[go: up one dir, main page]

JPH03213737A - Variable damping force type shock absorber control device - Google Patents

Variable damping force type shock absorber control device

Info

Publication number
JPH03213737A
JPH03213737A JP547390A JP547390A JPH03213737A JP H03213737 A JPH03213737 A JP H03213737A JP 547390 A JP547390 A JP 547390A JP 547390 A JP547390 A JP 547390A JP H03213737 A JPH03213737 A JP H03213737A
Authority
JP
Japan
Prior art keywords
valve body
current application
piezoelectric actuator
damping force
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP547390A
Other languages
Japanese (ja)
Inventor
Nobuaki Narita
成田 伸明
Yutaka Suzuki
豊 鈴木
Yoshimichi Hara
芳道 原
Akira Fukami
深見 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP547390A priority Critical patent/JPH03213737A/en
Publication of JPH03213737A publication Critical patent/JPH03213737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To prevent the generation of shock and noise caused by change-over by providing a current application control means for stopping current application to a piezoelectric actuator for the fixed time before and after the arrival of an advancing valve body at the specified position. CONSTITUTION:When a current is applied to a piezoelectric actuator 5, the piezoelectric actuator 5 is expanded according to the stored amount of charge, and in association with this, a valve body 4 advances at high speed. A current application control means 6 then stops current application to the piezoelectric actuator 5 when the advancing valve body 4 enters within the fixed time range before reaching the specified position. Even under the current application stopped state, the valve body 4 continues its advance by operating oil, the response delay of the piezoelectric actuator and the inertia of the valve body 4 itself while its advance speed is lowered, and surpasses the specified position. After the lapse of the fixed time, the current application control means 6 resumes current application, so that the expansion speed of the piezoelectric actuator 5 and the operating speed of the valve body 4 are returned to the original speed, and the valve body 4 is operated rapidly toward the set position. In this set position, piston communicating passages 31, 32 have specified opening areas for the flow of operating oil.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は減衰力可変ショックアブソーバの制御装置に関
し、特に減衰力切換時のショック低減を図った制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a variable damping force shock absorber, and more particularly to a control device designed to reduce shock when switching damping force.

[従来の技術] 減衰力可変のショックアブソーバは種々提案されており
、このうち特開昭61−85210号公報には、シリン
ダ内を摺動するピストンに絞り流路と連通路を設け、該
連通路を、圧電体板を積層して構成したピエゾアクチュ
エータにより駆動されるスプール弁で開閉して、発生減
衰力を大小切換えるものが提案されている。
[Prior Art] Various types of shock absorbers with variable damping force have been proposed. Among them, Japanese Patent Laid-Open No. 61-85210 discloses a system in which a piston sliding in a cylinder is provided with a throttle passage and a communication passage. It has been proposed that the passage is opened and closed by a spool valve driven by a piezo actuator made up of stacked piezoelectric plates to change the magnitude of the generated damping force.

[発明が解決しようとする課題] ところで、上記構造のショックアブソーバにおいて、ス
プール弁の作動を高速で行うと、連通路の開放開始時に
作動油が急激に流れてショックや異音を生じる不具合が
あった。これを防止するには、上記スプール弁の作動を
十分低速とすれば良いが、これは当然のことながら応答
性を低下せしめる。
[Problems to be Solved by the Invention] By the way, in the shock absorber having the above structure, when the spool valve is operated at high speed, there is a problem that the hydraulic oil flows rapidly when the communication passage starts to open, causing shock and abnormal noise. Ta. To prevent this, the spool valve may be operated at a sufficiently low speed, but this naturally reduces responsiveness.

そこで、本発明は応答性を低下せしめることなく、スプ
ール弁等の弁体の作動時のショックや異音の発生を効果
的に防止できる減衰力可変ショックアブソーバの制御装
置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a control device for a variable damping force shock absorber that can effectively prevent the occurrence of shocks and abnormal noises when a valve body such as a spool valve operates without reducing responsiveness. do.

