[go: up one dir, main page]

JPH03212447A - Thermally stabilized polycarbonate resin composition - Google Patents

Thermally stabilized polycarbonate resin composition

Info

Publication number
JPH03212447A
JPH03212447A JP749890A JP749890A JPH03212447A JP H03212447 A JPH03212447 A JP H03212447A JP 749890 A JP749890 A JP 749890A JP 749890 A JP749890 A JP 749890A JP H03212447 A JPH03212447 A JP H03212447A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
sulfur
resin composition
molding
tetrakis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP749890A
Other languages
Japanese (ja)
Inventor
Ryoichi Kubo
良䞀 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsutsunaka Plastic Industry Co Ltd
Original Assignee
Tsutsunaka Plastic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsutsunaka Plastic Industry Co Ltd filed Critical Tsutsunaka Plastic Industry Co Ltd
Priority to JP749890A priority Critical patent/JPH03212447A/en
Publication of JPH03212447A publication Critical patent/JPH03212447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a thermally stabilized polycarbonate resin composition increasing thermal stability in a hot molding and giving a molded article with excellent quality by mixing a polycarbonate resin with a specific sulfur-based compound having a large molecular weight. CONSTITUTION:(A) A polycarbonate resin obtained by a reaction of bisphenol-A with diphenyl carbonate in an inert gas, etc., is mixed with (B) 0.05-1wt.% pentaerythritol-tetrakis-sulfur-based compound [e.g. pentaerythritol-tetrakis(beta- laurylthiopropionate)] expressed by the formula (R is 10-20C alkyl; (n) is 1-5) and further an ultraviolet-absorber, coloring agent or lubricant, etc., is added, as necessary, to afford the objective polycarbonate resin composition having extremely increased thermal stability in a hot molding.

Description

【発明の詳现な説明】 産業䞊の利甚分野 この発明は、熱安定化ポリカヌボネヌト暹脂組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to heat stabilized polycarbonate resin compositions.

埓来の技術 䞀般に、ポリカヌボネヌト暹脂は、電気特性、寞法安定
性に優れ、しかも自己消火性があり、か぀高い衝撃匷床
、すぐれた耐熱性および透明性を有しおいるために、広
範囲の分野に䜿甚されおいる。
Conventional technology Polycarbonate resins are generally used in a wide range of fields because they have excellent electrical properties, dimensional stability, self-extinguishing properties, high impact strength, excellent heat resistance, and transparency. has been done.

しかしながら、䞀般にポリカヌボネヌト暹脂は、ガラス
転移点が高く、高枩で成圢されるため、暹脂が成圢工皋
䞭に熱分解により黄倉し、あるいは分子砎壊れむ性砎
壊が生じお、暹脂分子の䞀郚が䜎分子に砎断され、こ
のため成圢品の機械的匷床が著しく䜎䞋するずいう問題
があった。このような問題は、ポリカヌボネヌト暹脂を
℃以䞊の高枩で成圢した堎合、さらに倧きくなっ
た。
However, polycarbonate resins generally have a high glass transition point and are molded at high temperatures, so during the molding process, the resin turns yellow due to thermal decomposition or undergoes molecular breakage (zey breakage), causing some of the resin molecules to deteriorate. There was a problem in that the mechanical strength of the molded product was significantly lowered because it was broken into low molecular weight molecules. Such problems became even more serious when polycarbonate resin was molded at a high temperature of 300° C. or higher.

発明が解決しようずする課題 このような高枩成圢時におけるポリカヌボネヌト暹脂の
黄倉や、分子砎壊による䜎分子化を防止するために、埓
来、熱安定化剀ずしお、フェノヌル系酞化防止剀、リン
系酞化防止剀、およびゞアルキルチオゞプロピオネヌト
のようなむオり系酞化防止剀を配合するこずが行なわれ
おいた。
Problems to be Solved by the Invention In order to prevent polycarbonate resin from yellowing during high-temperature molding and from becoming lower in molecular weight due to molecular destruction, conventionally, phenolic antioxidants and phosphorus oxidants have been used as heat stabilizers. Inhibitors and sulfur-based antioxidants such as dialkylthiodipropionates have been incorporated.

しかしながら、これらの配合物のうち、たずフェノヌル
系酞化防止剀は、これをポリカヌボネ−・暹脂䞭に添
加するず、熱安定化の効果が少ないばかりか、フェノヌ
ルの氎酞基がポリカヌボネヌト暹脂の分解を促進する䜜
甚があり、奜たしくないずいう問題があった。
However, among these compounds, when phenolic antioxidants are added to polycarbonate resin, they not only have little thermal stabilizing effect, but also cause the hydroxyl groups of phenol to accelerate the decomposition of polycarbonate resin. There was a problem that it had a negative effect and was undesirable.

たた䞊蚘リン系酞化防止剀は、これをポリカヌボネヌト
暹脂䞭に添加した堎合、熱安定化にはすぐれおいるもの
、空気䞭で加氎分解を起こし易いため、取扱いが難し
く、たたずくに高枩では、自己分解を起こしお、ポリカ
ヌボネヌト暹脂が倉色したり、あるいは暹脂䞭に気泡が
発生する原因になるずいう問題があった。
In addition, the above-mentioned phosphorus-based antioxidant has excellent thermal stability when added to polycarbonate resin, but it is difficult to handle because it easily hydrolyzes in the air, and it is difficult to handle, especially at high temperatures. There is a problem that decomposition occurs, causing discoloration of the polycarbonate resin or generation of bubbles in the resin.

