[go: up one dir, main page]

JPH03215329A - Ultraviolet-ray shielding glass fiber composition for printed wiring board - Google Patents

Ultraviolet-ray shielding glass fiber composition for printed wiring board

Info

Publication number
JPH03215329A
JPH03215329A JP736190A JP736190A JPH03215329A JP H03215329 A JPH03215329 A JP H03215329A JP 736190 A JP736190 A JP 736190A JP 736190 A JP736190 A JP 736190A JP H03215329 A JPH03215329 A JP H03215329A
Authority
JP
Japan
Prior art keywords
printed wiring
dielectric constant
glass fiber
fiber composition
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP736190A
Other languages
Japanese (ja)
Inventor
Atsushi Naka
中 淳
Shigeru Yamamoto
茂 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP736190A priority Critical patent/JPH03215329A/en
Publication of JPH03215329A publication Critical patent/JPH03215329A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the title composition capable of reinforcing printed wiring boards requiring the high speed processing of signals by incorporating a glass fiber composition of low dielectric constant with each specified proportion of Fe2O3 and TiO2. CONSTITUTION:The objective composition can be obtained by incorporating (A) 100 pts.wt. of a glass fiber composition of low dielectric constant with (B) 0.1-1.8 pts.wt. of Fe2O3 and (C) 0.1-2 pts.wt. of TiO2. The present composition has a dielectric constant of <=4.5 at a frequency of 1MHz at room temperature and is used for reinforcing printed wiring boards requiring the high speed processing of signals. Furthermore, this composition enables solder resist patterns to be formed through double-sided simultaneous exposure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、写真焼き付け法によりソルダーレジストパタ
ーンを形成するプリント配線板、特に信号の高速処理を
要求されるプリント配線板を強化するのに用いられ、両
面同時露光によってソルダーレジストパターンを形成す
ることを可能にするプリント配線板用紫外線遮蔽ガラス
繊維組成物に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is used to strengthen printed wiring boards on which solder resist patterns are formed by photoprinting, especially printed wiring boards that require high-speed signal processing. The present invention relates to an ultraviolet-shielding glass fiber composition for printed wiring boards, which makes it possible to form a solder resist pattern by simultaneous exposure on both sides.

[従来技術とその問題点コ 一般にプリント配線板の強化に使用される長繊維用ガラ
スとして商業的に生産されている代表的なガラスとして
は、Eガラスおよび621ガラスと呼ばれる繊維用ガラ
スが知られている。
[Prior art and its problems] Typical long-fiber glasses commonly produced commercially as long-fiber glasses used to strengthen printed wiring boards include fiber glasses called E-glass and 621 glass. ing.

Eガラスは、S102−Al2O3−CaO−MgO−
B2O3の組成?有し、例えば米国特許第2,334,
961号によれば重量%で下記の如きものである。
E glass is S102-Al2O3-CaO-MgO-
Composition of B2O3? For example, U.S. Pat. No. 2,334,
According to No. 961, the weight percentages are as follows.

SiO■  52  〜 56  % A1■0312  〜 16  % CaO   1B  〜19  % MgO    3  〜 6 % B2O.   9  〜 11  % またG21ガラスは、S10■−AI2O3−CaO−
B2O3の組成を有し、例えば米国特許第2 ,571
 ,074号によれば重量%で下記の如きものである。
SiO■ 52-56% A1■0312-16% CaO 1B-19% MgO 3-6% B2O. 9 to 11% G21 glass also has S10■-AI2O3-CaO-
B2O3, e.g. U.S. Pat. No. 2,571
, No. 074, the weight percentages are as follows.

