[go: up one dir, main page]

JPH0321469Y2 - - Google Patents

Info

Publication number
JPH0321469Y2
JPH0321469Y2 JP18214284U JP18214284U JPH0321469Y2 JP H0321469 Y2 JPH0321469 Y2 JP H0321469Y2 JP 18214284 U JP18214284 U JP 18214284U JP 18214284 U JP18214284 U JP 18214284U JP H0321469 Y2 JPH0321469 Y2 JP H0321469Y2
Authority
JP
Japan
Prior art keywords
discharge valve
detector
liquid
container
separation container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18214284U
Other languages
Japanese (ja)
Other versions
JPS6198502U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18214284U priority Critical patent/JPH0321469Y2/ja
Publication of JPS6198502U publication Critical patent/JPS6198502U/ja
Application granted granted Critical
Publication of JPH0321469Y2 publication Critical patent/JPH0321469Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は、振蕩混合させた複数の溶媒液を静止
させ、各液毎に分離された後に比重の重溶媒液か
ら順次分離抽出する溶媒自動抽出装置に関するも
のである。
[Detailed description of the invention] (a) Industrial application field This invention is a solvent solution that allows multiple solvent solutions mixed by shaking to stand still, separates each solution, and then sequentially separates and extracts the solvent from the solvent solution with a heavier specific gravity. This relates to an automatic extraction device.

(ロ) 従来技術 例えば、水に溶け込んだ農薬を分析する場合
に、シリンジにその水を吸引させ、これを試料気
化室に注入し、気化させ、キヤリアガスと共にカ
ラムに導入し、農薬を構成する各種試料成分を分
離溶出させ、検出器により定量検出を行なうが、
通常は水に溶け込んだ農薬の量は微量であるた
め、感度のよい検出を行なうことができない。
(b) Prior Art For example, when analyzing pesticides dissolved in water, the water is sucked into a syringe, injected into a sample vaporization chamber, vaporized, and introduced into a column together with a carrier gas, where various components of the pesticide are analyzed. Sample components are separated and eluted and quantitatively detected using a detector.
Usually, the amount of pesticide dissolved in water is so small that sensitive detection cannot be performed.

そこで、農薬が溶け込んだ水とこれよりも小量
のヘキサンとを分液容器に入れ混合させ、放置し
ておく。水の比重はヘキサンよりも重いから、水
は容器内の下方にそしてヘキサンは容器内の上方
に、相互に境界液を形成して分離される。次に、
その容器の下部に設けられた排出弁を開き、水の
みを分抽出させてから排出弁を閉じ、新たな試料
容器にヘキサンを分離抽出する。ヘキサンは小量
で、しかも大量の水に溶け込んだ農薬がヘキサン
に溶け込んでいるため、農薬は濃縮されており、
従つてこれをシリンジにより吸引し、ガスクロマ
トグラフにて分析することにより、検出器に感度
の高い検出を行なわせることができる。
Therefore, the water containing the pesticide dissolved in it and a smaller amount of hexane are mixed in a separating container and left to stand. Since the specific gravity of water is heavier than hexane, water and hexane are separated from each other in the lower part of the container and the hexane in the upper part of the container, forming a boundary liquid with each other. next,
Open the discharge valve provided at the bottom of the container, extract only water, close the discharge valve, and separate and extract hexane into a new sample container. Since the amount of hexane is small and the pesticide dissolved in a large amount of water is dissolved in hexane, the pesticide is concentrated.
Therefore, by aspirating this with a syringe and analyzing it with a gas chromatograph, the detector can perform highly sensitive detection.

このように分液容器内に分離された2液を分離
抽出させる従来技術においては、分液容器の透明
な排出管部に設けられた排出弁を開き、分液容器
内の下部に位置する液体の排出終了を目視し、排
出弁を閉じ、新たな試料容器を排出管部の直下に
配置し、再び排出弁を開き、残りの液体の排出を
行なう方式を用いているが、このような方式は省
人化の観点からみて好ましくない。
In the conventional technology for separating and extracting the two liquids separated in the liquid separation container, the discharge valve provided in the transparent discharge pipe of the liquid separation container is opened, and the liquid located at the lower part of the liquid separation container is removed. A method is used in which the discharge valve is visually checked, the discharge valve is closed, a new sample container is placed directly under the discharge tube, the discharge valve is opened again, and the remaining liquid is discharged. is not desirable from the viewpoint of labor saving.