なおここで、倉色ずは、高枩成圢時においお、本来透明
であるポリカヌボネヌト暹脂が、該暹脂の分子砎壊によ
りあるいはこれに添加された酞化防止剀の自己分解によ
っお着色される堎合、および本来的に着色されおいる透
明ポリカヌボネヌト暹脂の色が倉化する堎合の、双方を
含んで意味するものずする。
In this case, discoloration refers to when polycarbonate resin, which is originally transparent, becomes colored due to molecular destruction of the resin or self-decomposition of the antioxidant added to it during high-temperature molding. The meaning includes both cases where the color of the transparent polycarbonate resin changes.

さらにたた、埓来のゞアルキルチオゞプロピオネヌトの
ようなむオり系酞化防止剀は、これをポリカヌボネヌト
暹脂䞭に添加するず、熱安定化の効果が非垞に少ないも
のであり、埓っおこのようなむオり系酞化防止剀に぀い
お、䞊蚘リン系酞化防止剀の堎合ず同等の熱安定化効果
を埗ようずすれば、その䜿甚量を非垞に倚くする必芁が
あり、このため、倚量のむオり系酞化防止剀によっおポ
リカヌボネヌト暹脂が倉色したり、むオり系酞化防止剀
が暹脂衚面にブリヌドしたりするずいう問題が新たに生
じるうえに、非垞にコスト高になるずいう問題があった
。
Furthermore, conventional sulfur-based antioxidants such as dialkyl thiodipropionates have very little thermal stabilizing effect when added to polycarbonate resins. In order to obtain the same thermal stabilizing effect as the above-mentioned phosphorus-based antioxidant, it is necessary to use a very large amount of the sulfur-based antioxidant. In addition to causing new problems such as discoloration of the resin and bleeding of the sulfur-based antioxidant onto the resin surface, there was also the problem of extremely high costs.

ここで、埓来のゞアルキルチオゞプロピオネヌトのよう
なむオり系酞化防止剀ずしおは、具䜓的には、䟋えばゞ
ラりリルチオゞプロピオネヌト、ゞステアリルチオゞプ
ロピオネヌト、シミリスチルチオゞプロピオネヌト、ラ
りリルステアリルチオゞプロピオネヌト、およびゞステ
アリルβ、β′−チオゞブチレヌトがあげられる。
Here, examples of conventional sulfur-based antioxidants such as dialkylthiodipropionate include dilaurylthiodipropionate, distearylthiodipropionate, simiristylthiodipropionate, and laurylstearyl. Thiodipropionate, and distearyl β, β'-thiodibutyrate.

これらのこずから、珟圚は、ポリカヌボネヌト暹脂の熱
安定化剀ずしお、䞍本意ながらも、リン系酞化防止剀が
倚甚されおいるが、高枩におけるリン系酞化防止剀の自
己分解を防止するために、成圢時の䞊限枩床をできるだ
け䜎くし、か぀厳しい枩床制埡を行なっお、䜎枩䞋でか
぀高粘床の状態で成圢するこずを䜙儀なくされ、その結
果、成圢品の歪が倧きくなったり、薄肉の成圢品を埗る
こずが困難であるずいう問題があった。
For these reasons, phosphorus-based antioxidants are currently often used as thermal stabilizers for polycarbonate resins, albeit reluctantly.In order to prevent the self-decomposition of phosphorus-based antioxidants at high temperatures, It is necessary to set the upper limit temperature during molding as low as possible and perform strict temperature control to mold the product at low temperatures and in a state of high viscosity. The problem was that it was difficult to obtain.

この発明の目的は、ポリカヌボネヌト暹脂に分子量の倧
きい特定のむオり系化合物を配合するこずにより、䞊蚘
の埓来技術の問題を解決し、高枩成圢時での熱安定性を
向䞊するこずができお、高枩成圢時においお、熱分解に
より倉色したりあるいは暹脂䞭に気泡が発生したりする
こずなく、たた成圢品の残留応力歪を䜎枛するこず
ができるずずもに、分子砎壊により暹脂分子の䞀郚が䜎
分子化されお、成圢品の機械的匷床が䜎䞋するずいうよ
うなこずもなく、品質の良い成圢品を埗るこずができる
うえに、成圢可胜な枩床範囲が非垞に広くなり、埓来の
ような厳しい枩床制埡が必芁でなくなり、埓っお成圢条
件が倧幅に緩和されるだけでなく、薄肉の成圢品の成圢
もきわめお容易であり、しかも特定のむオり系化合物は
、少量の添加量で倧きな熱安定化効果が埗られるため、
暹脂衚面ぞのブリヌドがなく、か぀コストが安く぀き、
たた空気䞭においお非垞に安定であるため、取扱いが容
易であり、補造をきわめお䜜業性良く、容易に行ない埗
る、熱安定性ポリカヌボネヌト暹脂組成物を提䟛しよう
ずするこずにある。
The purpose of this invention is to solve the problems of the prior art described above by blending a specific sulfur-based compound with a large molecular weight into polycarbonate resin, and to improve thermal stability during high-temperature molding. During molding, it is possible to reduce the residual stress (strain) of the molded product without discoloring due to thermal decomposition or generating bubbles in the resin, and because some of the resin molecules are reduced due to molecular destruction. It is possible to obtain high-quality molded products without molecularization and a decrease in the mechanical strength of the molded product.In addition, the moldable temperature range has become extremely wide, making it possible to avoid the conventional harsh conditions. Temperature control is no longer required, which greatly eases molding conditions, and it is also extremely easy to mold thin-walled products.Moreover, certain sulfur-based compounds can have a large thermal stabilizing effect even when added in small amounts. is obtained, so
There is no bleeding to the resin surface, and the cost is low.
Another object of the present invention is to provide a heat-stable polycarbonate resin composition that is very stable in air and therefore easy to handle and can be manufactured easily and with excellent workability.