[課題を解決するための手段] 本発明の詳細な説明すると、減衰力可変ショックアブソ
ーバの制御装置は、シリンダ1(第1図)を一対の油圧
室1a、1bに区画するピストン2に、上記両油圧室1
a、1bを連通する連通路31.32を形成するととも
に、上記連通路31.32に臨んで進退自在に弁体4を
設けて、この弁体4の進出位置が所定位置を越えた時に
上記連通路31.32の通路開口面積が零より進出量に
応じて大きくなるようになし、かつ、上記弁体4を進退
駆動するピエゾアクチュエータ5を設けるとともに、上
記弁体4が進出して上記所定位置に至る前後の一定時間
、上記ピエゾアクチュエータ5への通電を停止する通電
制御手段6を設けたものである。
[Means for Solving the Problems] To explain the present invention in detail, a control device for a variable damping force shock absorber has a piston 2 that partitions a cylinder 1 (FIG. 1) into a pair of hydraulic chambers 1a and 1b, which has the above-mentioned Both hydraulic chambers 1
A and 1b are formed as communication passages 31 and 1b, and a valve body 4 is provided facing the communication passage 31 and 32 so as to be movable forward and backward, so that when the advanced position of the valve body 4 exceeds a predetermined position, The passage opening area of the communication passages 31 and 32 is made larger than zero according to the amount of advancement, and a piezo actuator 5 is provided to drive the valve body 4 forward and backward, and the valve body 4 advances to the predetermined position. An energization control means 6 is provided for stopping energization to the piezo actuator 5 for a certain period of time before and after reaching the position.

[作用] 上記構成において、ピエゾアクチュエータ5に通電する
と、蓄積電荷量に応じてピエゾアクチュエータ5が伸長
し、これに伴って弁体4が高速で進出する。通電制御手
段6は、上記弁体4が進出して上記所定位置に至る前の
上記一定時間内に入ると、ピエゾアクチュエータ5への
通電を停止する。通電を停止しても、作動油及びピエゾ
アクチュエータ5の応答遅れや弁体4の慣性により、上
記弁体4は進出速度が低下しつつ上記所定位置を越える
。上記一定時間の経過により通電制御手段6は再び通電
を開始し、ピエゾアクチュエータ5の伸長速度および弁
体4の作動速度が元に復して弁体4は急速に設定位置へ
向は作動する。設定位置では、ピストン連通#I31.
32が所定の開口面積となって作動油が流通し、発生減
衰力は小さくなる。
[Operation] In the above configuration, when the piezo actuator 5 is energized, the piezo actuator 5 expands according to the amount of accumulated charge, and the valve body 4 advances at high speed accordingly. The energization control means 6 stops energizing the piezo actuator 5 within the predetermined time period before the valve body 4 advances and reaches the predetermined position. Even if the energization is stopped, due to the response delay of the hydraulic oil and piezo actuator 5 and the inertia of the valve body 4, the valve body 4 moves beyond the predetermined position with a reduced advancement speed. After the predetermined period of time has elapsed, the energization control means 6 starts energizing again, the expansion speed of the piezo actuator 5 and the operating speed of the valve body 4 return to their original values, and the valve body 4 rapidly moves toward the set position. At the set position, piston communication #I31.
32 has a predetermined opening area, hydraulic oil flows therethrough, and the generated damping force becomes small.

上記弁体4は、連通路31.32の開放を開始する上記
所定位置の前後で進出速度が低下せしめられるから、作
動油の急激な流出を生じることはなく、ショックおよび
異音の発生が防止される。
Since the advancing speed of the valve body 4 is reduced before and after the predetermined position where the communication passages 31 and 32 begin to open, sudden outflow of hydraulic oil does not occur, and the generation of shocks and abnormal noises is prevented. be done.

この場合、弁体4の作動速度は、進出時に上記所定位置
の前後でのみ低下せしめられるから、全体の応答性の低
下は但かである。
In this case, since the operating speed of the valve body 4 is reduced only before and after the predetermined position when advancing, the overall responsiveness is reduced.

[実施例] 第1図にはショックアブソーバの要部断面を示し、シリ
ンダ1内には上下に摺動自在にメインピストン2が挿置
されて、これによりシリンダ1内は上下の油圧室1a、
1bに区画されている。上記メインピストン2は中心を
貫通するピストンロッド3に固定され、該ピストンロッ
ド3は上方へ伸びるシャフト7の下端に連結されている
[Example] Fig. 1 shows a cross section of the main part of a shock absorber, and a main piston 2 is inserted into the cylinder 1 so as to be able to slide vertically, so that the inside of the cylinder 1 has upper and lower hydraulic chambers 1a,
It is divided into 1b. The main piston 2 is fixed to a piston rod 3 passing through the center, and the piston rod 3 is connected to the lower end of a shaft 7 extending upward.