そこで、透明な分液容器の排出管に沿つて、2
液の境界面を屈折率の相違により検出する光電検
出器を配置し、この光電検出器により2液境界面
の到達した検出時刻から所定時間経過後に排出弁
を自動的に閉じる構成としていた。
Therefore, along the discharge pipe of the transparent liquid separation container, 2
A photoelectric detector was disposed to detect the interface between the liquids based on the difference in refractive index, and the discharge valve was automatically closed after a predetermined time elapsed from the detection time when the interface between the two liquids was detected.

しかしながら、分離抽出すべき液体の粘度が相
違する場合には、光電検出器から排出弁に至る液
体の流速が相違し、このため2液境界面が排出弁
に到達する前に排出弁が閉じられたり、又は2液
境界面が排出弁を通過し終つてから閉じられたり
し、正確な溶媒抽出を行なうことができなかつ
た。
However, when the viscosities of the liquids to be separated and extracted are different, the flow rate of the liquid from the photoelectric detector to the discharge valve is different, so that the discharge valve is closed before the two-liquid interface reaches the discharge valve. Otherwise, the two-liquid interface was closed after passing through the discharge valve, making it impossible to perform accurate solvent extraction.

(ハ) 目的 本考案は、前記した従来技術の有する欠点を解
消するものであつて、分液容器の排出管部を通過
する液体境界面の通過速度を第1と第2の検出器
を用いて検出し、所定離距隔てて配置された排出
弁に液体境界面が到達する時刻に排出弁を閉止し
て正確な溶媒抽出を行なえる溶媒自動抽出装置を
提供することを目的とする。
(C) Purpose The present invention solves the drawbacks of the prior art described above, and aims to measure the passing velocity of the liquid boundary surface passing through the discharge pipe of a liquid separation container using first and second detectors. It is an object of the present invention to provide an automatic solvent extraction device that can perform accurate solvent extraction by detecting the liquid boundary surface and closing the discharge valve at the time when the liquid boundary surface reaches the discharge valve arranged at a predetermined distance.

(ニ) 構成 第1図は、本考案の構成を明示するための機能
ブロツク図である。
(d) Configuration Figure 1 is a functional block diagram for clearly showing the configuration of the present invention.

同図において、分液容器に注入された比重が相
違しかつ混合しない複数種類の液体を排出弁を開
いて流下させ、分液容器の排出管に所定距離隔て
て配置された第1の検出器と第2の検出器とによ
り境界液面の検出を行ない、第1の検出器と第2
の検出器とを通過する境界液面の速度を速度決定
手段により決定し、第2の検出器から所定距離隔
てて配置された排出管に境界液面が到達する時間
を弁閉止時間決定手段により求め、境界液面が排
出弁に到達した時点で弁を閉止させる。
In the same figure, a plurality of types of liquids having different specific gravities and not being mixed are injected into a liquid separation container and flowed down by opening a discharge valve, and a first detector is placed at a predetermined distance in the discharge pipe of the separation liquid container. The boundary liquid level is detected by the first detector and the second detector.
The speed of the boundary liquid level passing through the second detector is determined by the speed determining means, and the valve closing time determining means determines the time required for the boundary liquid level to reach the discharge pipe located a predetermined distance from the second detector. The valve is closed when the boundary liquid level reaches the discharge valve.

(ホ) 実施例 以下に、本考案の溶媒自動抽出装置の実施例を
説明する。
(e) Examples Examples of the automatic solvent extractor of the present invention will be described below.

第2図は、本実施例装置の全体構成図である。 FIG. 2 is an overall configuration diagram of the apparatus of this embodiment.

