[go: up one dir, main page]

JPH03214878A - Scanning line interpolation circuit - Google Patents

Scanning line interpolation circuit

Info

Publication number
JPH03214878A
JPH03214878A JP2008241A JP824190A JPH03214878A JP H03214878 A JPH03214878 A JP H03214878A JP 2008241 A JP2008241 A JP 2008241A JP 824190 A JP824190 A JP 824190A JP H03214878 A JPH03214878 A JP H03214878A
Authority
JP
Japan
Prior art keywords
scanning line
signal
transmitted
scanning
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008241A
Other languages
Japanese (ja)
Inventor
Masahiro Kageyama
昌広 影山
Kazuo Ishikura
石倉 和夫
Hiroshi Yoshiki
宏 吉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008241A priority Critical patent/JPH03214878A/en
Priority to US07/565,977 priority patent/US5216505A/en
Publication of JPH03214878A publication Critical patent/JPH03214878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,テレビジョン信号の走査線補間回路に係り,
特に、インタレース走査で伝送されない走査線を順次走
査化補助信号(V−T信号)を用いて補間して再生する
回路に関する. 〔従来の技術〕 現行テレビジョン方式(NTSC方式)では、インタレ
ース(飛越)走査により1フレームを2フィールドに分
けて画像を伝送している。従来のテレビジョン受像機で
は、インタレース走査のまま表示を行っていたため、1
ラインおきの走査線構造による再生画像の粗さやプリン
カ妨害(ちらつき)が画質劣化の原因となっていた.こ
の画質劣化を軽減するため、現行テレビジョン方式と完
全に両立性を有する高精細テレビジョン方式(EDTV
) 、あるいは、現行のテレビジョン信号を受信側の信
号処理により高精細化する方式(IDTV)においては
、受信側でインタレースー順次走査変換を行って表示す
る.このとき、受信側で動きを検出し、動きに応じた処
理パラメータにより走査線補間処理を行う(例えば、特
開昭58−130685) . しかし、送られてくる情報はインタレース信号であるた
め制約があり、原理的に動き検出不可能な動きがある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a scanning line interpolation circuit for television signals.
In particular, it relates to a circuit that interpolates and reproduces scanning lines that are not transmitted in interlaced scanning using a progressive scanning auxiliary signal (VT signal). [Prior Art] In the current television system (NTSC system), images are transmitted by dividing one frame into two fields using interlaced scanning. Conventional television receivers display images using interlaced scanning, so 1
The coarseness of the reproduced image due to the alternate scanning line structure and interference with the printer (flickering) were causes of image quality deterioration. In order to reduce this picture quality deterioration, we introduced the high-definition television system (EDTV), which is completely compatible with the current television system.
), or in the current system (IDTV) in which television signals are made high-definition through signal processing on the receiving side, the receiving side performs interlaced-progressive scan conversion and displays the signal. At this time, the receiving side detects the movement and performs scanning line interpolation processing using processing parameters according to the movement (for example, Japanese Patent Laid-Open No. 130685/1983). However, since the information sent is an interlaced signal, there are restrictions, and there are movements that cannot be detected in principle.