SiO。  52  〜 56  % AI■0312  〜 16  % CaO   1B  〜25  % B2O38  〜 13  % しかし上記Eガラスおよび621ガラスで強化されたプ
リント配線板は、近年電子機器分野において要求されて
いる信号の高速処理化に対応するには充分でないという
問題が生じてきた。信号を高速で処理するためにはプリ
ント配線板の回路の信号伝播速度を大きくする必要があ
る。プリント配線板の誘電率が小さいほど信号伝播速度
は大きくなるためプリント配線板としては誘電率が3以
下であることが要求される。プリント配線板はガラス繊
維、樹脂、改質剤等から構成される複合材料であり、こ
れらの構成材料の誘電率によって最終的に配線板の誘電
率が決まるため、ガラス繊維には誘電率が4.5以下で
あることが要求されているが、Eガラスおよび621ガ
ラスの誘電率は2.0%、Na2O0〜3.5以上であ
る。
SiO. 52 to 56% AI■0312 to 16% CaO 1B to 25% B2O38 to 13% However, printed wiring boards reinforced with the above-mentioned E glass and 621 glass are suitable for high-speed signal processing that is required in the electronic equipment field in recent years. The problem has arisen that it is not enough to deal with it. In order to process signals at high speed, it is necessary to increase the signal propagation speed of the printed wiring board circuit. Since the smaller the dielectric constant of a printed wiring board, the higher the signal propagation speed, the printed wiring board is required to have a dielectric constant of 3 or less. A printed wiring board is a composite material composed of glass fiber, resin, modifier, etc., and the dielectric constant of the wiring board is ultimately determined by the dielectric constant of these constituent materials, so glass fiber has a dielectric constant of 4. E glass and 621 glass have dielectric constants of 2.0% and Na2O0 to 3.5 or more.

上記事情から従来よりEガラスや821ガラスよりも誘
電率の低いガラス繊維組成物、いわゆるDタイプガラス
が開発され近年その需要が増加している。特に大型コン
ピューターなどの信号の高速処理が要求される機器には
、高密度に部品が実装された両面あるいはそれ以上の多
層プリント配線板が多く使用される。
Under the above circumstances, a glass fiber composition having a lower dielectric constant than E glass or 821 glass, so-called D type glass, has been developed and the demand for it has been increasing in recent years. In particular, devices that require high-speed signal processing, such as large computers, often use double-sided or more multilayer printed wiring boards with components mounted at high density.

ところで電子機器の発展に伴ってプリント配線板に形成
される回路パターンが高密度化し、そのためその回路に
対応するソルダーレジストパターンも複雑になり、従来
のスクリーン印刷による成形法に変わって写真焼き付け
法が多く使用されるようになってきている。写真焼き付
け法では、まず配線板の表面に紫外線硬化レジストが塗
布され、紫外線露光およびエッチングによってレジスト
パターンが形成される。上下両面に回路が形成された配
線板では、紫外線による露光を片面ずつ二度おこなうか
両面同時露光をおこなう。片面露光を繰り返す方法に比
べて両面同時露光法は生産効率が高い。しかし配線板を
構成するガラス布および樹脂が紫外線を透過するため、
両面同時露光をおこなうと一面から照射された紫外線が
反対面のソルダーレジストにまで作用し、その結果不必
要な部分まで露光される裏焼きという不具合が生じる。
By the way, with the development of electronic devices, the circuit patterns formed on printed wiring boards have become denser, and the solder resist patterns corresponding to those circuits have also become more complex.The photoprinting method has replaced the conventional screen printing molding method. It is becoming more and more used. In the photoprinting method, an ultraviolet curing resist is first applied to the surface of a wiring board, and a resist pattern is formed by ultraviolet exposure and etching. For wiring boards with circuits formed on both the top and bottom sides, exposure to ultraviolet rays is performed twice on each side, or both sides are exposed simultaneously. Compared to the method of repeating single-sided exposure, the double-sided simultaneous exposure method has higher production efficiency. However, since the glass cloth and resin that make up the wiring board transmit ultraviolet rays,
If both sides are exposed simultaneously, the ultraviolet rays irradiated from one side will affect the solder resist on the opposite side, resulting in a problem called back-burning where unnecessary parts are exposed.