上記メインピストン2には外周部に、これを貫通する縮
み側固定オリフィス21と伸び側固定オリフィス22が
形成されて、それぞれメインピストン2の上面と下面に
設けた板状逆止弁により開閉される。ピストンロッド3
内には上側油圧室1aに面する側面より水平に延びる横
連通路31と、これより下方へ延び、途中で拡径して下
側油圧室1bに通じる縦連通路32が形成され、上記横
連通路31は、上下動自在にピストンロッド3内に配設
したスプール弁4の下端部により遮断されている。この
スプール弁4は周囲に設けたコイルバネ43により上方
へ付勢されている。
The main piston 2 has a contraction side fixed orifice 21 and an expansion side fixed orifice 22 formed on its outer circumference, which pass through the main piston 2, and are opened and closed by plate-shaped check valves provided on the upper and lower surfaces of the main piston 2, respectively. . piston rod 3
Inside, there are formed a horizontal communication passage 31 that extends horizontally from the side facing the upper hydraulic chamber 1a, and a vertical communication passage 32 that extends downward from this, expands in diameter midway, and connects to the lower hydraulic chamber 1b. The communication path 31 is blocked by a lower end portion of a spool valve 4 disposed within the piston rod 3 so as to be movable up and down. This spool valve 4 is urged upward by a coil spring 43 provided around it.

上記スプール弁4の詳細を第2図で説明すると、スプー
ル弁4の上端部外周には一定深さの環状溝41が形成さ
れ、スプール弁4が上方の退入位置にある図示の状態で
は、環状溝41の位置は横連通路31と全くずれている
ため、横連通路31は遮断状態にある。スプール弁4が
下方へ距離gだけ進出して所定位置に至ると、環状溝4
1の下側面が横連通路31の上側面に一致して、横連通
路31が環状溝41に連通し開放され始める。さらにス
プール弁4が進出すると、環状溝41が横連通路31と
連通する蔀分が増加し、スプール弁4の進出量に応じて
通路開口面積が増大する。
The details of the spool valve 4 will be explained with reference to FIG. 2. An annular groove 41 of a constant depth is formed on the outer periphery of the upper end of the spool valve 4, and in the illustrated state where the spool valve 4 is in the upper retracted position, Since the position of the annular groove 41 is completely shifted from the horizontal communication path 31, the horizontal communication path 31 is in a blocked state. When the spool valve 4 advances downward by a distance g and reaches a predetermined position, the annular groove 4
The lower surface of the horizontal communication path 31 coincides with the upper surface of the horizontal communication path 31, and the horizontal communication path 31 begins to communicate with the annular groove 41 and open. When the spool valve 4 further advances, the amount by which the annular groove 41 communicates with the horizontal communication passage 31 increases, and the opening area of the passage increases in accordance with the amount of advancement of the spool valve 4.

上記シャフト7の下端部は筒状に成形され、その筒内に
ピエゾアクチュエータ5が設けである。
The lower end of the shaft 7 is formed into a cylindrical shape, and the piezo actuator 5 is provided inside the cylinder.

ピエゾアクチュエータ5はPZT等の圧電セラミクス板
を多数積層して構成され、リード線51を経て外部の通
電制御回路6より供給される駆動電圧に従い伸縮作動す
る。上記ビニシアアクチュエータ5の下端にはピストン
52が接して設けられ、ピストン52の下方には油密室
53が形成されて、該油密室53に臨んで上下動自在に
プランジャ42が配設しである。このプランジャ42は
上記スプール弁4に連結されている。
The piezo actuator 5 is constructed by laminating a large number of piezoelectric ceramic plates such as PZT, and expands and contracts in accordance with a drive voltage supplied from an external energization control circuit 6 via a lead wire 51. A piston 52 is provided in contact with the lower end of the vinyl actuator 5, an oil-tight chamber 53 is formed below the piston 52, and a plunger 42 is disposed facing the oil-tight chamber 53 so as to be movable up and down. . This plunger 42 is connected to the spool valve 4.