例えば、ちょうどフレーム周期(1/30秒)で動く画
像は静止画と区別ができないため,動画であるにもかか
わらず静止画モードで補間処理を行ってしまい、大きな
画質劣化を引き起こす.また、動画と判定された箇所で
は、同一フィールド内の上下の走査線から補閲して、伝
送されない走査線を作成するため、垂直周波数の高い画
像(細かい横縞など)は再生できない欠点があった. 上記欠点を補うため、送信側で順次走査カメラを用い,
順次一インタレース走査変換を行って通常の伝送信号(
以下,主走査線信号と略f[!)を作成するとともに、
受信側での走査線補間処理を補助するための信号(以下
、順次走査化補助信号と略記)を伝送することが考えら
れている。例えば、米国D S R C (David
 Sarnoff Research Centar)
で提案されたA C T V (Advanced C
ompatible TV)では、インタレース走査で
飛び越してしまうために伝送されない走査線とその1フ
ィールド前後の同一位買の走査線との差信号(フィール
ド差信号)を、順次走査化補助信号として伝送する.第
3図に従来例として、上記A C TV受像機で用いら
れている走査線補間回路の構成例を簡単化して示す〔ア
イ・イー・イー・イー トランザクションズ オン コ
ンシューマ エレクトロニクス(IEEE Trans
actions on ConsumerElectr
onics) . Vol  34, Ncilw 1
 9 88年2月記載)〕。同図において、分離回路1
を用いて、多重伝送された主走査線信号(インタレー入
信号)と順次走査化補助信号(V−Tヘルパー)とを分
離し、さらに補間走査線再生回路100を用いて、伝送
されない走査線を補間して再生する.第4図に、伝送さ
れた走査線から、伝送されない走査線を再生する方法を
示す.同図(a)に伝送する主走査線信号の位置関係を
,同図(b)に順次走査化補助信号の位置関係を示す.
同図(a)において、伝送されない走査線Xに対して、
同一位置でその前後のフィールドの走査線をそれぞれ走
査線AおよびBとする.上記ACTVの例では、同図(
b)に示すように、順次走査化補助信号Yとして(X−
 (A+B)/2)を伝送する,一方,受信側では、同
図(c)に示すように,伝送された走査線A,Bおよび
補助信号Yから伝送されない走査線x (=y+ (A
十B)/2)を再生する・これを実現するために、第3
図に示した補間走査線再生回路100において、lフレ
ーム遅延回路2,加算器3および乗算器4を用いて,主
走査線信号からフレーム平均( (A+B)/2)を作
成し、加算器5を用いて順次走査化補助信号Yとの和を
とり、補間走査線信号X(=Y+ (A+B)/2)と
する. また,上記以外にも、伝送されない走査線Xに対して、
同一フィールド内でその上下の走査線をそれぞれ走査m
cおよびDとし、順次走査化補助信号Yとして(x−(
c+D)/2)を伝送することも考えられる.この場合
、受信側では、伝送された走査線C.Dおよび補助信号
Yから伝送されない走査線X (=Y+(C+D)/2
)を再生する。
For example, an image that moves at exactly the frame period (1/30 second) cannot be distinguished from a still image, so interpolation processing is performed in still image mode even though it is a moving image, causing a large deterioration in image quality. Additionally, in areas that are determined to be moving images, scanning lines that are not transmitted are created by correcting the upper and lower scanning lines in the same field, so images with high vertical frequencies (such as fine horizontal stripes) cannot be reproduced. .. In order to compensate for the above drawbacks, a sequential scanning camera is used on the transmitting side.
A normal transmission signal (
Below, the main scanning line signal and abbreviation f[! ) as well as
It has been considered to transmit a signal (hereinafter abbreviated as a progressive scanning auxiliary signal) to assist scanning line interpolation processing on the receiving side. For example, the United States D S R C (David
Sarnoff Research Center)
A C T V (Advanced C
Compatible TV), a difference signal (field difference signal) between a scanning line that is not transmitted because it is skipped during interlace scanning and a scanning line at the same position one field before and after that scanning line is transmitted as a sequential scanning auxiliary signal. As a conventional example, FIG. 3 shows a simplified configuration example of a scanning line interpolation circuit used in the above-mentioned AC TV receiver [IEEE Trans.
actions on ConsumerElectr
onics). Vol 34, Ncilw 1
9 February 1988)]. In the same figure, separation circuit 1
is used to separate the multiplexed main scanning line signal (interlay input signal) and progressive scanning auxiliary signal (V-T helper), and the interpolation scanning line recovery circuit 100 is used to separate the scanning lines that are not transmitted. Interpolate and play. FIG. 4 shows a method for reproducing untransmitted scanning lines from transmitted scanning lines. Figure (a) shows the positional relationship of the main scanning line signals to be transmitted, and figure (b) shows the positional relationship of the progressive scanning auxiliary signals.
In the same figure (a), for the scanning line X that is not transmitted,
Let the scanning lines of the fields before and after the same position be scanning lines A and B, respectively. In the ACTV example above, the same figure (
As shown in b), as the progressive scanning auxiliary signal Y, (X-
(A+B)/2). On the other hand, on the receiving side, as shown in FIG.
10B) / 2) To achieve this, the third
In the interpolation scanning line reproducing circuit 100 shown in the figure, a frame average ((A+B)/2) is created from the main scanning line signal using an l-frame delay circuit 2, an adder 3, and a multiplier 4. is used to calculate the sum with the progressive scanning auxiliary signal Y to obtain an interpolated scanning line signal X (=Y+ (A+B)/2). In addition to the above, for the scanning line X that is not transmitted,
Scan the scanning lines above and below within the same field.
c and D, and the progressive scanning auxiliary signal Y is (x−(
It is also possible to transmit c+D)/2). In this case, on the receiving side, the transmitted scanning line C. Scanning line X that is not transmitted from D and auxiliary signal Y (=Y+(C+D)/2
) to play.

従って,順次走査化補助信号が伝送された帯域に関して
は,受信側でもとの順次走査の信号を劣化なく再生でき
る. 〔発明が解決しようとする課題〕 複数のチャネルを利用するなどして、順次走査化補助信
号を主走査線信号と同一の周波数帯域幅だけ伝送できれ
ば問題はない。しかし,空きチャネルの少ない日本では
、1チャネルで主走査線信号と順次走査化補助信号の両
方を伝送する必要がある。
Therefore, regarding the band in which the progressive scanning auxiliary signal was transmitted, the original progressive scanning signal can be reproduced without deterioration on the receiving side. [Problem to be Solved by the Invention] There is no problem if the progressive scanning auxiliary signal can be transmitted over the same frequency bandwidth as the main scanning line signal by using a plurality of channels. However, in Japan, where there are few vacant channels, it is necessary to transmit both the main scanning line signal and the progressive scanning auxiliary signal in one channel.

上記ACTVの例では、第5図(a)に示すように、主
走査線信号を変調するための映像RF搬送波に対して、
直交する(位相が90度異なる)RF搬送波を用いて順
次走査化補助信号を変調し,1チャネルで伝送する。し
かし、この方法では順次走査化補助信号をI M H 
z程度しか伝送できない。
In the above ACTV example, as shown in FIG. 5(a), for the video RF carrier wave for modulating the main scanning line signal,
The sequential scanning auxiliary signal is modulated using orthogonal (90 degrees out of phase) RF carrier waves and transmitted in one channel. However, in this method, the progressive scanning auxiliary signal is
Only about z can be transmitted.