同図において、1は分液容器保持装置であり、
L字型架台1cと、この架台1cに沿つて上下動
可能に支持されたアーム1aと、後述する分液容
器5を倒立させるための回動可能に支持された回
動アーム1bとからなる。2は、例えばプラスチ
ツク材料等により構成される透明な分液容器で、
同様に透明な導入部2aと排出管2bとが一体に
構成されており、この中には水とヘキサンとが注
入されている。なお、導入部2aは回動アーム1
bに着脱自在であつて、かつ上、下に変位しない
ように不図示の固定部材により固定保持されてい
る。6は往復運動発生装置で、モータの如き駆動
源とラツクなどからなる往復駆動機構とを内蔵し
ており、制御信号を入力されて回動アーム1bに
固定保持された図示の分液容器2を180゜倒立さ
せ、アーム1aと共に回動アーム1bに上下の往
復運動を与えるものである。7は回動装置で、モ
ータの如き駆動源と歯車などの回動機構を内蔵
し、制御信号を入力されて回動アーム1bを180゜
回動させ、もつて分液容器2を図示の状態から
180゜回動させ、倒立させることができる。3は溶
液注入・ガス抜き弁開閉装置であつて、制御信号
を入力されて弁の開閉を行なう。
In the figure, 1 is a liquid separation container holding device;
It consists of an L-shaped pedestal 1c, an arm 1a supported so as to be movable up and down along the pedestal 1c, and a rotatable arm 1b supported so as to be rotatable for inverting a liquid separation container 5, which will be described later. 2 is a transparent liquid separation container made of, for example, plastic material,
Similarly, a transparent introduction section 2a and a discharge pipe 2b are integrally constructed, into which water and hexane are injected. Note that the introduction part 2a is connected to the rotating arm 1.
b, and is fixedly held by a fixing member (not shown) so as not to be displaced upward or downward. Reference numeral 6 denotes a reciprocating motion generating device, which has a built-in drive source such as a motor and a reciprocating drive mechanism consisting of a rack, etc., and receives a control signal and operates the illustrated liquid separating container 2 fixedly held on the rotating arm 1b. It is held upside down at an angle of 180 degrees, and together with the arm 1a, the rotating arm 1b is given vertical reciprocating motion. Reference numeral 7 denotes a rotation device, which incorporates a drive source such as a motor and a rotation mechanism such as gears, and receives a control signal to rotate the rotation arm 1b by 180 degrees, thereby moving the separation container 2 to the state shown in the figure. from
It can be rotated 180° and turned upside down. Reference numeral 3 denotes a solution injection/gas vent valve opening/closing device, which opens and closes the valve upon input of a control signal.

8および9はホトセンサであり、10および1
1は発光ダイオードであり、ホトセンサ8と発光
ダイオード10により第1の検出器を構成し、
水とヘキサンとの2液境界面の降下を屈折率の相
違により検出するものであり、また第1の検出器
から所定距離L1を隔てた位置に、ホトセンサ
9と発光ダイオード11とから構成される第2の
検出器を配置し、同様に2液境界面の降下を屈
折率の相違により検出する。4は電磁弁により構
成される排出弁であり、第2の検出器から所定
距離L2わ隔てて設けられている。
8 and 9 are photosensors, 10 and 1
1 is a light emitting diode, the photosensor 8 and the light emitting diode 10 constitute a first detector,
It detects the descent of the two-liquid interface between water and hexane based on the difference in refractive index, and is composed of a photosensor 9 and a light emitting diode 11 located at a predetermined distance L1 from the first detector. A second detector is arranged to similarly detect the drop of the two-liquid interface based on the difference in refractive index. Reference numeral 4 denotes a discharge valve constituted by a solenoid valve, and is provided at a predetermined distance L2 from the second detector.

12は制御装置であり、往復運動発生装置6、
回動装置7に制御信号を入力し、その駆動制御を
行ない、また溶液注入・ガス抜き弁開閉装置3に
制御信号を入力し、弁の開閉を行なつて溶液注入
又はガス抜きを行なう。さらに、制御装置12に
よる排出弁4の閉止制御について説明すると、ま
ず排出弁4が開かれた状態において分液容器2内
の下層に位置する水を排出させ、2液境界面の通
過を第1の検出器と第2の検出器とにより検
出し、その通過時間Δt1を測定する。第1の検出
器と第2の検出器との配置距離L1は既知で
あるから、2液境界面の速度SをS=L1/Δt1
り求める。第2の検出器と排出弁4との配置距
離L2は既知であるから、2液境界面が第2の検
出器から排出弁4に到達する時間Δt2をΔt2
L2×Sより求め、Δt2時間経過後に排出弁4を閉
じ、水のみを排出させる。その後、排出弁4を再
び開き、ヘキサンの抽出を行なう。
12 is a control device, which includes a reciprocating motion generating device 6;
A control signal is input to the rotation device 7 to control its drive, and a control signal is input to the solution injection/gas vent valve opening/closing device 3 to open and close the valve to perform solution injection or gas venting. Furthermore, to explain the closing control of the discharge valve 4 by the control device 12, first, the water located in the lower layer in the liquid separation container 2 is discharged while the discharge valve 4 is opened, and the water located in the lower layer in the liquid separation container 2 is first and a second detector, and the transit time Δt 1 is measured. Since the arrangement distance L 1 between the first detector and the second detector is known, the speed S of the two-liquid interface is determined from S=L 1 /Δt 1 . Since the arrangement distance L 2 between the second detector and the discharge valve 4 is known, the time Δt 2 for the two-liquid interface to reach the discharge valve 4 from the second detector is Δt 2 =
It is calculated from L 2 ×S, and after Δt 2 hours have passed, the discharge valve 4 is closed to discharge only water. Thereafter, the discharge valve 4 is opened again and hexane is extracted.