これに対して従来より樹脂に紫外線吸収剤を混合する方
法が提案されている。例えば特開昭54−32763号
はフタロシアニンブルーなどの顔料、メチルバイオレッ
トなどの染・料、オルトヒドロキシベンゾフェノンなど
の紫外線吸収剤、炭酸カルシウム、クレーなどの充填剤
などを混合した樹脂を使用して紫外線遮蔽性を有するガ
ラスプリプレグを製造する方法を示している。また特開
昭81−11380号は、酸化チタン粉末を樹脂に混合
することで配線板に紫外線遮蔽性を付与する方法、およ
び有機紫外線吸収物質を配線板に内部含浸、表面塗布ま
たは表面含浸することで配線板に紫外線遮蔽性を付与す
る方法を示している。しかしこのように樹脂に吸収剤を
添加すると、樹脂の機械的特性が劣化する場合があり、
また均一な混合や塗布が困難で紫外線遮蔽性にむらが生
じやすいため好ましくない。
In response to this problem, a method has been proposed in which a UV absorber is mixed into a resin. For example, Japanese Patent Application Laid-open No. 54-32763 uses a resin mixed with pigments such as phthalocyanine blue, dyes such as methyl violet, ultraviolet absorbers such as orthohydroxybenzophenone, and fillers such as calcium carbonate and clay. 1 shows a method of manufacturing a glass prepreg with shielding properties. Furthermore, JP-A-81-11380 discloses a method of imparting ultraviolet shielding properties to a wiring board by mixing titanium oxide powder with a resin, and a method of internally impregnating, surface coating, or surface impregnation of an organic ultraviolet absorbing substance into the wiring board. shows a method for imparting ultraviolet shielding properties to wiring boards. However, adding an absorbent to resin in this way may deteriorate the mechanical properties of the resin.
Further, it is difficult to mix and coat uniformly, and the ultraviolet shielding properties tend to be uneven, which is not preferable.

[発明の構成] 本発明者等は、プリント配線板、特に信号の高速処理を
要求されるプリント配線板の強化に用いられる低誘電率
ガラス繊維組成物にFe2O3およびT10。を最適な
割合で同時に添加することにより、必要な誘電特性を大
きく損なうことなく写真焼き付け法によるソルダーレジ
ストパターン形成の際に両面同時露光によって生じる裏
焼きを防ぐに十分な紫外線遮蔽性を得ることができるこ
とを見いだした。
[Structure of the Invention] The present inventors have incorporated Fe2O3 and T10 into a low dielectric constant glass fiber composition used for reinforcing printed wiring boards, especially printed wiring boards that require high-speed signal processing. By simultaneously adding them in optimum proportions, it is possible to obtain sufficient ultraviolet shielding properties to prevent back-burning caused by simultaneous exposure on both sides during the formation of solder resist patterns by photoprinting without significantly impairing the necessary dielectric properties. I found out what I can do.

一般的にFe2O3をガラスに加えると、Fe3+が紫
外線を吸収するためにガラスに紫外線遮蔽性が付与され
る。しかしながらFe2O3を多量に添加するとガラス
の誘電率が上昇してしまうため信号の高速処理用途のプ
リント配線板の強化には使用できなくなる。またFe2
O,,はガラスを高温で溶融する際にその一部がFeO
に変化するためFe2+の働きにより紫外部だけでなく
可視部にも吸収が生じ、その結果ガラスに著しい着色が
おこる。さらに赤外部にも吸収が生じるので熱線が伝わ
りにくくなる。
Generally, when Fe2O3 is added to glass, ultraviolet shielding properties are imparted to the glass because Fe3+ absorbs ultraviolet rays. However, if a large amount of Fe2O3 is added, the dielectric constant of the glass increases, making it impossible to use it to strengthen printed wiring boards for high-speed signal processing. Also Fe2
O,, is a part of FeO when glass is melted at high temperature.
Due to the action of Fe2+, absorption occurs not only in the ultraviolet region but also in the visible region, resulting in significant coloring of the glass. Furthermore, absorption occurs in the infrared region, making it difficult for heat rays to be transmitted.

そこで本発明者は種々の研究をおこなった結果、Fe2
O3にT10。を共存させることによって必要な誘電特
性を大きく損なうことなく、可視部や赤外部の吸収を抑
えたまま所望の紫外線遮蔽性をガラスに付与できること
を見いだし、本発明を提案するに至った。
Therefore, as a result of various researches, the present inventor found that Fe2
T10 on O3. The present inventors have discovered that the desired ultraviolet shielding properties can be imparted to glass while suppressing visible and infrared absorption without significantly impairing the necessary dielectric properties by coexisting with the above, and have proposed the present invention.