上記シャフト7下端部の筒内最上端には荷重センサ71
が設けてあり、該荷重センサ71は圧電セラミクス板を
電極で挟んで重ねたもので、ショックアブソーバに発生
する減衰力に応じた出力信号を発する。
A load sensor 71 is located at the uppermost end of the cylinder at the lower end of the shaft 7.
The load sensor 71 is composed of stacked piezoelectric ceramic plates sandwiched between electrodes, and emits an output signal corresponding to the damping force generated in the shock absorber.

しかして、上記メインピストン2が下方へ移動する縮み
作動時には、大径の縮み側固定オリフィス21を経て油
圧室1a、1b間に封入油が流通してやや小さい減衰力
を生じ、一方、上記メインピストン2が上方へ移動する
伸び作動時には、小径の伸び側固定オリフィス22を経
て油圧室1a、lb間に封入油が流通してやや大きい減
衰力を生じる。
During the contraction operation in which the main piston 2 moves downward, the sealed oil flows between the hydraulic chambers 1a and 1b through the large-diameter fixed orifice 21 on the contraction side, producing a somewhat small damping force, while the main piston During the extension operation in which the pump 2 moves upward, the sealed oil flows between the hydraulic chambers 1a and 1b via the small-diameter fixed orifice 22 on the extension side, producing a slightly large damping force.

これら減衰力は、上記ピエゾアクチュエータ5によりス
プール弁4を進退作動せしめて上記横連通路31の開口
面積を変更することにより大きく変化せしめることがで
き、開口面積を大きくしな場合の特性を第3図の線x、
yで、開口面積を小さくした場合の特性を同図の線x−
1y−で示す。
These damping forces can be greatly changed by moving the spool valve 4 forward and backward using the piezo actuator 5 and changing the opening area of the horizontal communication passage 31. line x in the diagram,
The characteristic when the aperture area is reduced in y is shown by the line x- in the same figure.
Indicated by 1y-.

第4図には上記通電制御回路6の構成を示す。FIG. 4 shows the configuration of the energization control circuit 6.

通電制御回路6は作動を後述するCPU61と、これと
コモンバス62により接続されたRAM63、ROM6
4、入力部65、出力部66を有し、上記入力部65に
は減衰力変化率検出回路67より減衰力変化率データが
入力している。この減衰力変化率検出回路67には前輪
と後輪の左右位置に設けた各ショックアブソーバに内設
した上記荷重センサ71の出力信号が入力している。
The energization control circuit 6 includes a CPU 61 whose operation will be described later, and a RAM 63 and a ROM 6 connected to this by a common bus 62.
4, an input section 65, and an output section 66, and damping force change rate data is inputted to the input section 65 from a damping force change rate detection circuit 67. The damping force change rate detection circuit 67 receives an output signal from the load sensor 71 provided inside each shock absorber provided at the left and right positions of the front and rear wheels.

上記入力部65には更に波形整形回路68を経て車速セ
ンサ70の出力信号が入力している。また、上記出力部
66からは、駆動回路69を経て各ショックアブソーバ
に内設されたピエゾアクチュエータ5に駆動電圧が出力
される。
An output signal from a vehicle speed sensor 70 is further input to the input section 65 via a waveform shaping circuit 68. Further, a drive voltage is outputted from the output section 66 via a drive circuit 69 to the piezo actuator 5 installed inside each shock absorber.

減衰力変化率検出回路67は、第5図に示す如く、オペ
アンプを使用したフィルタ付き増幅回路671とA/D
変換器672よりなり、荷重センサ71の出力信号は、
増幅後、デジタル変換されて減衰力変化率データとなる
As shown in FIG. 5, the damping force change rate detection circuit 67 includes an amplifier circuit 671 with a filter using an operational amplifier and an A/D.
It consists of a converter 672, and the output signal of the load sensor 71 is
After amplification, it is digitally converted into damping force change rate data.