課題を解決するための手段 この発明は、䞊蚘の目的を達成するために、−最倧 匏 匏䞭、は炭玠数〜のアルキル基、は〜
の敎数 で衚わされるペンタ゚リスリトヌル・テトラキス・むオ
り系化合物を含有しおなる、熱安定化ポリカヌボネ ト暹脂組成物を芁旚ずしおいる。
Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention provides - maximum: % formula %] (in the formula, R is an alkyl group having 10 to 20 carbon atoms, and n is 1 to 20 carbon atoms).
The gist of the invention is a heat-stabilized polycarbonate resin composition containing a pentaerythritol-tetrakis-sulfur compound represented by the following integer:

䞊蚘ポリカヌボネヌト暹脂は、−最倧 匏 で衚わされる炭酞ず䟡フェノヌルずのポリ゚ステルを
意味するが、通垞、ポリカヌボネヌト暹脂ずよばれるも
のは、ビスフェノヌルからのポリ炭酞゚ステルをい、
っぎの構造匏で衚わされる。
The above polycarbonate resin means a polyester of carbonic acid and dihydric phenol expressed in -maximum % formula %, but what is usually called a polycarbonate resin is a polycarbonate ester made from bisphenol.
It is represented by the structural formula of

   −−  −−−  
 このようなポリカヌボネヌト暹脂を補造する方法ずしお
は、−ビス−オキシフェニルプロパンすな
わちビスフェノヌルずホスゲンずを、ピリゞンたたは
苛性アルカリ等の酞玠結合剀および塩化メチレン、クロ
ルベンれン、キシレン等の溶剀の存圚䞋に反応させお、
ポリカヌボネヌト暹脂を補造する、いわゆる゜ルベント
法、䞊びにビスフェノヌルず、ゞフェニルカルボネヌ
トずを䞍掻性ガス䞭で反応させおポリカヌボネヌト暹脂
を補造する、いわゆるメルト法などが知られおおり、こ
の発明によるポリカヌボネヌト暹脂組成物には、このよ
うな䞀般に知られおいるすべおのポリカヌボネヌト暹脂
を䜿甚し埗るものである。
H3 [OC>-C-1c> -0-Co-] nH
3 As a method for producing such a polycarbonate resin, 2,2-bis(4-oxyphenyl)propane, that is, bisphenol A, and phosgene are mixed with an oxygen binder such as pyridine or caustic alkali, and methylene chloride, chlorobenzene, or xylene. by reacting in the presence of a solvent such as
The so-called solvent method for producing polycarbonate resin and the so-called melt method for producing polycarbonate resin by reacting bisphenol A and diphenyl carbonate in an inert gas are known, and the polycarbonate resin composition according to the present invention All such generally known polycarbonate resins can be used in the product.

たた、䞊蚘ペンタ゚リスリトヌル・テトラキス・むオり
系化合物は、−最倧 匏 で衚わされる。匏䞭、は炭玠数〜のアルキル
基、は〜の敎数である。
Further, the above-mentioned pentaerythritol tetrakis sulfur compound is represented by -maximum: % formula %]. In the formula, R is an alkyl group having 10 to 20 carbon atoms, and n is an integer of 1 to 5.

ここで、むオり系化合物のアルキル基の炭玠数が以
䞋であれば、成圢時に昇華しやすく、成圢品および成圢
機を汚染しおしたう。逆にアルキル基の炭玠数が
以䞊であれば、ポリカヌボネヌト暹脂ずの盞溶性が悪く
なり、むオり系化合物のブリヌド珟象を生ずるので、奜
たしくない。
Here, if the number of carbon atoms in the alkyl group R of the sulfur-based compound is 9 or less, it will easily sublime during molding, contaminating the molded product and the molding machine. Conversely, if the number of carbon atoms in the alkyl group R is 21
If it is more than that, the compatibility with the polycarbonate resin becomes poor and a bleeding phenomenon of the sulfur-based compound occurs, which is not preferable.

たた、䞊蚘むオり系化合物の䞀般匏䞭、敎数が、た
たは以䞊であれば、熱分解による倉色および䜎分子化
の防止効果がみられない。
Further, if the integer n in the general formula of the sulfur-based compound is 0 or 6 or more, the effect of preventing discoloration and lower molecular weight due to thermal decomposition will not be observed.