すなわち本発明のプリント配線板用紫外線遮蔽性ガラス
繊維組成物は、室温における周波数1MHzでの誘電率
が4.5以下である低誘電率ガラス繊維組成物100重
量%に対して、重量%でFe2O3が?.1〜1.8%
およびT10■が0.1〜2.0%添加されてなること
を特徴とする。
That is, the UV-shielding glass fiber composition for printed wiring boards of the present invention contains Fe2O3 in weight% relative to 100% by weight of a low dielectric constant glass fiber composition having a dielectric constant of 4.5 or less at a frequency of 1 MHz at room temperature. but? .. 1-1.8%
and T10■ are added in an amount of 0.1 to 2.0%.

また本発明のプリント配線板用紫外線遮蔽ガラス繊維組
成物は、好ましくは室温における周波数I M■Zでの
誂電率が4.5以下である低誘電率ガラス繊維組成物1
00重量%に対して、重量%でFe2O3が0.45〜
1.5%およびTiO。が0.2〜1.5%添加されて
なることを特徴とする。
Further, the ultraviolet-shielding glass fiber composition for printed wiring boards of the present invention is preferably a low dielectric constant glass fiber composition 1 having a dielectric constant of 4.5 or less at the frequency IMZ at room temperature.
00% by weight, Fe2O3 is 0.45 to 0.45% by weight
1.5% and TiO. is added in an amount of 0.2 to 1.5%.

本発明においてFe2O3およびTiO■の含有量を上
記のように限定した理由は以下のとおりである。
The reason why the contents of Fe2O3 and TiO2 are limited as described above in the present invention is as follows.

Fe2O3はガラスに紫外線吸収性を与える成分であり
、その含有量は0.1−1.8%、好ましくは0.45
〜1.5%である。0.1%より少ないと紫外線吸収性
が不十分であり、1.8%より多いと誘電率が大きく上
昇すると共にガラスの着色が著しくなり、且つ熱線吸収
が著しくなってガラスの溶融が困難になる。
Fe2O3 is a component that gives ultraviolet absorbency to glass, and its content is 0.1-1.8%, preferably 0.45%.
~1.5%. If it is less than 0.1%, the ultraviolet absorbing property is insufficient, and if it is more than 1.8%, the dielectric constant increases greatly, the coloring of the glass becomes significant, and heat ray absorption becomes significant, making it difficult to melt the glass. Become.

TiO■はFe2O3と共存してガラスに紫外線吸収性
を与えると共に可視部や赤外部での紫外線の吸収を抑え
る成分であり、その含有量は0.1〜2.0%、好まし
くは0.2〜1.5%である。T1o2の含有量が0.
1%より少ないと上記効果が得られず、2.0%より多
いと可視部での紫外線の吸収が著しくなりガラスに着色
が生じると共に誘電率が上昇してしまう。
TiO■ is a component that coexists with Fe2O3 and gives the glass ultraviolet absorbency and suppresses the absorption of ultraviolet rays in the visible and infrared regions, and its content is 0.1 to 2.0%, preferably 0.2%. ~1.5%. The content of T1o2 is 0.
If it is less than 1%, the above effects cannot be obtained, and if it is more than 2.0%, absorption of ultraviolet rays in the visible region becomes significant, causing coloring of the glass and increasing the dielectric constant.

また本発明において用いる低誘電率ガラス繊維組成物は
、室温における周波数I MHzでの誘電率が4.5以
下であるが、より具体的には重量%でS10270.0
 〜80.0%、AI2O3 0 〜2.0%、B2O
312.0%、Na2O0〜3.0 〜21.5%、M
g0 0−1.0%、CaO O 〜2.0%、L12
O 0 〜2.0%、Na2O 0 〜3.0%、K2
O 0 〜3.0%、L12O+Na2O+K2O 2
.0 〜2.0%、Na2O0〜3.0%の基本組成を
有するものである。
Further, the low dielectric constant glass fiber composition used in the present invention has a dielectric constant of 4.5 or less at a frequency of I MHz at room temperature, and more specifically, S10270.0 in weight%.
~80.0%, AI2O3 0 ~2.0%, B2O
312.0%, Na2O0~3.0~21.5%, M
g0 0-1.0%, CaO2~2.0%, L12
O 0 ~2.0%, Na2O 0 ~3.0%, K2
O0 ~ 3.0%, L12O+Na2O+K2O2
.. It has a basic composition of 0 to 2.0% and Na2O of 0 to 3.0%.