駆動回路69の構成を第6図に示す。上記CPU61か
らは出力部66を経て伸長制御信号と収縮制御信号が出
力され、それぞれ入カドランジスタロ91.692で受
けられる。上記各制御信号は高周波パルスであり、パル
ストランス693.694を経て平滑されて各出カドラ
ンジスタロ95.696のベースへ供給される。上記出
カドランジスタロ95が導通作動せしめられると、図略
のDC−DCコンバータより高圧の正電圧がピエゾアク
チュエータ5に供給され、これが充電伸長せしめられる
The configuration of the drive circuit 69 is shown in FIG. An extension control signal and a contraction control signal are outputted from the CPU 61 via the output section 66, and are received by the input quadrant 91.692, respectively. Each of the above control signals is a high frequency pulse, and is smoothed through pulse transformers 693 and 694 and supplied to the base of each output transistor 95 and 696. When the output transistor 95 is brought into conduction, a high positive voltage is supplied from a DC-DC converter (not shown) to the piezo actuator 5, and the piezo actuator 5 is charged and extended.

一方、出カドランジスタロ96が導通作動せしめられる
と、ダイオード697を経た上記出カドランジスタロ9
5のエミッタは負電圧となり、ピエゾアクチュエータ5
は放電収縮せしめられる。
On the other hand, when the output transistor 96 is made conductive, the output transistor 9 passes through the diode 697.
The emitter of 5 becomes a negative voltage, and the piezo actuator 5
is caused to contract by discharge.

以下、CPU61内での処理手順を第7図を参照して説
明する。
The processing procedure within the CPU 61 will be explained below with reference to FIG.

ステップ101ではデータの初期設定を行ない、ステッ
プ102で車速信号を、続いてステップ1O3で減衰力
変化率データDFCを入力する。ステップ104では正
負のしきい値Vrefl、Vref2を算出する。この
しきい値Vrefl、Vref2は、車速の増加に伴っ
て第8図に示す如く増大変化するように予め補正マツプ
が記憶されている。
In step 101, data is initialized, and in step 102, a vehicle speed signal is input, and subsequently, in step 1O3, damping force change rate data DFC is input. In step 104, positive and negative threshold values Vrefl and Vref2 are calculated. A correction map is stored in advance for these threshold values Vrefl and Vref2 so that they increase as the vehicle speed increases, as shown in FIG.

ステップ105.106では、上記減衰力変化率データ
が上記各しきい値を正ないし負の方向へ越えたか判定し
、越えた場合には伸長制御信号を出力してピエゾアクチ
ュエータ5をイ申長せしめ、スプール弁4を進出せしめ
てショックアブソーバの発生減衰力を減少、すなわちソ
フトなものに変更する(ステップ107)。このソフト
な減衰力は時間Tの間維持された後(ステップ108)
、収縮制御信号が発せられてショックアブソーバの発生
減衰力が増大、すなわちハードなものに戻される(ステ
ップ109)。
In steps 105 and 106, it is determined whether the damping force change rate data exceeds each of the threshold values in the positive or negative direction, and if it does, an extension control signal is output to cause the piezo actuator 5 to extend. , the spool valve 4 is advanced to reduce the damping force generated by the shock absorber, that is, to change it to a soft one (step 107). After this soft damping force is maintained for a time T (step 108)
, a contraction control signal is issued, and the damping force generated by the shock absorber is increased, that is, returned to a hard one (step 109).

上記ステップ107を第9図、第10図で詳細に説明す
ると、ステップ201でスプール弁4を進出せしめてシ
ョックアブソーバの発生減衰力をソフトに保持する上記
時間T(第10図(1))を算出する。この時間Tは第
11図に示すように、低車速領域では一定時間T1であ
り、この低車速領域よりも車速か上昇すると徐々に短く
なっていき、高車速領域において一定時間T2となる。
To explain step 107 in detail with reference to FIGS. 9 and 10, in step 201, the spool valve 4 is advanced to maintain the damping force generated by the shock absorber in a soft manner for the time T (FIG. 10 (1)). calculate. As shown in FIG. 11, this time T is a constant time T1 in a low vehicle speed region, gradually becomes shorter as the vehicle speed increases beyond this low vehicle speed region, and becomes a constant time T2 in a high vehicle speed region.

