicle speed control mechanism, decreases abnormally, and the maximum force with which the automatic vehicle speed control mechanism pulls the throttle cable decreases. As shown in FIG. 3, the upper limit θu of the throttle opening control range may be less than 100%, for example, about 70%. In this case, when Vo−VrA1 (where A1 is a positive predetermined value) is reached, either the target engine speed No. is increased or the speed ratio e of CVT4 (N=
Nout/Nin). As a result, the actual engine rotational speed Nr increases, that is, the engine output increases, and the vehicle speed Vr also increases. At the new target engine speed No. or speed ratio e, Vo−Vr<
A2 (however, A2 is a positive predetermined value, and if A2<A1), then e is maintained at that value or No
is decreased and e is increased.

第4図は車速自動制御期間にスロツトル開度が
車速自動制御範囲の上限θuに達した時に実行さ
れるプログラムのフローチヤートである。ステツ
プ41ではフラグF=1が否かを判定し、F=1
であればステツプ45へ進み、F=0であればス
テツプ42へ進む。F=0は目標機関回転速度
Noあるいは速度比eが第3図の特性線上のC点
に対応する値N1あるいはe1にあることを意味し、
フラグF=1はNo≠N1あるいはe≠e1にあるこ
とを意味する。ステツプ42ではVo−VrA1か
否かを判定し、Vo−VrA1であればステツプ4
3へ進み、Vo−Vr<A1であれば以降のステツプ
の実行を省略する。ステツプ43ではフラグFを
セツトする。ステツプ44ではタイマTmの作動
を開始する。ステツプ45ではVo−VrA2が否
かを判定し、Vo−VrA2であればステツプ46
へ進み、Vo−Vr<A2であればステツプ50へ進
む、ステツプ46ではNoにN1+K1(Vo−Vr)+
K2・Tcを代入するか、eがe1−L1(e−er)−
L2・Tcとなるようにし、No或いはeを徐々に変
化させる。ただしK1,K2,L1,L2は正の定数、
TcはタイマTmの値であり、フラグFがセツト
された時からの経過時間に比例する。したがつて
NoはVo−Vrが大きい程、Vo−VrA2の期間
が長い程、増大され、eはVo−Vrが大きい程、
Vo−VrA2の期間が長い程、減少される。ステ
ツプ50ではフラグFをリセツトし、かつタイマ
Tmをリセツトする。ステツプ51ではNoにN1
を代入するか、eがe1となるようにし、こうして
Noを増大させ、あるいはeを減少させ、これに
より車速Vrを増大させ、その結果、Vo−Vr<
A2となると、No,eを再び第3図のC点に対応
する値へ戻す。なおステツプ51の実行を省略
し、したがつてVo−Vr<A2になつた後はNo,
eをN1,e1に戻さずにVo−Vr<A2になつた時
の値にそのまま保持してもよい。
FIG. 4 is a flowchart of a program executed when the throttle opening reaches the upper limit θu of the automatic vehicle speed control range during the automatic vehicle speed control period. In step 41, it is determined whether or not the flag F=1.
If so, proceed to step 45; if F=0, proceed to step 42. F=0 is the target engine speed
No means that the speed ratio e is at the value N1 or e1 corresponding to point C on the characteristic line in Figure 3,
Flag F=1 means that No≠N1 or e≠e1. In step 42, it is determined whether Vo-VrA1 or not, and if Vo-VrA1, step 4
Proceed to step 3, and if Vo-Vr<A1, skip the execution of the subsequent steps. In step 43, flag F is set. In step 44, the timer Tm starts operating. In step 45, it is determined whether Vo-VrA2 is present, and if Vo-VrA2 is present, step 46 is performed.
If Vo−Vr<A2, proceed to step 50. At step 46, set N1+K1(Vo−Vr)+
Substitute K2・Tc or e becomes e1−L1(e−er)−
L2・Tc, and gradually change No or e. However, K1, K2, L1, L2 are positive constants,
Tc is the value of timer Tm and is proportional to the elapsed time since flag F was set. Therefore
The larger Vo−Vr is, the longer the period of Vo−VrA2 is, the greater No is increased, and the larger Vo−Vr is, e is increased.
The longer the period of Vo−VrA2, the more it is reduced. In step 50, flag F is reset and the timer is
Reset Tm. In step 51, enter No to N1
or make e become e1, thus
By increasing No or decreasing e, the vehicle speed Vr is increased, and as a result, Vo−Vr<
When A2 is reached, No and e are returned to the values corresponding to point C in FIG. 3. Note that the execution of step 51 is omitted, so after Vo−Vr<A2, No,
Instead of returning e to N1, e1, it may be maintained at the value when Vo-Vr<A2.