また,第5図(b)に示すように、画面の一部を黒味で
マスクし、このマスク部に補助信号を目立たないように
多重する方法がある。この方法を用いても、本質的にマ
スク部を大きくできないため、補助信号の周波数帯域を
1/.3〜1/58度に制限して伝送する必要がある。
Furthermore, as shown in FIG. 5(b), there is a method in which a part of the screen is masked with a black tint, and an auxiliary signal is inconspicuously multiplexed onto this masked part. Even if this method is used, it is essentially impossible to enlarge the mask portion, so the frequency band of the auxiliary signal is reduced to 1/. It is necessary to transmit by limiting the angle to 3 to 1/58 degrees.

上記従来例として第3図に示したACTVの例では、7
50kHzに帯域制限して伝送された順次走査化補助信
号とフル帯域の主走査線信号とを用いて、第4図に示し
た方法により走査線補簡1行っている.そのため、7 
5 0 k H z以上の信号に対しては、補間走査線
とじてフレーム間平均(Y= (A+B)/2)が出力
されることになり、時間解像度が落ちて動画像がぼけて
しまう.また、第6図に示すように、時間周波数の高い
(30Hzに近い)成分は,インタレース走査により垂
直周波数の高い成分に折返すため、細かい横縞状の歪と
して観察される.この場合、もどの時間周波数の高い成
分はフレーム間平均をとった際に阻止領域となり、結果
として折返し歪だけを観察することになる. また,上下の走査線CおよびDから走査線補間を行った
場合には、補間走査線の水平高域は走査線間平均(y=
 (C+D)/2)が出力されることになり、垂直解像
度が落ちてしまう.さらに、垂直周波数の高い(525
/2cphに近い)成分は、インタレース走査により時
間周波数の高い成分に折返すため、フリッカ状の歪とし
て観察される。この場合、もとの垂直周波数の高い成分
はライン間平均をとった際に阻止領域となり、結果とし
て折返し歪だけを観察することとなる。
In the ACTV example shown in FIG. 3 as the conventional example above, 7
Using the progressive scanning auxiliary signal transmitted with the band limited to 50 kHz and the full-band main scanning line signal, scanning line correction 1 is performed by the method shown in FIG. 4. Therefore, 7
For signals of 50 kHz or higher, the interframe average (Y=(A+B)/2) is output as an interpolation scanning line, resulting in a decrease in temporal resolution and blurring of the moving image. Furthermore, as shown in Figure 6, components with high temporal frequencies (near 30 Hz) are folded back into components with high vertical frequencies due to interlaced scanning, so they are observed as fine horizontal striped distortions. In this case, any high temporal frequency component becomes a blocking region when averaged between frames, and as a result, only aliasing distortion is observed. In addition, when scanning line interpolation is performed from upper and lower scanning lines C and D, the horizontal high range of the interpolated scanning line is the inter-scanning average (y =
(C+D)/2) will be output, and the vertical resolution will drop. In addition, the vertical frequency is high (525
/2 cph) components are folded back into higher temporal frequency components by interlaced scanning, so they are observed as flicker-like distortion. In this case, the original high vertical frequency component becomes a blocking region when the line-to-line average is taken, and as a result, only aliasing distortion is observed.

本発明の目的は、順次走査化補助信号が伝送されない周
波数帯域に関しても解像度低下が少なく、折返し歪みに
よる画質劣化の目立たない走査線補間回路を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a scanning line interpolation circuit in which the resolution is less degraded even in a frequency band in which progressive scanning auxiliary signals are not transmitted, and image quality deterioration due to aliasing distortion is less noticeable.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、補間走査線信号の周波数帯域を、伝送され
た順次走査化補助信号とほぼ同じ周波数帯域に制限する
手段を用いることにより、達成される。
The above object is achieved by using means for limiting the frequency band of the interpolated scan line signal to approximately the same frequency band as the transmitted progressive scanning auxiliary signal.

〔作用〕[Effect]