[実施例コ 次に本発明を実施例に基づきさらに詳しく説明する。[Example code] Next, the present invention will be explained in more detail based on examples.

次表は、本発明の実施例および比較例の各試料のFe2
O3とT10,の含有量と波長380nm 1400n
mおよび500nmでの透過率と室温における周波数1
MHzでの誘電率の値を示すものである。
The following table shows the Fe2 of each sample of the example of the present invention and the comparative example.
O3 and T10 content and wavelength 380nm 1400n
m and transmittance at 500 nm and frequency 1 at room temperature
It shows the value of dielectric constant in MHz.

表中の各試料は、以下のように調製した。Each sample in the table was prepared as follows.

まず重量% テSlo。76%、B2O32O%、Mg
O O.5%、Ca0 0.5%、Li2O 0.5%
、Na2O 1.5%、K2Ol.θ%からなる低誘電
率ガラス繊維組成物に対してFe2O3およびTiO2
が表に示す割合で添加されたガラスとなるようにガラス
原料を調合し、白金ルツボを用いて1550℃で16時
間溶融した。溶融後、融液をカーボン板上に流し出し板
状に成形し、徐冷した。その後30X IOX 5mn
+の大きさに両面光学研磨した試料片を作成し、分光光
度計にて透過率の測定を実施した。また残りの試料を5
0X 50X 3+amの板状に研磨し、室温における
周波数I MHzでの誂電率を測定した。
First, weight% TeSlo. 76%, B2O32O%, Mg
O O. 5%, Ca0 0.5%, Li2O 0.5%
, Na2O 1.5%, K2Ol. Fe2O3 and TiO2 for a low dielectric constant glass fiber composition consisting of θ%
Glass raw materials were prepared so as to form a glass in which was added in the proportions shown in the table, and melted at 1550° C. for 16 hours using a platinum crucible. After melting, the melt was poured onto a carbon plate, formed into a plate shape, and slowly cooled. Then 30X IOX 5mn
A sample piece was prepared by optically polishing both sides to a + size, and the transmittance was measured using a spectrophotometer. Add the remaining sample to 5
It was polished into a plate shape of 0x50x3+am, and the electrical conductivity at a frequency of I MHz at room temperature was measured.

以下余白 ?から明らかなようにFe2O.およびTiO2を含有
しない比較例NO.5の試料は、4.5以下の良好な誘
電率を有するが、波長380nm 1400nmにおけ
る透過率が88%以上と高く、ほとんど紫外線を遮蔽し
ていないことがわかる。一方NO.1〜4の実施例の試
料は、誘電率を4.5以下に保持したまま400nmで
の透過率がNO.5の試料の1/10以下にまで減少し
、十分な紫外線遮蔽性を有している。しかしながらFe
2O3とTiO■を多量に添加した比較例NO.6の試
料は、誂電率が4.5以上に上昇していると同時に可視
部、すなわち500tvでの透過率がほとんど零にまで
減少しておりNo.1〜4の実施例に比べ着色が著しい
ことがわかる。
Margin below? As is clear from Fe2O. and Comparative example NO. containing no TiO2. Sample No. 5 has a good dielectric constant of 4.5 or less, but has a high transmittance of 88% or more at wavelengths of 380 nm to 1400 nm, indicating that it hardly blocks ultraviolet rays. On the other hand, NO. The samples of Examples 1 to 4 had a transmittance of NO. 1 at 400 nm while keeping the dielectric constant at 4.5 or less. It decreased to 1/10 or less of that of sample No. 5, and has sufficient ultraviolet shielding properties. However, Fe
Comparative example No. 2O3 and TiO■ were added in large amounts. In sample No. 6, the transmittance increased to 4.5 or more, and at the same time the transmittance in the visible region, that is, at 500 tv, decreased to almost zero. It can be seen that the coloration is remarkable compared to Examples 1 to 4.