前記した制御動作を行なう回路装置を、第3図
に基いて説明すると、第1の検出器と2液境界
面の到達を検出するパルス信号を発生し、これを
フリツプフロツプ13のセツト端子に入力させ、
出力パルスを発生させる。第2の検出器が2液
境界面の到達を検出するとパルス信号が発生し、
これをフリツプフロツプ13のリセツト端子に入
力させ、出力パルスの発生を停止させる。この出
力パルスを、高精度のクロツク発振器14のクロ
ツク信号が入力されるアンドゲート15に加え、
第1の検出器と第2の検出器とを通過した2
液境界面の通過時間をデジタル信号に変換し、距
離L1を示すデジタル信号を発生する第1の距離
設定器16が接続された除算器17に入力し、2
液境界面の速度SをS=L1/Δt1より求める。
The circuit device that performs the above-mentioned control operation will be explained based on FIG. ,
Generates an output pulse. When the second detector detects the arrival of the two-liquid interface, a pulse signal is generated;
This is input to the reset terminal of flip-flop 13 to stop generating output pulses. This output pulse is applied to the AND gate 15 to which the clock signal of the high-precision clock oscillator 14 is input.
2 that passed through the first detector and the second detector
A first distance setting device 16 that converts the passage time of the liquid boundary surface into a digital signal and generates a digital signal indicating the distance L 1 is inputted to a divider 17 connected to the first distance setting device 16 .
The velocity S of the liquid interface is determined from S=L 1 /Δt 1 .

以上説明した、フリツプフロツプ13から除算
器17に至る回路装置が2液境界面の速度決定手
段を構成する。
The circuit device from the flip-flop 13 to the divider 17 described above constitutes a means for determining the speed of the two-liquid interface.

さて、除算器17から出力された速度信号は、
距離L2を示すデジタル信号を発生する第2の距
離設定器19が接続されている乗算器18に入力
され、2液境界面が排出弁4に到達する時間Δt2
をΔt2=L2×Sにより求め、これを2進信号に変
換した後に、高精度のクロツク発振器20が接続
されたダウンカウンタ21に入力され、クロツク
発振器20のクロツク信号により減算を行ない、
零になつた時点で排出弁4を閉止するための制御
信号を発生する。
Now, the speed signal output from the divider 17 is
The time Δt 2 for the two-liquid interface to reach the discharge valve 4 is input to the multiplier 18 connected to the second distance setting device 19 that generates a digital signal indicating the distance L 2 .
is obtained by Δt 2 =L 2 ×S, and after converting this into a binary signal, it is input to a down counter 21 connected to a high-precision clock oscillator 20, and subtraction is performed using the clock signal of the clock oscillator 20.
A control signal for closing the discharge valve 4 is generated when the value reaches zero.

以上説明した乗算器18からダウンカウンタ2
1に至る回路装置が排出弁4に対する閉止時間決
定手段を構成する。なお、5は、試料容器であ
る。
From the multiplier 18 described above to the down counter 2
1 constitutes a closing time determining means for the discharge valve 4. Note that 5 is a sample container.