まず、伝送された主走査線信号および順次走査化補助信
号から,補間走査線再生回路を用いて、上記第3図およ
び第4図に示した手法により補間走査線信号を作成する
.この補間走査線信号のうち、順次走査化補助信号が伝
送された周波数帯域に関しては,インタレース走査のた
めに伝送されない走査線の信号かもとのまま正しく再生
できる.しかし、上述したように、順次走査化補助信号
が伝送されない周波数帯域に関しては時間解像度あるい
は垂直解像度が劣化した信号となっているため,フィル
タを用いて、正しく再生できる周波数帯域(例えば、水
平低域成分)の補間走査線信号のみを取り出す. 一方、正しく再生できない周波数帯域(例えば、水平高
域成分)については、従来のような補間処理を行わず、
インタレース走査のままとする。この場合、インタレー
ス走査による垂直一時間周波数の折返し歪は従来と同様
に除去できないが、間違った補間を行わないため本来の
成分も除去されず、結果的に画質が向上し、上記目的を
達成することができる. 〔実施例〕 以下、図面を用いて本発明を詳細に説明する.ここでは
、順次走査化補助信号の水平周波数を帯域制限して伝送
する場合を想定して、以下説明を行う. 第1図に、本発明の一実施例の具体的な構成図を示す。
First, an interpolated scanning line signal is created from the transmitted main scanning line signal and progressive scanning auxiliary signal using the method shown in FIGS. 3 and 4 using an interpolating scanning line reproducing circuit. Among these interpolated scanning line signals, regarding the frequency band in which the progressive scanning auxiliary signal was transmitted, even the signals of the scanning lines that are not transmitted due to interlaced scanning can be correctly reproduced as they were. However, as mentioned above, in the frequency band where the progressive scanning auxiliary signal is not transmitted, the signal has degraded temporal resolution or vertical resolution. Extract only the interpolated scanning line signal of component). On the other hand, for frequency bands that cannot be reproduced correctly (for example, horizontal high frequency components), conventional interpolation processing is not performed.
Leave interlaced scanning as is. In this case, the aliasing distortion of the vertical temporal frequency due to interlaced scanning cannot be removed as in the conventional case, but since incorrect interpolation is not performed, the original component is not removed either, resulting in improved image quality and achieving the above purpose. can do. [Example] The present invention will be explained in detail below using the drawings. The following explanation assumes that the horizontal frequency of the progressive scanning auxiliary signal is band-limited and transmitted. FIG. 1 shows a specific configuration diagram of an embodiment of the present invention.

同図において、分離回路1により、複数のチャネルを用
いて伝送された、あるいは,第5図に示すように1チャ
ネルに多重して伝送された主走査線信号と順次走査化補
助信号とを分離する.これらの分離された信号から、補
間走査線再生回路100を用いて補間走査線信号を作成
する。ここまでは上記第3図に示した従来例と同一の構
成である.ここで、順次走査化補助信号が伝送されない
周波数帯域についてはインタレース走査のままとするた
め、フィルタ6を用いて補間走査線信号の帯域を順次走
査化補助信号の帯域と等しく制限する.この際、送信側
あるいは受信側の分離回路1により順次走査化補助信号
の帯域制限が既に行われている場合には、フィルタ6は
,加算器5に入力する前の主走査線信号だけに作用させ
ればよい. 第2図に、再生画像の走査線構造を示す.同図(a)は
順次走査化補助信号が伝送された水平低減成分の走査線
構造を示しており、走査線が順次走査態様で正確に再生
されている.同図(b)は順次走査化補助信号が伝送さ
れない水平高域成分の走資線構造を示しており、主走査
線信号にしか成分が存在しないため、インタレース態様
となる.また,インタレース走査とした場合には、信号
電力が1/2になるため、主走査線信号の補間処理を行
わない成分(水平高域成分)を2倍程度に増幅し、周波
数特性を補正してもよい.さらに、静止画の際には従来
手法でも完全な補間が行えるため,本発明を動画の場合
だけに用い、動き適応的に切り替えることも可能である
In the figure, a separation circuit 1 separates the main scanning line signal and the sequential scanning auxiliary signal, which are transmitted using multiple channels or multiplexed into one channel as shown in FIG. do. An interpolated scanning line signal is created from these separated signals using an interpolated scanning line reproducing circuit 100. Up to this point, the configuration is the same as the conventional example shown in Figure 3 above. Here, in order to maintain interlaced scanning in the frequency band where the progressive scanning auxiliary signal is not transmitted, the filter 6 is used to limit the band of the interpolated scanning line signal to be equal to the band of the progressive scanning auxiliary signal. At this time, if the sequential scanning auxiliary signal has already been band-limited by the separation circuit 1 on the transmitting side or the receiving side, the filter 6 acts only on the main scanning line signal before being input to the adder 5. All you have to do is let it happen. Figure 2 shows the scanning line structure of the reproduced image. FIG. 5(a) shows the scanning line structure of the horizontal reduction component to which the progressive scanning auxiliary signal is transmitted, and the scanning lines are accurately reproduced in a progressive scanning manner. Figure (b) shows the scanning line structure of the horizontal high-frequency component to which the progressive scanning auxiliary signal is not transmitted, and since the component exists only in the main scanning line signal, it is in an interlaced format. In addition, in the case of interlaced scanning, the signal power is halved, so the components that are not subjected to interpolation processing (horizontal high frequency components) of the main scanning line signal are amplified approximately twice and the frequency characteristics are corrected. You may do so. Furthermore, since complete interpolation can be performed using the conventional method for still images, it is also possible to use the present invention only for moving images and switch in a motion-adaptive manner.