続いて最初の伸長制御信号を出力する時間(4ms程度
)をカウンタTOHにセットして(ステップ202)、
上記制御信号を出力し、上記カウンタTONが0になる
までトランジスタ695を導通作動せしめる。この結果
、ピエゾアクチュエータ5は伸長し、横連通路31が開
放し始める第2図の距離ρ近くまでスプール弁は高速で
進出作動する。
Next, the time for outputting the first expansion control signal (about 4 ms) is set in the counter TOH (step 202).
The control signal is output, and the transistor 695 is made conductive until the counter TON becomes 0. As a result, the piezo actuator 5 expands, and the spool valve advances at high speed until it approaches the distance ρ shown in FIG. 2 where the lateral communication passage 31 begins to open.

ステップ205では伸長制御信号の出力を停止する一定
時間(1ms程度)をカウンタT OFFにセットし、
伸長制御信号の出力を停止して、上記カウンタT OF
FがOになるまでトランジスタ695を非導通とする。
In step 205, a certain period of time (about 1 ms) for stopping the output of the expansion control signal is set in the counter T OFF.
The output of the extension control signal is stopped and the counter T OF
Transistor 695 is rendered non-conductive until F becomes O.

このとき作動油及びピエゾアクチュエータ5の応答遅れ
やスプール弁4の慣性力により、スプール弁4は低速で
進出作動を続行し、上記路Mρを越える。
At this time, due to the response delay of the hydraulic oil and piezo actuator 5 and the inertial force of the spool valve 4, the spool valve 4 continues to advance at a low speed and crosses the above-mentioned path Mρ.

上記カウンタT OFFが0になると、伸長制御信号が
再び出力されてトランジスタ695が導通し、スプール
弁4が再び高速で進出作動せしめられる。
When the counter TOFF becomes 0, the extension control signal is outputted again, the transistor 695 becomes conductive, and the spool valve 4 is operated to advance at high speed again.

スプール弁4の進出作動は第10図(2)に示す印加電
圧が飽和するまで行われ、これにより連通路の開口面積
が所定の大きさとなって、ショックアブソーバの発生減
衰力はソフトなものとなる。
The advancing operation of the spool valve 4 is performed until the applied voltage shown in FIG. 10 (2) is saturated, and as a result, the opening area of the communication passage becomes a predetermined size, and the damping force generated by the shock absorber becomes soft. Become.

このようにして、スプール弁4により横連通路31が開
放され始める前後の一定時間、ピエゾアクチュエータ5
への通電を停止することにより、上記スプール弁4の速
度をこの部分で十分低速とすることができ、作動油の急
激な流通を防止して、ショックおよび異音の発生を効果
的に解消することができる。
In this way, for a certain period of time before and after the spool valve 4 starts opening the horizontal communication passage 31, the piezo actuator
By stopping the power supply to the spool valve 4, the speed of the spool valve 4 can be made sufficiently low in this part, preventing rapid flow of hydraulic oil and effectively eliminating the occurrence of shock and abnormal noise. be able to.

なお、上記実施例ではスプール弁により発生減衰力をソ
フトとハードに切換えるショックアブソーバへの適用を
説明したが、第12図に示すようにポペット弁302に
より作動油の流路を開閉し、発生減衰力をソフトとハー
ドに切換えるショックアブソーバへも適用可能である。
In addition, in the above embodiment, application to a shock absorber in which the generated damping force is switched between soft and hard using a spool valve was explained, but as shown in FIG. It can also be applied to shock absorbers that switch between soft and hard force.