かかる構成を持つ実施例装置の作用を説明する
と、制御装置12から試料注入・ガス抜き弁開閉
装置3に制御信号を入力し、弁を開き、分液容器
2に水とヘキサンを注入した後に弁を閉止させ
る。制御装置12から回動装置7に制御信号を加
え、回動アーム1bを180゜回動させ、分液容器2
を倒立させる、次に、制御装置10から往復運動
発生装置6に制御信号を加え、アーム1aに往復
運動を行なわせ、分液容器2内の水とヘキサンの
混合、撹拌を行ない、所定時間後に停止させる。
再び回動装置7に制御信号を加え、分液容器2を
図示のの初期状態に復帰させる回動を行なわせ、
所定時間放置させ、分液容器2において水とヘキ
サンの分離を行なわせる。
To explain the operation of the embodiment device having such a configuration, a control signal is inputted from the control device 12 to the sample injection/gas vent valve opening/closing device 3, the valve is opened, and after water and hexane are injected into the separation container 2, the valve is closed. to close. A control signal is applied from the control device 12 to the rotation device 7, the rotation arm 1b is rotated 180 degrees, and the separation container 2 is rotated by 180 degrees.
Next, a control signal is applied from the control device 10 to the reciprocating motion generating device 6 to cause the arm 1a to perform reciprocating motion, mixing and stirring the water and hexane in the liquid separation container 2, and after a predetermined time. make it stop.
Applying a control signal to the rotation device 7 again, the liquid separation container 2 is rotated to return to the initial state shown in the figure.
The mixture is left to stand for a predetermined period of time, and water and hexane are separated in the liquid separation container 2.

制御装置12から排出弁4に制御信号を加え、
排出弁4を開き、試料容器5に水の抽出を開始す
る。これにより2液境界面が下降し、第1の検出
器と第2の検出器とを通過すると、その検出
信号がリード線を介して制御装置12に入力さ
れ、前述したように2液境界面の速度Sが速度決
定手段により検出され、次に排出弁閉止時間決定
手段により排出弁閉止時間Δt2が求められ、Δt2
時間後に制御装置12から排出弁4に制御信号が
入力され、排出弁4が閉止される。これにより、
水のみが試料容器5に分取される。次に、所定時
間経過後に排出弁4を開放する制御信号が排出弁
4に入力され、排出弁4が開かれ、ヘキサンが新
たな試料容器5に分取される。
Applying a control signal from the control device 12 to the discharge valve 4,
Open the discharge valve 4 and start extracting water into the sample container 5. As a result, the two-liquid interface descends, and when it passes the first detector and the second detector, the detection signal is input to the control device 12 via the lead wire, and the two-liquid interface is lowered as described above. The speed S of is detected by the speed determining means, and then the discharge valve closing time Δt 2 is determined by the discharge valve closing time determining means, and Δt 2
After a period of time, a control signal is input from the control device 12 to the discharge valve 4, and the discharge valve 4 is closed. This results in
Only water is collected into the sample container 5. Next, after a predetermined period of time has elapsed, a control signal for opening the discharge valve 4 is input to the discharge valve 4, the discharge valve 4 is opened, and hexane is fractionated into a new sample container 5.

次に、第4図に基いて本実施例装置の制御を実
行するフローチヤートについて説明する。なお、
図中からはフローチヤートのステツプを示
す。
Next, a flowchart for controlling the apparatus of this embodiment will be explained based on FIG. In addition,
The steps in the flowchart are shown in the figure.