第7図は,これらを考慮した本発明の他の実施例の具体
的な構成図を示す.まず、分離回路1により,伝送信号
から主走査線信号と順次走査化補助信号とを分離する.
第1図に示したものと同一構成の補間走査線再生回路1
00により、主走査線信号と順次走査化補助信号から補
間走査線を作成し、フィルタ6により正確に再生できた
成分(水平低域成分)だけを切り出す.また、後述の動
き検出回路13を用いて,伝送された信号から画像の動
き量k (0≦k≦1)を検出し、フィールド間走査線
補間回路200およぴ周波数特性補正回路14に入力す
る.この際、例えば画像が静止している場合にはk=o
とし、大きく動いている場合にはk=1とし、その中間
ではO<k<1が出力されるようにする.1フレーム遅
延回#l7,加算器8,乗算器9および乗算器10から
なるフィールド間走査線補間回路200では,主走査線
信号だけから補間走査線を作成する.この際、フレーム
平均(すなわち、第4図における((A+B)/2)’
)に動きに応じた係数(1−k)を乗じた信号を出力す
る.すなわち、静止画の場合だけ( (A+B)/2)
が出力され,画像が大きく動いている場合には“′0″
が出力されるようにする。この出力に対して、フィルタ
6と相補的な周波数特性を持つフィルタ11により水平
高域成分だけを取り出し、加算器12によりフィルタ6
の出力と加えて補間走査線信号とする.一方、主走査線
信号は後述の周波数特性補正回路14を通して出力する
.また、補間走査線再生回路100とフィールド間走査
線補間回路200では、同一回路を共用して装lllI
規模を縮小してもよい.例えば、1フレーム遅延回wI
r2および7、加算器3および8、乗算器4および9な
どは共用できる.第8図に、上記周波数特性補正回路1
4の詳細な構成例を示す。入力された主走査線信号から
、フィルタ15を用いて順次走査化補助信号が伝送され
ない周波数帯域(例えば、水平高域成分)を取り出す.
乗算$16を用いて、この信号に動き量(0≦k≦1)
を乗じたのち、加算$17を用いてもとの主走査線信号
と加えて出力する.第9図を用いて、上記周波数特性補
正回路14の動作を説明する,フィルタ15のカットオ
フ周波数fcより低い周波数(すなわち、順次走査化補
助信号が伝送される周波数帯域)では、動き量kに関わ
らずゲインは1.0で一定であるafcより高い周波数
では、動き量k (0≦k≦1)に応じてゲインが1.
0〜2.0まで変化する.すなわち,動きモードの際は
、水平高域はインタレース走査となるため、主走査線信
号の水平高域成分の信号電力を増やして、トータルで一
定電力とすることにより、高城成分の減衰による画質劣
化を軽減する.なお、受像管のガンマ特性を考慮して、
動き量に併せて主走査線あるいは補間走査線のレベルに
応じてゲインkを制御してもよい.第10図に.走査線
の位置関係を示す.黒丸●は伝送される主走査線信号を
、白丸0は補間走有線を表わす.また、第11図に、上
記動き検出回路13の具体的な構成例を示す.現行テレ
ビジョン方式(NTSC方式)では、輝度信号の高域に
フレーム反転して変調された色信号が多重されているた
め,1フレーム差検出回路18により主走査線信号のフ
レーム差をとったのち、フィルタ19により低周波成分
のみを取り出す.また、2フレーム差検出回路20によ
り、主走査線信号の2フレーム差をとる.また、1フィ
ールド差検出回路21により、主走査線信号と再生した
補助走査線信号の差をとったのち、フィルタ22により
伝送された順次走査化補助信号と等しく周波数帯域を制
限し、1フィールド差とする。混合回路23により,上
記1フレーム差,2フレーム差,1フィールド差を混合
し、動き量k(0≦k≦1)とする. 第12図,第13図,第14図に、上記1プレーム差,
2フレーム差,1フィールド差の通過領域(すなわち,
動き検出領域)をそれぞれ示す.また、こ九らの検出領
域をすべて用いる必要はなく,若干性能は落ちるが、経
済性等を考慮して装置規模を削減してもよい.このよう
に検出した動き量kは,走査線補間のためだけでなく,
多重伝送された信号の分離(例えば,輝度信号と色信号
の分離、高精細情帽の分離など)のために用いることも
できる. なお,図中では簡単のため,フィールド間走査線補問お
よびライン間走査線補間として近傍の走査線からの平均
補間について説明を行ったが、本発明はこれに限定され
るものではなく、さらにタップ数を増やして補間特性を
向上させてもよく、また、若干性能は落ちるが前値補間
(直前フィールドあるいは直上の走査線の値をそのまま
補間値とする)を行って回路規模を縮小してもよい.ま
た、動きベクトルを正確に求められる場合には、同一位
置の前値補間ではなく、ベクトル補正した位置からの前
値補間を行ってもよい。
FIG. 7 shows a specific configuration diagram of another embodiment of the present invention that takes these into consideration. First, the separation circuit 1 separates the main scanning line signal and the progressive scanning auxiliary signal from the transmission signal.
Interpolation scanning line reproducing circuit 1 having the same configuration as that shown in FIG.
00, an interpolated scanning line is created from the main scanning line signal and the progressive scanning auxiliary signal, and only the components (horizontal low frequency components) that can be accurately reproduced by the filter 6 are cut out. In addition, using a motion detection circuit 13 (described later), an image motion amount k (0≦k≦1) is detected from the transmitted signal and inputted to the interfield scanning line interpolation circuit 200 and the frequency characteristic correction circuit 14. do. At this time, for example, if the image is stationary, k=o
When there is a large movement, k = 1, and in the middle, O < k < 1 is output. The interfield scanning line interpolation circuit 200, which includes a 1-frame delay circuit #17, an adder 8, a multiplier 9, and a multiplier 10, creates an interpolated scanning line from only the main scanning line signal. At this time, the frame average (i.e. ((A+B)/2)' in Fig. 4)
) is multiplied by a coefficient (1-k) according to the movement and outputs a signal. In other words, only for still images ((A+B)/2)
is output, and if the image is moving significantly, "'0" is output.
is output. From this output, a filter 11 having frequency characteristics complementary to that of the filter 6 extracts only horizontal high frequency components, and an adder 12 extracts the filter 6 from the filter 6.
In addition to the output of , it is used as an interpolated scanning line signal. On the other hand, the main scanning line signal is outputted through a frequency characteristic correction circuit 14, which will be described later. In addition, the interpolation scanning line reproducing circuit 100 and the interfield scanning line interpolation circuit 200 share the same circuit and are equipped with
You can reduce the size. For example, 1 frame delay time wI
r2 and 7, adders 3 and 8, multipliers 4 and 9, etc. can be shared. FIG. 8 shows the frequency characteristic correction circuit 1.
A detailed configuration example of No. 4 is shown below. From the input main scanning line signal, a frequency band (for example, a horizontal high frequency component) in which the progressive scanning auxiliary signal is not transmitted is extracted using a filter 15.
Using the multiplication $16, this signal is given the amount of motion (0≦k≦1)
After multiplying by The operation of the frequency characteristic correction circuit 14 will be explained with reference to FIG. At frequencies higher than afc, the gain is constant at 1.0 regardless of the amount of motion k (0≦k≦1).
It varies from 0 to 2.0. In other words, in motion mode, the horizontal high frequency range is interlaced scanning, so by increasing the signal power of the horizontal high frequency component of the main scanning line signal and keeping the total power constant, the image quality is improved by attenuating the Takagi component. Reduce deterioration. In addition, taking into account the gamma characteristics of the picture tube,
The gain k may be controlled according to the level of the main scanning line or the interpolation scanning line in addition to the amount of movement. In Figure 10. Shows the positional relationship of scanning lines. The black circle ● represents the main scanning line signal to be transmitted, and the white circle 0 represents the interpolation scanning line. Further, FIG. 11 shows a specific example of the configuration of the motion detection circuit 13. In the current television system (NTSC system), a color signal modulated by frame inversion is multiplexed in the high frequency range of the luminance signal, so after taking the frame difference of the main scanning line signal by the one frame difference detection circuit 18, , filter 19 extracts only low frequency components. Further, a two-frame difference detection circuit 20 detects a two-frame difference between the main scanning line signals. In addition, the 1-field difference detection circuit 21 calculates the difference between the main scanning line signal and the reproduced auxiliary scanning line signal, and then the filter 22 limits the frequency band to be equal to the transmitted progressive scanning auxiliary signal. shall be. The mixing circuit 23 mixes the 1 frame difference, 2 frame difference, and 1 field difference to obtain a motion amount k (0≦k≦1). Figures 12, 13, and 14 show the above 1 frame difference,
Passage area with 2 frame difference and 1 field difference (i.e.
motion detection area). Furthermore, it is not necessary to use all of these detection areas, and although the performance will drop slightly, the scale of the device may be reduced in consideration of economic efficiency. The amount of motion k detected in this way is used not only for scanning line interpolation, but also for scanning line interpolation.
It can also be used to separate multiplexed signals (for example, separation of luminance signals and color signals, separation of high-definition signals, etc.). In addition, in the figure, for the sake of simplicity, average interpolation from neighboring scanning lines is explained as inter-field scanning line interpolation and inter-line scanning line interpolation, but the present invention is not limited to this. You can improve the interpolation characteristics by increasing the number of taps, or you can reduce the circuit scale by performing previous value interpolation (using the value of the immediately preceding field or scanning line directly as the interpolated value), although the performance will be slightly lower. Good too. Furthermore, if the motion vector can be accurately determined, previous value interpolation from a vector-corrected position may be performed instead of previous value interpolation at the same position.