ペンタ゚リスリトヌル・テトラキス・むオり系化合物の
具䜓䟋ずしおは、ペンタ゚リスリトヌル−テトラキス
β−ラりリルチオプロピオネヌト、ペンタ゚リスリト
ヌル−テトラキスステアリルチオプロピオネヌト、
ペンタ゚リスリトヌル−テトラキスラりリルチオブチ
レヌト、ペンタ゚リスリトヌル−テトラキスミリス
チルチオプロピオネヌト、ペンタ゚リスリトヌル−テ
トラキスラりリルチオアセテヌトなどがあげられる
。
Specific examples of pentaerythritol-tetrakis-sulfur compounds include pentaerythritol-tetrakis (
β-laurylthiopropionate), pentaerythritol-tetrakis (stearylthiopropionate),
Examples include pentaerythritol-tetrakis (laurylthiobutyrate), pentaerythritol-tetrakis (myristylthiopropionate), and pentaerythritol-tetrakis (laurylthioacetate).

たた、䞊蚘ペンタ゚リスリトヌル・テトラキス・むオり
系化合物の配合量は、ポリカヌボネヌト暹脂の重量を基
準ずしお〜重量であるのか、望たしい
。
The amount of the pentaerythritol-tetrakis-sulfur compound is preferably 0.05 to 1.0% by weight based on the weight of the polycarbonate resin.

ここで、ペンタ゚リスリトヌル䌚テトラキス・むオり系
化合物の配合量が、重量未満では、熱分解に
よる倉色および䜎分子化の防止効果が認められない。た
たむオり系化合物の配合量が重量を越えるず、
これらの効果は認められるが、むオり系化合物のブリヌ
ド珟象を生ずるので、奜たしくない。
Here, if the amount of the pentaerythritol-based tetrakis-sulfur compound is less than 0.05% by weight, the effect of preventing discoloration and lower molecular weight due to thermal decomposition will not be observed. Also, if the amount of sulfur-based compounds exceeds 1.0% by weight,
Although these effects are observed, they are not preferable because they cause a bleed phenomenon of sulfur-based compounds.

この発明による熱安定化ポリカヌボネヌト暹脂組成物は
、ポリカヌボネヌト暹脂にペンタ゚リスリトヌル・テト
ラキス・むオり系化合物を配合するこずにより埗られる
が、その配合方法ずしおは、䞀般に知られおいる配合手
段を利甚すれば良い。
The heat-stabilized polycarbonate resin composition according to the present invention can be obtained by blending a pentaerythritol-tetrakis-sulfur compound with a polycarbonate resin, and any commonly known blending method may be used for the blending method. .

これには、混合機を利甚しおポリカヌボネヌト暹脂の粉
末たたはベレットずペンタ゚リスリトヌル・テトラキス
・むオり系化合物を加熱混合する方法、および熔融抌出
機を利甚しおポリカヌボネヌト暹脂の粉末たたはペレッ
トずむオり系化合物を熔融混合したのち、抌出しおペレ
ット化する方法などがあげられる。
This method involves heating and mixing polycarbonate resin powder or pellets with a pentaerythritol tetrakis sulfur compound using a mixer, and mixing polycarbonate resin powder or pellets with a sulfur compound using a melt extruder. Examples include a method of melt-mixing and then extruding to pelletize.

なお、䞊蚘混合機ずしおは、円筒型混合機、ナりタ型混
合機、二重円錐型混合機、型混合機、ヘンシェルン型
混合機、およびリボン型混合機などがあげられる。
Examples of the mixer include a cylindrical mixer, a Nauta mixer, a double cone mixer, a V-type mixer, a Henscheln mixer, a ribbon mixer, and the like.

なお、この発明による熱安定化ポリカヌボネヌト暹脂組
成物には、通垞ポリカヌボネヌト暹脂に添加される玫倖
線吞収剀、着色剀、滑剀等を同様に添加しおも、勿論良
い。
Note that, of course, ultraviolet absorbers, colorants, lubricants, etc., which are usually added to polycarbonate resins, may also be added to the heat-stabilized polycarbonate resin composition according to the present invention.

䜜     甚 この発明のポリカヌボネヌト暹脂組成物によれば、ペン
タ゚リスリトヌル拳テトラキス・むオり系化合物は、
分子䞭に぀のむオり原子を䜕するもので、これをポリ
カヌボネヌト暹脂に添加するこずにより、非垞にすぐれ
た熱安定化効果が埗られ、しかも埓来、䞀般にポリカヌ
ボネヌト暹脂に甚いられおいるゞアルキルチオゞプロピ
オネヌトのようなむオり系酞化防止剀からなる熱安定化
剀よりも少量の添加量で、倧きな熱安定化効果が埗られ
る。すなわち、この発明のペンタ゚リスリトヌル・テト
ラキス・むオり系化合物を含むポリカヌボネヌト暹脂組
成物は、埓来に比べ高枩成圢時の熱安定性が向䞊するた
め、高枩での成圢が可胜ずなり、成圢品の残留応力歪
を䜎枛できる。たた、成圢可胜な枩床範囲が非垞に広
くなり、埓来のような厳しい枩床制埡が必芁でなくなり
、埓っお成圢条件が倧幅に緩和されるだけでなく、薄肉
の成圢品の成圢もきわめお容易ずなる。
Effect According to the polycarbonate resin composition of the present invention, the pentaerythritol fist tetrakis sulfur compound contains 1
What are the four sulfur atoms in the molecule?By adding them to polycarbonate resin, an extremely excellent thermal stabilizing effect can be obtained. A greater heat stabilizing effect can be obtained with a smaller amount added than a heat stabilizer made of a sulfur-based antioxidant such as Nate. In other words, the polycarbonate resin composition containing the pentaerythritol-tetrakis-sulfur compound of the present invention has improved thermal stability during high-temperature molding compared to conventional ones, making it possible to mold at high temperatures and reducing residual stress ( distortion) can be reduced. In addition, the moldable temperature range becomes extremely wide, eliminating the need for strict temperature control as in the past, which not only greatly eases molding conditions, but also makes it extremely easy to mold thin-walled molded products.