まず、制御装置12をスタートさせ、ステツプ
において試料注入・ガス抜き弁開閉装置3に制
御信号を加え、弁を開いて分液容器2に試料注入
を行なつた後に、弁を閉じる。ステツプにおい
て回動装置7に制御信号を加え、分液容器2を倒
立させる。ステツプにおいて、往復運動発生装
置6に制御信号を入力し、分液容器2に往復運動
を与える。ステツプにおいて往復運動発生装置
6の作動を停止させると共に、ステツプにおい
て回動装置7に分液容器2を初期位置に復帰させ
るための制御信号を入力する。ステツプにおい
て排出弁4に制御信号を入力し、排出弁4を開
き、分液容器2内の水を排出させる。ステツプ
およびにおいて、2液境界面の通過を第1の検
出器と第1の検出器とにより検出し、ステツ
プにおいて速度決定手段により2液境界面の速
度Sを決定する。ステツプにおいて、排出弁閉
止時間決定手段により排出管弁4の閉止時間を決
定し、ステツプにおいて排出弁4を閉止させる
制御信号を加え、水のみの抽出を行なう。ステツ
プにおいて、排出弁4を再び開く制御信号を発
生させ、排出弁4を開き、ヘキサンの分取を開始
する。
First, the control device 12 is started, and in step, a control signal is applied to the sample injection/gassing valve opening/closing device 3, the valve is opened, and the sample is injected into the separation container 2, and then the valve is closed. In step, a control signal is applied to the rotating device 7 to invert the liquid separating container 2. In step, a control signal is input to the reciprocating motion generating device 6 to apply reciprocating motion to the liquid separating container 2. In step, the operation of reciprocating motion generating device 6 is stopped, and in step, a control signal for returning liquid separation container 2 to the initial position is input to rotating device 7. In step, a control signal is input to the discharge valve 4, the discharge valve 4 is opened, and the water in the liquid separating container 2 is discharged. In steps and, passage of the two-liquid interface is detected by the first detector and the second detector, and in step, the speed S of the two-liquid interface is determined by the speed determining means. In step, the discharge valve closing time determining means determines the closing time of the discharge pipe valve 4, and in step, a control signal for closing the discharge valve 4 is applied to extract only water. In step, a control signal is generated to reopen the discharge valve 4, the discharge valve 4 is opened, and hexane fractionation is started.

本実施例装置の説明において、分液容器2内に
注入される液体を2液のみとして述べてあるが、
これに限定されるものではなく、比重が相違しか
つ相互に混合しないものであれば3種類以上の液
体が混合している場合でも、正確に溶媒抽出を実
行することができる。
In the description of the device of this embodiment, only two liquids are injected into the liquid separation container 2, but
The invention is not limited to this, and even if three or more types of liquids are mixed, as long as they have different specific gravity and do not mix with each other, solvent extraction can be performed accurately.

(ヘ) 効果 以上説明したように本考案によると、分液容器
の排出管部に所定距離を隔てて第1と第2の検出
器を配置し、かつ第2の検出器から所定距離隔て
て排出弁を設け、境界液面の速度決定手段と境界
液面が排出弁に到達する時間を決定する排出弁閉
止時間決定手段とを有する構成であるから、分液
容器内から分離抽出されるべき液体の粘性が相違
しても、正確な溶媒抽出を実行することができ
る。
(f) Effects As explained above, according to the present invention, the first and second detectors are arranged at a predetermined distance apart from each other in the discharge pipe portion of the separation container, and the first and second detectors are arranged at a predetermined distance from the second detector. Since the configuration includes a discharge valve, a means for determining the speed of the boundary liquid level, and a means for determining the time for the boundary liquid level to reach the discharge valve, the liquid must be separated and extracted from the liquid separating container. Accurate solvent extraction can be performed even if the liquids have different viscosities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の機能ブロツク図、第2図は本
考案の溶媒自動抽出装置の実施例の全体構成図、
第3図は第2図に示す制御装置内の境界液面の速
度決定と排出弁の閉止時間決定とを行なう回路装
置のブロツク図、第4図は第2図に示す装置の動
作の説明するフローチヤートである。 1は分液容器保持装置、1aはアーム、1bは
回動アーム、1cは架台、2は分液容器、2aと
2bは分液容器2の導入部と排出管、3は試料注
入・ガス抜き弁開閉装置、4は排出弁、5は試料
容器、6は往復運動発生装置、7は回動装置、8
と9はホトセンサ、10と11は発光ダイオー
ド、はホトセンサ8と発光ダイオードよりなる
第1の検出器、はホトセンサ9と発光ダイオー
ド11よりなる第2の検出器、12は制御装置、
13はフリツプフロツプ、14と20はクロツク
発振器、15はアンドゲート、16は第1の距離
設定器、17は除算器、18は乗算器、19は第
2の距離設定器、21はダウンカウンタを示す。
Figure 1 is a functional block diagram of the present invention, Figure 2 is an overall configuration diagram of an embodiment of the automatic solvent extraction device of the present invention,
FIG. 3 is a block diagram of a circuit device for determining the velocity of the boundary liquid level and the closing time of the discharge valve in the control device shown in FIG. 2, and FIG. 4 explains the operation of the device shown in FIG. 2. It is a flowchart. 1 is a liquid separation container holding device, 1a is an arm, 1b is a rotating arm, 1c is a pedestal, 2 is a liquid separation container, 2a and 2b are the introduction part and discharge pipe of the liquid separation container 2, 3 is a sample injection/gas vent Valve opening/closing device, 4 is a discharge valve, 5 is a sample container, 6 is a reciprocating motion generator, 7 is a rotating device, 8
and 9 are photosensors, 10 and 11 are light emitting diodes, is a first detector consisting of the photosensor 8 and the light emitting diode, is a second detector consisting of the photosensor 9 and the light emitting diode 11, 12 is a control device,
13 is a flip-flop, 14 and 20 are clock oscillators, 15 is an AND gate, 16 is a first distance setter, 17 is a divider, 18 is a multiplier, 19 is a second distance setter, and 21 is a down counter. .