。 [発明の効果コ 以上の如く、本発明の減衰力可変ショックアブソーバの
制御装置によれば、連通路を開いて発生減衰力をソフト
に切換える際に、連通路開放開始前後のみ弁体の作動を
低速となして、切換えに伴うショックおよび異音の発生
を防止することができるとともに、弁体の作動を低速に
するのを限られた領域でのみ行なうから、全体の切換え
応答性の低下をごく僅かに抑えることができる。
. [Effects of the Invention] As described above, according to the variable damping force shock absorber control device of the present invention, when opening the communicating passage and softly switching the generated damping force, the valve body is operated only before and after the opening of the communicating passage is started. The low speed prevents shocks and abnormal noises caused by switching, and since the valve body is operated at low speed only in a limited range, the overall switching response is minimized. It can be suppressed slightly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はショックアブソーバの要部断面図、第2図は第
1図のA部拡大断面図、第3図はショックアブソーバの
発生減衰力特性を示す図、第4図は通電制御回路のブロ
ック構成図、第5図は減衰力変化率検出回路の回路図、
第6図は駆動回路の回路図、第7図はプログラムフロー
チャート、第8図はしきい値の変化特性を示す図、第9
図はプログラムフローチャート、第10図は信号の経時
変化を示す図、第11図は時間Tの速度依存性を示す図
、第12図は本発明の他の例を示すショックアブソーバ
の要部断面図である。 1・・・シリンダ 1a、1b・・・油圧室 2・・・ピストン 21.22・・・オリフィス 3・・・ピストンロッド 31・・・横連通路(連通路〉 32・・・縦連通路(連通路) 4・・・スプール弁 5・・・ピエゾアクチュエータ 6・・・通電制御回路(通電制御手段)第1図 第2図 第3図 (kg) 第4図 第5図 7 第6図 第7図 第8図 第10図 1 2 T3 第9図
Figure 1 is a sectional view of the main parts of the shock absorber, Figure 2 is an enlarged sectional view of section A in Figure 1, Figure 3 is a diagram showing the damping force characteristics generated by the shock absorber, and Figure 4 is a block of the energization control circuit. Configuration diagram, Figure 5 is a circuit diagram of the damping force change rate detection circuit,
Fig. 6 is a circuit diagram of the drive circuit, Fig. 7 is a program flowchart, Fig. 8 is a diagram showing threshold change characteristics, and Fig. 9 is a diagram showing the change characteristics of the threshold value.
The figure is a program flowchart, Figure 10 is a diagram showing changes in signals over time, Figure 11 is a diagram showing speed dependence of time T, and Figure 12 is a sectional view of main parts of a shock absorber showing another example of the present invention. It is. 1...Cylinder 1a, 1b...Hydraulic chamber 2...Piston 21.22...Orifice 3...Piston rod 31...Horizontal communication passage (communication passage) 32...Vertical communication passage ( Communication path) 4... Spool valve 5... Piezo actuator 6... Energization control circuit (energization control means) Fig. 1 Fig. 2 Fig. 3 (kg) Fig. 4 Fig. 5 Fig. 7 Fig. 6 Figure 7 Figure 8 Figure 10 Figure 1 2 T3 Figure 9

Claims (1)

【特許請求の範囲】[Claims]  シリンダ内を一対の油圧室に区画するピストンに、上
記両油圧室を連通する連通路を形成するとともに、上記
連通路に臨んで進退自在に弁体を設けて、この弁体の進
出位置が所定位置を越えた時に上記連通路の通路開口面
積が零より進出量に応じて大きくなるようになし、かつ
、上記弁体を進退駆動するピエゾアクチュエータを設け
るとともに、上記弁体が進出して上記所定位置に至る前
後の一定時間、上記ピエゾアクチュエータへの通電を停
止する通電制御手段を設けたことを特徴とする減衰力可
変ショックアブソーバの制御装置。
The piston that divides the inside of the cylinder into a pair of hydraulic chambers is provided with a communication passage that communicates the two hydraulic chambers, and a valve body that faces the communication passage and is movable forward and backward, so that the advancing position of the valve body is set at a predetermined position. A piezo actuator is provided so that the opening area of the communication passage increases from zero according to the amount of advancement when the valve body advances beyond the position, and a piezo actuator is provided to drive the valve body forward and backward, and the valve body advances to the predetermined position. A control device for a variable damping force shock absorber, characterized in that it is provided with energization control means for stopping energization to the piezo actuator for a certain period of time before and after the piezo actuator reaches the position.
JP547390A 1990-01-12 1990-01-12 Variable damping force type shock absorber control device Pending JPH03213737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP547390A JPH03213737A (en) 1990-01-12 1990-01-12 Variable damping force type shock absorber control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP547390A JPH03213737A (en) 1990-01-12 1990-01-12 Variable damping force type shock absorber control device

Publications (1)

Publication Number Publication Date
JPH03213737A true JPH03213737A (en) 1991-09-19

Family

ID=11612217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP547390A Pending JPH03213737A (en) 1990-01-12 1990-01-12 Variable damping force type shock absorber control device