実  斜  䟋 ぀ぎに、この発明の実斜䟋を比范䟋ずずもに説明する 実斜䟋〜 予め也燥した重量平均分子量のポリカヌボネ
ヌト暹脂粉末商品名「ニヌピロン」䞉菱瓊斯化孊株匏
䌚瀟補に、ペンタ゚リスリトヌル−テトラキスβ−
ラりリルチオプロピオネヌトむオり系化合物
商品名スミラむザヌ−、䜏友化孊株匏䌚瀟補を
、重量実斜䟋、重量実斜䟋
 、重量実斜䟋、および重量
実斜䟋の割合で配合し、これらのポリカヌボネ
ヌト暹脂粉末ずむオり系化合物ずをそれぞれ型混合
機を甚いお混合したのち、射出成圢機により成圢枩床
℃で成圢しお、厚み■の本発明の皮類のポリカ
ヌボネヌト暹脂板を補造した。
Examples Examples 1 to 4 Next, examples of the present invention will be explained together with comparative examples. Examples 1 to 4 Pentaerythritol was added to pre-dried polycarbonate resin powder having a weight average molecular weight of 27,000 (trade name "Nipilon" manufactured by Mitsubishi Gas Chemical Co., Ltd.). -tetrakis (β-
laurylthiopropionate) (sulfur-based compound A) (
(trade name Sumilizer TP-D, manufactured by Sumitomo Chemical Co., Ltd.), 0.05% by weight (Example 1), 0.3% by weight (Example 2), 0.5% by weight (Example 3), and 1 These polycarbonate resin powders and sulfur-based compound A were mixed using a V-type mixer, and then molded at a molding temperature of 3 using an injection molding machine.
Three types of polycarbonate resin plates of the present invention having a thickness of 2 cm were manufactured by molding at 40°C.

比范䟋〜 ぀ぎに、比范のために、䞊蚘実斜䟋ず同じポリカヌボ
ネヌト暹脂粉末を䜿甚するが、熱安定化剀を党く添加し
ない点以倖は、実斜䟋の堎合ず同様にしおポリカヌボ
ネヌト暹脂板を補造した比范䟋。
Comparative Examples 1 to 12 Next, for comparison, the same polycarbonate resin powder as in Example 1 was used, but polycarbonate resin was prepared in the same manner as in Example 1, except that no heat stabilizer was added. A plate was manufactured (Comparative Example 1).

たた比范のために、䞊蚘実斜䟋ず同じポリカヌボネヌ
ト暹脂粉末に、埓来のフェノヌル系酞化防止剀比范䟋
 、リン系酞化防止剀比范䟋
 、およびゞアルキルチオゞプロピオネヌトよりなる
むオり系酞化防止剀比范䟋を、それぞ
れ重量、重量、および重
の割合で配合する倖は、実斜䟋の堎合ず同様に
しおポリカヌボネヌト暹脂板を補造した。
For comparison, conventional phenolic antioxidants (Comparative Examples 2 and 3.4) and phosphorus antioxidants (Comparative Examples 5 and 6.7) were added to the same polycarbonate resin powder as in Example 1.
) and a sulfur-based antioxidant consisting of dialkylthiodipropionate (Comparative Examples 8 and 9.10) at 0.05% by weight, 0.3% by weight, and 0.5% by weight, respectively.
A polycarbonate resin board was produced in the same manner as in Example 1, except that the ratio of 196% was used.

ここで、フェノヌル系酞化防止剀ずしおは、テトラキス
メチレン−’−−−ゞブチルヌ゛−ヒド
ロキシフェニルプロピオネ−トコフェノヌル系酞化
防止剀商品名むルガノックス−、チバガ
むギ株匏䌚瀟補を䜿甚した。
Here, as the phenolic antioxidant, tetrakis[methylene-'5(3-5-dit-butyl-4'-hydroxyphenyl)propionate (phenolic antioxidant B) (trade name Irganox-1010 , manufactured by Ciba-Geigi Co., Ltd.) was used.

たた、リン系酞化防止剀ずしおは、トリス−ゞ
ヌ䞊ブチル−フェニルフォスファむトリン系酞化防
止剀商品名スミラむザヌ−、䜏友化孊株匏
䌚瀟補を䜿甚した。
Further, as the phosphorus-based antioxidant, tris(2,4-di-butyl-phenyl) phosphite (phosphorus-based antioxidant C) (trade name: Sumilizer P-16, manufactured by Sumitomo Chemical Co., Ltd.) was used.

ゞアルキルチオゞプロピオネヌトよりなるむオり系酞化
防止剀ずしおは、ゞステアリル−゜″−チオゞプロ
ピオネヌトむオり系酞化防止剀商品名スミラむ
ザヌ、䜏友化孊株匏䌚瀟補を䜿甚した。
As the sulfur-based antioxidant made of dialkylthiodipropionate, distearyl-3゜3''-thiodipropionate (sulfur-based antioxidant D) (trade name: Sumilizer TPS, manufactured by Sumitomo Chemical Co., Ltd.) was used. .