Claims (1)

【実用新案登録請求の範囲】 比重が相異しかつ混合しない複数種類の液体が
注入される分液容器と、 前記分液容器の排出管に沿つて所定距離隔てて
配置されており、前記液体の境界液面の検出を行
なう第1の検出器および第2の検出器と、 前記排出管に沿つて第2の検出器から所定距離
隔てて設けられた排出弁と、 前記第1の検出器と第2の検出器の出力から境
界液面の速度を定する速度決定手段と、 前記境界液面が排出弁に到達する時間を決定す
る排出弁閉止時間決定手段とを備える溶媒自動抽
出装置。
[Claims for Utility Model Registration] A separation container into which a plurality of liquids having different specific gravities and which do not mix are injected; a first detector and a second detector for detecting a boundary liquid level; a discharge valve provided at a predetermined distance from the second detector along the discharge pipe; and the first detector. An automatic solvent extraction device comprising: speed determining means for determining the speed of the boundary liquid level from the output of the second detector; and discharge valve closing time determining means for determining the time at which the boundary liquid level reaches the discharge valve.
JP18214284U 1984-11-30 1984-11-30 Expired JPH0321469Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18214284U JPH0321469Y2 (en) 1984-11-30 1984-11-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18214284U JPH0321469Y2 (en) 1984-11-30 1984-11-30

Publications (2)

Publication Number Publication Date
JPS6198502U JPS6198502U (en) 1986-06-24
JPH0321469Y2 true JPH0321469Y2 (en) 1991-05-10

Family

ID=30739678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18214284U Expired JPH0321469Y2 (en) 1984-11-30 1984-11-30

Country Status (1)

Country Link
JP (1) JPH0321469Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712968B2 (en) * 1991-11-27 1998-02-16 ダイキン工業株式会社 Liquid tank type thermal shock test apparatus, method for separating water from regenerating heat medium liquid of the apparatus, and apparatus therefor

Also Published As

Publication number Publication date
JPS6198502U (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US3605829A (en) Blood handling machine
US4814282A (en) Centrifuge for two-dimensional centrifugation
CA1298820C (en) Centifuge for two-bimensional centrifugation
US4729876A (en) Blood analysis system
US4883763A (en) Sample processor card for centrifuge
US4118974A (en) Method and apparatus for measuring erythrocyte sedimentation rate
US4708940A (en) Method and apparatus for clinical analysis
US5432098A (en) Apparatus, and process, for automatically sampling solids and semi-solids materials for analysis
US4857274A (en) Device for analyzing a liquid sample
EP0160282A2 (en) Processor card for centrifuge
US4155711A (en) Method and apparatus for determining thyroid function of multiple samples
JPH0321469Y2 (en)
EP0118195A2 (en) Measurement and control of viscosity
CN113916993A (en) Solid phase extraction instrument and use method thereof
US3151639A (en) Apparatus for making chemical separations
US5531106A (en) Volume control system for a chromatograph
CN216484800U (en) Solid phase extraction instrument
US3202188A (en) Apparatus for making chemical separations
US3163699A (en) Sampling apparatus for flame photometer
US4030369A (en) Automatic control system for vacuum loop sample injection system
JPH0121464B2 (en)
CA1043128A (en) Liquid proportioning system in a liquid sample analyzer
JPS576358A (en) Control circuit for micro flow rate
US3713327A (en) Specific gravity apparatus
US3227523A (en) Chemical analyzer