[発明の効果] 以上のように本発明のプリント配線板用ガラス繊維組成
物は、室温における周波数I Mllzでの誘電率が4
.5以下であるため信号の高速処理が要求されるプリン
ト配線板の強化に適しており、しかも着色や熱線吸収を
おこすことなく所望の紫外線遮蔽性を有しているため、
両面同時露光による写真焼き付け法でのソルダーレジス
トパターンの形成が可能になり、プリント配線板の製造
における生産効率を大きく向上させることができる。
[Effects of the Invention] As described above, the glass fiber composition for printed wiring boards of the present invention has a dielectric constant of 4 at the frequency I Mllz at room temperature.
.. 5 or less, it is suitable for strengthening printed wiring boards that require high-speed signal processing, and it also has the desired ultraviolet shielding properties without causing coloration or heat ray absorption.
It becomes possible to form a solder resist pattern using a photoprinting method with simultaneous exposure on both sides, and production efficiency in manufacturing printed wiring boards can be greatly improved.

Claims (3)

【特許請求の範囲】[Claims] (1)室温における周波数1MHzでの誘電率が4.5
以下である低誘電率ガラス繊維組成物100重量%に対
して、重量%でFe_2O_3が0.1〜1.8%およ
びTiO_2が0.1〜2.0%添加されてなることを
特徴とするプリント配線板用紫外線遮蔽ガラス繊維組成
物。
(1) Dielectric constant at room temperature and frequency 1MHz is 4.5
It is characterized in that 0.1 to 1.8% by weight of Fe_2O_3 and 0.1 to 2.0% by weight of TiO_2 are added to 100% by weight of the following low dielectric constant glass fiber composition. UV-shielding glass fiber composition for printed wiring boards.
(2)室温における周波数1MHzでの誘電率が4.5
以下である低誘電率ガラス繊維組成物100重量%に対
して、重量%でFe_2O_3が0.45〜1.5%お
よびTiO_2が0.2〜1.5%添加されてなること
を特徴とする特許請求の範囲第一項記載のプリント配線
板用紫外線遮蔽ガラス繊維組成物。
(2) The dielectric constant at a frequency of 1 MHz at room temperature is 4.5
It is characterized by adding 0.45 to 1.5% by weight of Fe_2O_3 and 0.2 to 1.5% by weight of TiO_2 to 100% by weight of the following low dielectric constant glass fiber composition. An ultraviolet-shielding glass fiber composition for printed wiring boards according to claim 1.
(3)低誘電率ガラス繊維組成物が重量%でSiO_2
70.0〜80.0%、Al_2O_30〜2.0%、
B_2O_315.0〜21.5%、MgO0〜1.0
%、CaO0〜2.0%、Li_2O0〜2.0%、N
a_2O0〜3.0%、K_2O0〜3.0%、Li_
2O+Na_2O+K_2O2.0〜5.0%の基本組
成を有することを特徴とする特許請求の範囲第一項及び
第二項記載のプリント配線板用紫外線遮蔽ガラス繊維組
成物。
(3) Low dielectric constant glass fiber composition is SiO_2 by weight%
70.0-80.0%, Al_2O_30-2.0%,
B_2O_315.0-21.5%, MgO0-1.0
%, CaO0-2.0%, Li_2O0-2.0%, N
a_2O0-3.0%, K_2O0-3.0%, Li_
The ultraviolet-shielding glass fiber composition for printed wiring boards according to claims 1 and 2, which has a basic composition of 2.0 to 5.0% of 2O+Na_2O+K_2O.
JP736190A 1990-01-16 1990-01-16 Ultraviolet-ray shielding glass fiber composition for printed wiring board Pending JPH03215329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP736190A JPH03215329A (en) 1990-01-16 1990-01-16 Ultraviolet-ray shielding glass fiber composition for printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP736190A JPH03215329A (en) 1990-01-16 1990-01-16 Ultraviolet-ray shielding glass fiber composition for printed wiring board