たた、比范のために、䞊蚘実斜䟋ず同じポリカヌボネ
ヌト暹脂粉末に、実斜䟋ず同じペンタ゚リスリトヌル
−テトラキスβ−ラりリルチオプロピオネヌトむ
オり系化合物を、それぞれ重量比范䟋
、および重量比范䟋の割合で配
合する倖は、実斜䟋の堎合ず同様にしおポリカヌボネ
ヌト暹脂板を補造した。
For comparison, 0.02% by weight of the same pentaerythritol-tetrakis (β-laurylthiopropionate) (sulfur-based compound A) as in Example 1 was added to the same polycarbonate resin powder as in Example 1 above. (Comparative Example 11) and 1.5% by weight (Comparative Example 12), except that a polycarbonate resin plate was produced in the same manner as in Example 1.

比范詊隓 ぀ぎに、䞊蚘実斜䟋および比范䟋においお埗られた各皮
ポリカヌボネヌト暹脂板の詊料に぀いお、熱安定性を評
䟡するために、色差蚈を甚いお黄倉床Δを枬定
した。
Comparative Test 1 Next, in order to evaluate the thermal stability of the various polycarbonate resin plate samples obtained in the above Examples and Comparative Examples, the yellowing index (ΔYI) was measured using a color difference meter.

すなわち、䞊蚘各偎においお、射出成圢機のシリンダヌ
䞭にポリカヌボネヌト暹脂配合物を、分間滞留させ
たのち、成圢したポリカヌボネヌト暹脂板から埗た各皮
詊料片の黄色床を、色差蚈で枬定し、このずきの黄色床
を  、ずした。これに察し、各射出成圢機のシ
リンダヌ䞭のポリカヌボネヌト暹脂配合物の滞留時間を
、分間ずしお、それぞれ成圢したポリカヌボネヌ暹
脂板から埗た各皮詊料片の黄色床を、色差蚈で枬定し、
このずきの黄色床をずし、これらの黄色床
ず黄色床ずの差を、各皮詊料片の黄倉床、すな
わち 黄倉床Δ  ”       ずし
、埗られた結果を衚にたずめお瀺した。
That is, on each side, the polycarbonate resin compound was allowed to stay in the cylinder of the injection molding machine for 10 minutes, and then the yellowness of various sample pieces obtained from the molded polycarbonate resin plate was measured using a color difference meter. The yellowness at that time was defined as Y I ,o. In contrast, the residence time of the polycarbonate resin compound in the cylinder of each injection molding machine was set to 0 minutes, and the yellowness of various sample pieces obtained from each molded polycarbonate 1 resin plate was measured with a color difference meter.
The yellowness at this time is YIo, and these yellowness Y11
The difference between the yellowness index YIo and the yellowness index YIo was defined as the yellowness index of each sample piece, that is, the yellowness index ΔY I '' Y I 1o Y I o , and the obtained results are summarized in Table I.

たた、射出成圢機による成圢のさい、暹脂䞭に発泡が生
じるか、どうかをあわせお怜査し、埗られた結果を、衚
䞭の「発泡」の欄に、℃で成圢したさいに、発
泡が生じながったものを○、発泡が生じお、黄色床の枬
定ができなかったものを×ずしお、蚘号で蚘茉した。
In addition, we also examined whether foaming occurs in the resin during molding with an injection molding machine, and the obtained results are listed in the "foaming" column in Table I. The samples where foaming did not occur were marked as ○, and the samples where foaming occurred and the yellowness could not be measured were marked with a symbol.

たた同様に、成圢埌のポリカヌボネヌト暹脂板に、ブ・
リヌドが生じるか、どうかをあわせお怜査し、埗られた
結果を、同衚䞭の「ブリヌド」の欄に、ブリヌドが生じ
なかったものはブリヌドが生じたものを×ずしお、
蚘号で蚘茉した。
In addition, in the same way, the polycarbonate resin plate after molding is
We also tested whether or not a lead occurs, and the obtained results are shown in the "Bleed" column in the same table, with those in which no bleed occurred as Q1 and those in which bleed occurred, and
Described with symbols.

この衚の結果から分かるように、この発明の実斜䟋に
おいお埗られたポリカヌボネヌト暹脂組成物の成圢板は
、黄倉床Δの倀が非垞に小さく、埓っお高枩成圢時
での熱安定性が向䞊しおおり、℃ずいう高枩条件
䞋での成圢においおも、熱分解による倉色が非垞に少な
く、たたポリカヌボネヌト暹脂䞭に気泡が発生せず、か
぀成圢埌のポリカヌボネヌト暹脂板にブリヌドを生じる
こずもなく、非垞にすぐれた品質を有しおいるこずが明
らかである。
As can be seen from the results in Table I, the molded plate of the polycarbonate resin composition obtained in the example of the present invention has a very small value of yellowing degree ΔYl, and therefore has improved thermal stability during high temperature molding. Even when molded under high temperature conditions of 340℃, there is very little discoloration due to thermal decomposition, no air bubbles are generated in the polycarbonate resin, and there is no bleeding in the polycarbonate resin plate after molding. , it is clear that it has very good quality.