上述のように、本実施例によれば、車速自動制
御期間においてスロツトル開度が車速自動制御範
囲の上径θuに達した状態で、実際の車速Vrと目
標車速Voとの差Vo−Vrが所定値A1以上となる
と、第4図のステツプ46の枠内に示す式の右辺
第2項に従つて目標回転速度Noがその増大側へ
上記差Vo−Vrに応じて徐々に変化させられ、或
いは、速度比eがその減少側へ上記差Vo−Vrに
応じて徐々に変化させられる。これにより、無段
変速機が減速側へシフトさせられて、吸気管負圧
が充分に得られない登坂時においても機関回転速
度が高められて機関出力および車両の駆動力が充
分に得られるので、実際の車速Vrが目標車速Vo
に近づけられる。したがつて、上記のように目標
回転速度No或いは無段変速機の速度比eが、目
標車速Voと実際の車速Vrとの偏差Vo−Vrに応
じてへ徐々に変更されることから、登坂走行時に
おいて目標車速Vo付近の車速を維持するための
機関出力が得られるように必要かつ充分に無段変
速機の速度比が変化させられるので、段階的なシ
フトダウンをする場合に比較して、不要な機関回
転速度上昇により燃費の低下が回避される。しか
も、従来のような段階的なシフトダウンによるシ
ヨツクを伴うことなく実際の車速Vrを目標車速
Voに近づけるための駆動力を得ることができる
のである。
As described above, according to this embodiment, when the throttle opening reaches the upper diameter θu of the automatic vehicle speed control range during the automatic vehicle speed control period, the difference Vo−Vr between the actual vehicle speed Vr and the target vehicle speed Vo is When the target rotational speed No. exceeds the predetermined value A1, the target rotational speed No. is gradually changed to the increasing side according to the second term on the right side of the equation shown in the frame of step 46 in FIG. Alternatively, the speed ratio e is gradually changed to the decreasing side according to the difference Vo-Vr. As a result, the continuously variable transmission is shifted to the deceleration side, and even when climbing a slope where sufficient intake pipe negative pressure cannot be obtained, the engine rotation speed is increased and sufficient engine output and vehicle driving force can be obtained. , the actual vehicle speed Vr is the target vehicle speed Vo
can be approached. Therefore, as mentioned above, the target rotational speed No or the speed ratio e of the continuously variable transmission is gradually changed according to the deviation Vo - Vr between the target vehicle speed Vo and the actual vehicle speed Vr. Since the speed ratio of the continuously variable transmission is changed as necessary and sufficient to obtain the engine output to maintain the vehicle speed near the target vehicle speed Vo during driving, compared to the case of gradual downshifting, , a decrease in fuel efficiency due to an unnecessary increase in engine speed is avoided. Moreover, the actual vehicle speed Vr can be changed to the target vehicle speed without the shock caused by gradual downshifting as in the past.
It is possible to obtain the driving force to get closer to Vo.

なお、吸気系スロツトル弁の開度が車速自動制
御機構による制御範囲による上限に達している状
態とは、車速自動制御機構により制御されるスロ
ツトル弁の開度の最大値が、吸気管負圧の不足に
起因して車速自動制御機構の最大操作量に対応す
る開度である100%より小さい状態、すなわち、
吸気管負圧により駆動されるスロツトル弁の可動
範囲の最大位置が吸気管負圧の不足によつてスロ
ツトル弁の100%位置に到達できず、その可動範
囲の最大位置にスロツトル弁が到達している状態
である。
Note that the state in which the opening degree of the intake system throttle valve has reached the upper limit of the control range by the automatic vehicle speed control mechanism means that the maximum value of the opening degree of the throttle valve controlled by the automatic vehicle speed control mechanism has reached the upper limit of the control range of the automatic vehicle speed control mechanism. A state in which the opening degree corresponding to the maximum operation amount of the automatic vehicle speed control mechanism is less than 100% due to a shortage, that is,
The maximum position of the throttle valve's movable range, which is driven by intake pipe negative pressure, cannot reach the 100% position due to lack of intake pipe negative pressure, and the throttle valve does not reach the maximum position of its movable range. It is in a state of being.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるCVTの構成図、
第2図は電子制御装置のブロツク図、第3図はス
ロツトル開度と目標機関回転速度との関係を示す
グラフ、第4図は本発明に従うプログラムのフロ
ーチヤートである。 1……機関、4……CVT、27……加速ペダ
ル、3……CPU。
FIG. 1 is a configuration diagram of a CVT to which the present invention is applied;
FIG. 2 is a block diagram of the electronic control device, FIG. 3 is a graph showing the relationship between throttle opening and target engine speed, and FIG. 4 is a flowchart of a program according to the present invention. 1...engine, 4...CVT, 27...accelerator pedal, 3...CPU.