また、本発明をテレビ受像機に適用する場合は,輝度信
号Y、色信号工およびQ(またはR−YおよびB−Y)
.あるいは赤,緑,青(R,G,B)信号のすべてに適
用する必要はなく、最も画質改善効果・の高い輝度信号
Yだけを適用してもよい.さらに,視覚特性を考慮し、
本発明を視覚的にリニアな領域で使用してもよい。すな
わち、入力信号を一旦ガンマ逆補正(y = x”・2
)や対数を用いた非線形処理(y=1n(x))を行っ
たのちに本発明を適用し、出力信号に対して逆処理((
x=yO・4B)や( y =exp( x )))を
行ってもよい.本発明は、下記の例のように多くの変形
例や適用例を有する. (1)信号を伝送する場合に限らず、主走査線信号と順
次走査化補助信号をVTR、ビデオディスク等に記録す
る場合にも、本発明をそのまま適用できる。
In addition, when the present invention is applied to a television receiver, luminance signal Y, color signal and Q (or R-Y and B-Y)
.. Alternatively, it is not necessary to apply all of the red, green, and blue (R, G, B) signals, and only the luminance signal Y, which has the highest image quality improvement effect, may be applied. Furthermore, considering visual characteristics,
The invention may also be used in visually linear areas. In other words, the input signal is once reversely gamma corrected (y = x”・2
) and logarithm (y=1n(x)), the present invention is applied to the output signal, and the inverse processing ((
x=yO・4B) or (y=exp(x))). The present invention has many variations and applications, such as the examples below. (1) The present invention is applicable not only to the case of transmitting signals, but also to the case of recording main scanning line signals and progressive scanning auxiliary signals on VTRs, video discs, etc.