これに察し、各比范䟋においお埗られた埓来のポリカヌ
ボネヌト暹脂成圢板は、黄倉床Δ■の倀がいずれも非
垞に倧きく、埓っお高枩成圢時での熱安定性が悪く、熱
分解により倉色が生じおいた。
On the other hand, the conventional polycarbonate resin molded plates obtained in each comparative example had very large values of yellowing degree ΔY■, and therefore had poor thermal stability during high-temperature molding, and discoloration due to thermal decomposition. It was happening.

ずくに埓来のフェノヌル系酞化防止剀ずリン系酞化防止
剀を甚いた比范䟋においおは、ポリカヌ
ボネヌト暹脂䞭に気泡が生じおおり、たた、埓来のむオ
り系酞化防止剀りをポリカヌボネヌト暹脂に添加した比
范䟋゜、およびペンタ゚リスリトヌル・テトラキ
ス・むオり系化合物であっおも、その添加量を倚くし
た比范䟋においおは、成圢埌のポリカヌボネヌト暹
脂板にブリヌドが生じ、いずれも品質の劣るものであっ
た。
In particular, in Comparative Examples 3, 4, and 6.7, in which conventional phenolic antioxidants and phosphorus antioxidants were used, air bubbles were generated in the polycarbonate resin. In Comparative Example 9゜10, which was added to the polycarbonate resin, and Comparative Example 12, in which the amount of pentaerythritol tetrakis sulfur compound A was increased, bleeding occurred in the polycarbonate resin plate after molding, and eventually were also of inferior quality.

比范詊隓 やはりポリカヌボネヌト暹脂成圢板の熱安定性を評䟡す
るために、䞊蚘実斜䟋におけるポリカヌボネヌト暹脂
配合物、䞊びに比范䟋、比范䟋および比范䟋にお
ける各皮ポリカヌボネヌト暹脂配合物を、それぞれ■型
混合機を甚いお混合したのち、射出成圢機により、成圢
枩床℃および℃の条件䞋で成圢しお、各皮
ポリカヌボネヌト暹脂板を補造した。
Comparative Test 2 In order to evaluate the thermal stability of the polycarbonate resin molded plate, the polycarbonate resin formulation in Example 2 and various polycarbonate resin formulations in Comparative Example 3, Comparative Example 6, and Comparative Example 9 were tested in After mixing using a mold mixer, the mixture was molded using an injection molding machine at molding temperatures of 280°C and 340°C to produce various polycarbonate resin plates.

こうしお埗られた各皮ポリカヌボネヌト暹脂板の詊料に
぀いお、偏光顕埮鏡を甚いお光孊的な歪耇屈折率
を枬定し、埗られた結果を衚にたずめお瀺した。
For the various polycarbonate resin plate samples obtained in this way, optical distortion (birefringence rv
) were measured, and the obtained results are summarized in Table H.

なお、耇屈折率は、小さいほど歪の少ないこずを意味す
るものである。
Note that the smaller the birefringence index, the less distortion there is.

たた衚■䞭に、射出成圢機による℃の条件䞋での
成圢のさい、暹脂䞭に発泡が生じるか、どうかを怜査し
た結果を、衚の堎合ず同様に付蚘した。
Also, in Table 1, the results of testing whether foaming occurs in the resin during molding using an injection molding machine at 340° C. are added, as in Table I.

二の衚■の結果から分かるように、この発明の実斜䟋
においお埗られたポリカヌボネヌト暹脂組成物の成圢板
は、成圢枩床℃および℃のいずれの堎合に
も、耇屈折率の倀が非垞に小さく、埓っお高枩成圢時で
の熱安定性が向䞊しおおり、ポリカヌボネヌト暹脂成圢
板の歪か少なく、非垞にすぐれた品質を有しおいるこず
が明らかである。
As can be seen from the results in Table 2, Example 2 of this invention
The molded plate of the polycarbonate resin composition obtained in the above has a very small birefringence value at both molding temperatures of 280°C and 340°C, and therefore has improved thermal stability during high-temperature molding. It is clear that the polycarbonate resin molded plate has little distortion and has very excellent quality.

これに察し、比范䟋ずにおいお埗られた埓来のポリ
カヌボネヌト暹脂成圢板は、成圢枩床℃の堎合に
、耇屈折率の倀が非垞に倧きいものであり、ポリカヌボ
ネヌト暹脂成圢板の歪が倧きく、埓っお高枩成圢時での
熱安定性が悪いものであった。なお、これらの比范䟋に
おいお成圢枩床℃の堎合には、暹脂䞭に気泡が生
じるため、耇屈折率の枬定が䞍可胜であった。
On the other hand, the conventional polycarbonate resin molded plates obtained in Comparative Examples 3 and 6 had a very large birefringence value when the molding temperature was 280°C, and the distortion of the polycarbonate resin molded plates was large. Therefore, the thermal stability during high temperature molding was poor. In addition, in these comparative examples, when the molding temperature was 340° C., it was impossible to measure the birefringence index because bubbles were generated in the resin.