Claims (1)

【特許請求の範囲】 1 吸気系スロツトル弁開度が車速自動制御機構
による制御範囲の上限に達している期間におい
て、実際の車速Vrと目標車速Voとを比較し、
Vo−Vr≧A1(但し、A1は正の所定値)であれ
ば、目標機関回転速度Noを該目標車速Voと実際
の車速Vrとの偏差Vo−Vrに応じてその増大側へ
徐々に変更させることを特徴とする、無段変速機
付き車両の車速自動制御方法。 2 吸気系スロツトル弁開度が車速自動制御機構
による制御範囲の上限に達している期間におい
て、実際の車速Vrと目標車速Voとを比較し、
Vo−Vr≧A1(但し、A1は正の所定値)であれ
ば、無段変速機の速度比eを該目標車速Voと実
際の車速Vrとの偏差Vo−Vrに応じてその減少側
へ徐々に変更させることを特徴とする、無段変速
機付き車両の車速自動制御方法。
[Claims] 1. Comparing the actual vehicle speed Vr and the target vehicle speed Vo during a period in which the intake system throttle valve opening reaches the upper limit of the control range by the automatic vehicle speed control mechanism,
If Vo−Vr≧A1 (however, A1 is a positive predetermined value), the target engine speed No. is gradually changed to the increasing side according to the deviation Vo−Vr between the target vehicle speed Vo and the actual vehicle speed Vr. An automatic vehicle speed control method for a vehicle with a continuously variable transmission, characterized in that: 2. During the period when the intake system throttle valve opening reaches the upper limit of the control range by the automatic vehicle speed control mechanism, compare the actual vehicle speed Vr and the target vehicle speed Vo,
If Vo−Vr≧A1 (however, A1 is a positive predetermined value), the speed ratio e of the continuously variable transmission is decreased according to the deviation Vo−Vr between the target vehicle speed Vo and the actual vehicle speed Vr. An automatic vehicle speed control method for a vehicle with a continuously variable transmission, which is characterized by gradually changing the speed.
JP57207736A 1982-11-29 1982-11-29 Automatic speed control for car equipped with stepless speed change gear Granted JPS5999147A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57207736A JPS5999147A (en) 1982-11-29 1982-11-29 Automatic speed control for car equipped with stepless speed change gear
US06/911,874 US4771656A (en) 1982-11-29 1986-09-26 Cruise control method and apparatus for a vehicle with a continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207736A JPS5999147A (en) 1982-11-29 1982-11-29 Automatic speed control for car equipped with stepless speed change gear

Publications (2)

Publication Number Publication Date
JPS5999147A JPS5999147A (en) 1984-06-07
JPH0321783B2 true JPH0321783B2 (en) 1991-03-25

Family

ID=16544684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207736A Granted JPS5999147A (en) 1982-11-29 1982-11-29 Automatic speed control for car equipped with stepless speed change gear

Country Status (1)

Country Link
JP (1) JPS5999147A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277241A (en) * 1985-09-30 1987-04-09 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP4867192B2 (en) * 2005-04-14 2012-02-01 三菱自動車工業株式会社 Control device for continuously variable transmission
JP5054799B2 (en) * 2010-04-21 2012-10-24 三菱電機株式会社 Vehicle constant speed travel control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121713A (en) * 1981-01-20 1982-07-29 Toyota Motor Corp Constant speed running device for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121713A (en) * 1981-01-20 1982-07-29 Toyota Motor Corp Constant speed running device for vehicle

Also Published As

Publication number Publication date
JPS5999147A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
EP0231059B1 (en) Control system for a continuously variable transmission
US8326503B2 (en) Lock-up clutch control device
US6597979B2 (en) Lock-up control system for automatic transmission
CN103867704B (en) The speed-change control device of buncher
JP2848401B2 (en) Shift pressure control device for automatic transmission
US9523400B2 (en) Lockup clutch control device
US20040116245A1 (en) System and method of controlling line pressure for V-belt type continuously variable transmission
JPH02107866A (en) Speed change controller for continuously variable transmission
JPH01208239A (en) Control device for automatic car clutch
JP3211737B2 (en) Gear ratio control device for continuously variable transmission
US20070203631A1 (en) Torque control device for continuously variable transmission
JP5983522B2 (en) Control device for vehicle lock-up clutch
JP2001330122A (en) Control device for vehicle with continuously variable transmission
JPH0321783B2 (en)
JP5273107B2 (en) Control device for continuously variable transmission
US11077852B2 (en) Shift control device and shift control method for vehicle
JPH0321784B2 (en)
JP7619188B2 (en) Vehicle control device
JP5429047B2 (en) Control device for continuously variable transmission
JP3430934B2 (en) Transmission control device for V-belt type continuously variable transmission
JP2903155B2 (en) Transmission control device for continuously variable transmission
JP2012002312A (en) Control device of vehicle
JP2741032B2 (en) Transmission control device for continuously variable transmission
JP2583038B2 (en) Control method for continuously variable transmission
JP2900257B2 (en) Transmission control device for continuously variable transmission