(2)もとの信号が順次走査信号(525本、1:1)
だけでなく,倍速のインタレース信号(1 0 5 0
本,2:1や1125本、2:1》等の場合にも同様に
適用可能である. (3)コマンド等の有無により補助走査線信号が送られ
てきていないことがわかった場合には,動き適応処理を
水平周波数の低域まで適用する.また,観視者の好みに
応じて手動スイッチで制御してもよい. [発明の効果〕 本発明を適用することにより、順次走査化補助信号を伝
送した周波数帯域については完全にもとの順次走査の信
号を得られ、それ以外の周波数帯域については、静止画
に関しては完全な走査線補間ができ、動両に関しては現
行のインタレース受像機とほぼ同様の画質が得られ、動
きに応じて最も画質劣化の少ない走査線補間方法が選択
されるため、実施して画質改善効果き極めて大きい。
(2) The original signal is a sequential scanning signal (525 lines, 1:1)
In addition to double-speed interlaced signals (1 0 5 0
It can be similarly applied to cases such as 1125 books, 2:1 and 1125 books, 2:1. (3) If it is determined that the auxiliary scanning line signal is not being sent due to the presence or absence of a command, etc., motion adaptive processing is applied to the low horizontal frequency range. Alternatively, it may be controlled using a manual switch depending on the viewer's preference. [Effects of the Invention] By applying the present invention, the original progressive scanning signal can be obtained completely for the frequency band in which the progressive scanning auxiliary signal was transmitted, and for the other frequency bands, the still image can be obtained. Complete scanning line interpolation is possible, and the image quality for moving images is almost the same as that of current interlaced receivers.The scanning line interpolation method with the least image quality deterioration is selected depending on the movement, so it can be used to improve image quality. The improvement effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の走査線補間回路の構成を示
すブロック図,第2図は本発明の動作説明図、第3図は
従来例の走査線補間回路の構成を示すブロック図、第4
図は伝送された信号から伝送されない走査線信号を作成
する方法の説明図,第5図は補助信号を伝送する方法の
説明図,第6図は従来技術の問題点の説明図、第7図は
本発明の他の実施例の走査線補間回路の構成を示すブロ
ック図、第8図,第11図は本発明の他の実施例の一部
分の回路の構成を示すブロック図、および第9図,第1
0図および第12乃至第14図はそれぞれ本発明の実施
例の回路の動作説明図である.1・・・分離回路、2,
7・・・1フレーム遅延回路、3,6,8,12.17
・・・加算器、4,9,10,16・・・乗算器、6,
11,15,19.22・・・フィルタ,13・・・動
き検出回路,14・・・周波数特性補正回路、l8・・
・1フレーム差検出回路、20・・・2フレーム差検出
回路,21・・・1フレーム差検呂回路、23・・・混
合同路、100・・・補間走査線再生第 3 図 11かき七 k 拓 9 口 HrF/Sl’jカヅト才力i[奢tJ−積1展数 拓 j2 国 V 第 13 固 V 2フレーA:1 F2 ” X !2g − X−u! 拓 !4 口 V 1フィールド差 子 * X e − X−2y.r
FIG. 1 is a block diagram showing the configuration of a scanning line interpolation circuit according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, and FIG. 3 is a block diagram showing the configuration of a conventional scanning line interpolation circuit. , 4th
The figure is an explanatory diagram of a method of creating a scanning line signal that is not transmitted from a transmitted signal, Figure 5 is an explanatory diagram of a method of transmitting an auxiliary signal, Figure 6 is an explanatory diagram of problems in the conventional technology, and Figure 7 is an explanatory diagram of a method of creating a scanning line signal that is not transmitted from a transmitted signal. is a block diagram showing the configuration of a scanning line interpolation circuit according to another embodiment of the present invention, FIGS. 8 and 11 are block diagrams showing the configuration of a part of the circuit according to another embodiment of the present invention, and FIG. , 1st
0 and 12 to 14 are explanatory diagrams of the operation of the circuit according to the embodiment of the present invention. 1... Separation circuit, 2,
7...1 frame delay circuit, 3, 6, 8, 12.17
... Adder, 4, 9, 10, 16 ... Multiplier, 6,
11, 15, 19.22... Filter, 13... Motion detection circuit, 14... Frequency characteristic correction circuit, l8...
・1 frame difference detection circuit, 20...2 frame difference detection circuit, 21...1 frame difference detection circuit, 23...Mixing same path, 100...Interpolated scanning line reproduction 3rd Figure 11 k Taku 9 mouth HrF/Sl'j Kazuto talent i [奢tJ-product 1 exhibition number taku j2 country V 13th solid V 2 frame A: 1 F2 ” Field difference * X e - X-2y.r