Publications (1)

Publication Number Publication Date
JPH03215329A true JPH03215329A (en) 1991-09-20

Family

ID=11663827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP736190A Pending JPH03215329A (en) 1990-01-16 1990-01-16 Ultraviolet-ray shielding glass fiber composition for printed wiring board

Country Status (1)

Country Link
JP (1) JPH03215329A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666082A1 (en) * 1990-08-23 1992-02-28 Nippon Electric Glass Co Glass fibre composition for protection against ultraviolet radiation
EP0831072A1 (en) * 1995-06-05 1998-03-25 Nitto Boseki Co., Ltd. Low-permittivity glass fibers
WO1998016482A1 (en) * 1996-10-16 1998-04-23 Nitto Boseki Co., Ltd. Glass fiber of low permittivity
JP2011068549A (en) * 2009-08-25 2011-04-07 Nippon Electric Glass Co Ltd Glass fiber, method for manufacturing glass fiber, and glass fiber sheet-like object
WO2022131274A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Borosilicate glass, laminated glass, and window glass for vehicle
JP2023138324A (en) * 2022-03-16 2023-10-02 日本電気硝子株式会社 glass fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666082A1 (en) * 1990-08-23 1992-02-28 Nippon Electric Glass Co Glass fibre composition for protection against ultraviolet radiation
EP0831072A1 (en) * 1995-06-05 1998-03-25 Nitto Boseki Co., Ltd. Low-permittivity glass fibers
EP0831072A4 (en) * 1995-06-05 1999-01-20 Nitto Boseki Co Ltd LOW PERMITTIVITY GLASS FIBERS
WO1998016482A1 (en) * 1996-10-16 1998-04-23 Nitto Boseki Co., Ltd. Glass fiber of low permittivity
US6309990B2 (en) 1996-10-16 2001-10-30 Nitto Boseki Co., Ltd. Glass fiber of low permittivity
JP2011068549A (en) * 2009-08-25 2011-04-07 Nippon Electric Glass Co Ltd Glass fiber, method for manufacturing glass fiber, and glass fiber sheet-like object
WO2022131274A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Borosilicate glass, laminated glass, and window glass for vehicle
JP2023138324A (en) * 2022-03-16 2023-10-02 日本電気硝子株式会社 glass fiber

Similar Documents

Publication Publication Date Title
KR100364890B1 (en) Low-permittivity glass fibers
JP7120341B2 (en) Glass substrates for high-frequency devices and circuit substrates for high-frequency devices
CN101012105B (en) Glass fiber with low permittivity
US4582748A (en) Glass compositions having low expansion and dielectric constants
TW450948B (en) Glass fiber of low dielectric constant
US4788165A (en) Copper-exuding, boroaluminosilicate glasses
JPH03215329A (en) Ultraviolet-ray shielding glass fiber composition for printed wiring board
JP2004107112A (en) Low dielectric constant low dielectric dissipation factor glass fiber
US4501819A (en) Glass for a photomask
JPH0369528A (en) Quick-response, photosensitive opal glass
JPS5915102B2 (en) Near infrared cut filter glass
JPH0446911B2 (en)
CN102863152A (en) Glass fiber for printed circuit board
JPH0753945A (en) Near-infrared absorber
JPH03261633A (en) Ultraviolet ray-shielding glass fiber composition
JPS62136861A (en) Resin sealed semiconductor device
JP3954130B2 (en) Low dielectric constant glass powder, printed wiring board using the same, and resin mixed material
JPH03261632A (en) Ultraviolet ray-shielding glass fiber composition
JPH04104920A (en) Ultraviolet ray shielding glass fiber composition
US3305371A (en) Glass compositions
CN115093124A (en) Erosion-resistant low-dielectric basalt fiber, preparation method thereof and high-frequency high-speed printed circuit board
TWI869269B (en) Glass fiber
TWI845201B (en) Glass fiber
US4898767A (en) Copper-exuding boroaluminosilicate glasses
JP4233222B2 (en) Manufacturing method of colored glass