Country Status (1)

Country Link
JP (1) JPH03213737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559171A2 (en) * 1992-03-03 1993-09-08 Unisia Jecs Corporation Vehicular suspension system
US7261194B2 (en) 2001-08-30 2007-08-28 Fox Factory, Inc. Bicycle suspension assembly with isolated inertia mass
JP2008306915A (en) * 2007-06-07 2008-12-18 Taida Electronic Ind Co Ltd Motor control device
US9746049B2 (en) 2006-04-02 2017-08-29 Fox Factory, Inc. Suspension damper having inertia valve and user adjustable pressure-relief
US11346422B2 (en) 2001-08-30 2022-05-31 Fox Factory, Inc. Front bicycle suspension assembly with inertia valve

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559171A2 (en) * 1992-03-03 1993-09-08 Unisia Jecs Corporation Vehicular suspension system
EP0559171A3 (en) * 1992-03-03 1994-11-23 Unisia Jecs Corp Vehicular suspension system
US5430648A (en) * 1992-03-03 1995-07-04 Unisia Jecs Corporation Vehicular suspension system
US7506884B2 (en) 2001-08-30 2009-03-24 Fox Factory, Inc. Bicycle suspension assembly with inertia valve and blow-off
US7273137B2 (en) 2001-08-30 2007-09-25 Fox Factory, Inc. Inertia valve shock absorber
US7448638B2 (en) 2001-08-30 2008-11-11 Fox Factory, Inc. Front bicycle suspension assembly with inertia valve
US7490705B2 (en) 2001-08-30 2009-02-17 Fox Factory, Inc. Bicycle suspension assembly including inertia valve and gas spring
US7261194B2 (en) 2001-08-30 2007-08-28 Fox Factory, Inc. Bicycle suspension assembly with isolated inertia mass
US7520372B2 (en) 2001-08-30 2009-04-21 Fox Factory, Inc. Inertia valve vehicle suspension assembly
US9657804B2 (en) 2001-08-30 2017-05-23 Fox Factory, Inc. Front bicycle suspension assembly with inertia valve
US10316924B2 (en) 2001-08-30 2019-06-11 Fox Factory, Inc. Front bicycle suspension assembly with inertia valve
US11346422B2 (en) 2001-08-30 2022-05-31 Fox Factory, Inc. Front bicycle suspension assembly with inertia valve
US9746049B2 (en) 2006-04-02 2017-08-29 Fox Factory, Inc. Suspension damper having inertia valve and user adjustable pressure-relief
US10359092B2 (en) 2006-04-02 2019-07-23 Fox Factory, Inc. Suspension damper having inertia valve and user adjustable pressure-relief
US11085503B2 (en) 2006-04-02 2021-08-10 Fox Factory, Inc. Suspension damper having inertia valve and user adjustable pressure-relief
JP2008306915A (en) * 2007-06-07 2008-12-18 Taida Electronic Ind Co Ltd Motor control device

Similar Documents

Publication Publication Date Title
US8151952B2 (en) Proportional control valve
JPH01122717A (en) Active suspension device
JPS636238A (en) Damping force control device of shock absorber
JPH03213737A (en) Variable damping force type shock absorber control device
JPS61135810A (en) Shock absorber controller
JP2634817B2 (en) Piezo element drive circuit
JP2003278819A (en) Damping force adjusting hydraulic shock absorber
JPH109327A (en) Damping force adjustable hydraulic shock absorber
JPH0244117Y2 (en)
JPH08303628A (en) Proportional solenoid valve drive
JPH0469069A (en) Circuit for driving piezoelectric element
JP3082358B2 (en) Variable damping force shock absorber controller
JPS6196203A (en) Hydraulic actuator cushion control device
JP2954976B2 (en) Damping force control device for attenuator
JPH05180260A (en) Flow controller
JPH0467783A (en) Driver of piezo-actuator
JP3041879B2 (en) Control device for variable damping force shock absorber
JPH02182518A (en) Damping force control device of damper
JP2001193780A (en) Hydraulic damper for vibration control
JPH0463246B2 (en)
JPH0424199Y2 (en)
JPH0366548B2 (en)
JPH0467041B2 (en)
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber
JPH02182514A (en) Damping force control device of damper