Claims (1)

【特許請求の範囲】 1、伝送された主走査線信号および補助信号から伝送さ
れない走査線を補間して再生する走査線補間回路におい
て、補助信号が伝送された周波数帯域に関しては、主走
査線信号と補助信号から補間走査信号を作成し、補助信
号が伝送されない周波数帯域に関しては、走査線補間を
行わないことを特徴とする走査線補間回路。 2、伝送された主走査線信号および補助信号から伝送さ
れない走査線を補間して再生する走査線補間回路におい
て、補助信号が伝送された周波数帯域に関しては、主走
査線信号と補助信号から補間走査線信号を作成し、 補助信号が伝送されない周波数帯域に関しては、画像が
静止している場合は前後のフィールドの情報を用いて補
間走査線信号を作成し、画像の動きが大きくなるに従い
該信号の出力を小さくし、画像の動きが非常に大きい場
合は走査線補間を行わないことを特徴とする走査線補間
回路。 3、伝送された主走査線信号および補助信号から伝送さ
れない走査線を補間して再生する走査線補間回路におい
て、補助信号が伝送された周波数帯域に関しては、主走
査線信号と補助信号から補間走査線信号を作成し、補助
信号が伝送されない周波数帯域に関しては、主走査線信
号を振幅補正して出力することを特徴とする走査線補間
回路。
[Claims] 1. In a scanning line interpolation circuit that interpolates and reproduces scanning lines that are not transmitted from transmitted main scanning line signals and auxiliary signals, with respect to the frequency band in which the auxiliary signals are transmitted, the main scanning line signal and an auxiliary signal to create an interpolated scanning signal, and do not perform scanning line interpolation for a frequency band in which the auxiliary signal is not transmitted. 2. In a scanning line interpolation circuit that interpolates and reproduces scanning lines that are not transmitted from the transmitted main scanning line signal and auxiliary signal, regarding the frequency band in which the auxiliary signal was transmitted, interpolation scanning is performed from the main scanning line signal and auxiliary signal. For frequency bands where auxiliary signals are not transmitted, if the image is stationary, an interpolated scanning line signal is created using information from the previous and following fields, and as the image movement increases, the signal is A scanning line interpolation circuit that reduces output and does not perform scanning line interpolation when the movement of an image is very large. 3. In a scanning line interpolation circuit that interpolates and reproduces scanning lines that are not transmitted from the transmitted main scanning line signal and auxiliary signal, regarding the frequency band in which the auxiliary signal was transmitted, interpolation scanning is performed from the main scanning line signal and auxiliary signal. A scanning line interpolation circuit that creates a line signal, corrects the amplitude of the main scanning line signal, and outputs the main scanning line signal for a frequency band in which no auxiliary signal is transmitted.
JP2008241A 1989-08-16 1990-01-19 Scanning line interpolation circuit Pending JPH03214878A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008241A JPH03214878A (en) 1990-01-19 1990-01-19 Scanning line interpolation circuit
US07/565,977 US5216505A (en) 1989-08-16 1990-08-13 Scanning line interpolation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241A JPH03214878A (en) 1990-01-19 1990-01-19 Scanning line interpolation circuit

Publications (1)

Publication Number Publication Date
JPH03214878A true JPH03214878A (en) 1991-09-20

Family

ID=11687652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241A Pending JPH03214878A (en) 1989-08-16 1990-01-19 Scanning line interpolation circuit

Country Status (1)

Country Link
JP (1) JPH03214878A (en)

Similar Documents

Publication Publication Date Title
CA1228916A (en) Scanning line interpolation circuit for television signal
JPS58117788A (en) Color television signal processing circuit
JPS6281888A (en) video signal interpolator
US5523850A (en) Picture signal recording device having adaptive processing circuit for adding color signal and sub-sampled color signal in response to motion signal
US5216505A (en) Scanning line interpolation circuit
JP2893801B2 (en) Television receiver
JPH05219482A (en) Compatibility improving device
JPH03214878A (en) Scanning line interpolation circuit
JPS63268376A (en) TV signal processing circuit
JPH04323988A (en) Sampling rate conversion system
JP2735305B2 (en) Scanning line interpolation method and scanning line interpolation circuit
JP2928561B2 (en) Method and apparatus for forming television signal
JP3017240U (en) Television signal processor
JP2612892B2 (en) Image transmission system
JPH02285897A (en) Television system converter
JPH05347750A (en) Muse decoder
JPH03250881A (en) Television signal processing method and circuit
JPH07255041A (en) Television signal processing method and apparatus
JPH02230881A (en) Television signal processing equipment
JPH0522706A (en) Image signal transmission processing and reception processing device
JPH0486089A (en) Video signal converter
JPH0686310A (en) Television receiver
JPH01286688A (en) Low frequency band replacing circuit for muse decoder
JPH04322583A (en) Television signal converter
JPH0851603A (en) Television receiver