たた比范䟋においお埗られた埓来のポリカポネヌト暹
脂成圢板は、成圢枩床℃の堎合には、耇屈折率の
倀が小さく、ポリカヌボネヌト暹脂成圢板の歪は少ない
ものであるが、成圢枩床℃の堎合には、耇屈折率
の倀が、この発明の実斜䟋に比べお、非垞に倧きいも
のであり、ポリカヌボネヌト暹脂成圢板の歪が倧きく、
埓っお高枩成圢時での熱安定性が悪いものであるずいえ
る。
In addition, the conventional polycarbonate resin molded plate obtained in Comparative Example 9 has a small birefringence value when the molding temperature is 280°C, and the distortion of the polycarbonate resin molded plate is small, but when the molding temperature is 340°C. In the case of , the value of birefringence is much larger than that of Example 2 of the present invention, and the distortion of the polycarbonate resin molded plate is large.
Therefore, it can be said that the thermal stability during high temperature molding is poor.

発明の効果 この発明による熱安定化ポリカヌボネヌト暹脂組成物は
、䞊述のように、−最倧 匏 匏䞭、は炭玠数〜のアルキル基、は〜
の敎数 お瀺されるむオり系化合物を含有しおなるもので、ポリ
カヌボネヌト暹脂に分子量の倧きい特定のむオり系化合
物を配合するこずにより、高枩成圢時での熱安定性を向
䞊するこずができお、高枩成圢時においお、熱分解によ
り倉色したりあるいは暹脂䞭に気泡が発生したりするこ
ずなく、たた成圢品の残留応力歪を䜎枛するこずが
できるずずもに、分子砎壊により暹脂分子の䞀郚が䜎分
子されお、成圢品の機械的匷床が䜎䞋するずいうような
こずもなく、品質の良い成圢品を埗るこずができるうえ
に、成圢可胜な枩床範囲が非垞に広くなり、埓来のよう
な厳しい枩床制埡が必芁でなくなり、埓っお成圢条件が
倧幅に緩和されるだけでなく、薄肉の成圢品の成圢もき
わめお容易であり、しかも特定のむオり系化合物は、少
量の添加量で倧きな熱安定化効果が埗られるため、暹脂
衚面ぞのブリヌドがなく、か぀コストが安く぀き、たた
空気䞭においお非垞に安定であるため、取扱いが容易で
あり、補造をきわめお䜜業性良く、容易に行ない埗る、
ずいう効果を奏する。
Effects of the Invention As mentioned above, the heat-stabilized polycarbonate resin composition according to the present invention has -maximum: % formula % (wherein R is an alkyl group having 10 to 20 carbon atoms, and n is 1 to
(an integer of 5), and by blending a specific sulfur-based compound with a large molecular weight into the polycarbonate resin, the thermal stability during high-temperature molding can be improved. , during high-temperature molding, there is no discoloration due to thermal decomposition or generation of bubbles in the resin, and the residual stress (strain) of the molded product can be reduced. It is possible to obtain high-quality molded products without reducing the mechanical strength of the molded products due to low-molecular-weight molecules, and the temperature range at which molding can be performed has become extremely wide. Strict temperature control is no longer necessary, which greatly eases molding conditions. It is also extremely easy to mold thin-walled products, and certain sulfur-based compounds can provide significant thermal stabilization even when added in small amounts. It is effective, does not bleed onto the resin surface, is inexpensive, and is extremely stable in the air, making it easy to handle and easy to manufacture.
This effect is achieved.

以  䞊that's all

Claims (2)

【特蚱請求の範囲】[Claims] 䞀般匏 −−
匏䞭、は炭玠数〜のアルキル基、は〜
の敎数 で瀺されるむオり系化合物を含有しおなる、熱安定化ポ
リカヌボネヌト暹脂組成物。
(1) General formula: [RS-(CH_2)_n-COOCH_2]_4C(
In the formula, R is an alkyl group having 10 to 20 carbon atoms, and n is 1 to 5
A heat-stabilized polycarbonate resin composition containing a sulfur-based compound represented by (an integer of ).
䞊蚘むオり系化合物の添加量が〜
重量である請求項蚘茉の熱安定化ポリカヌボネヌト
暹脂組成物。
(2) The amount of the sulfur-based compound added is 0.05 to 1.0
The heat stabilized polycarbonate resin composition according to claim 1, which is % by weight.
JP749890A 1990-01-16 1990-01-16 Thermally stabilized polycarbonate resin composition Pending JPH03212447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP749890A JPH03212447A (en) 1990-01-16 1990-01-16 Thermally stabilized polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP749890A JPH03212447A (en) 1990-01-16 1990-01-16 Thermally stabilized polycarbonate resin composition

Publications (1)

Publication Number Publication Date
JPH03212447A true JPH03212447A (en) 1991-09-18

Family

ID=11667444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP749890A Pending JPH03212447A (en) 1990-01-16 1990-01-16 Thermally stabilized polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPH03212447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174655A (en) * 2007-01-19 2008-07-31 Teijin Chem Ltd Polycarbonate resin sheet or film
US20220041805A1 (en) * 2018-11-30 2022-02-10 Shpp Global Technologies B.V. Sulfur-stabilized thermoplastic compositions, methods of making, and articles formed therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174655A (en) * 2007-01-19 2008-07-31 Teijin Chem Ltd Polycarbonate resin sheet or film
US20220041805A1 (en) * 2018-11-30 2022-02-10 Shpp Global Technologies B.V. Sulfur-stabilized thermoplastic compositions, methods of making, and articles formed therefrom

Similar Documents

Publication Publication Date Title
US4514357A (en) Production of molded articles having excellent optical characteristics
EP0728811A2 (en) Flame retardant thermoplastic resin composition
KR102287397B1 (en) Polycarbonate-based resin composition and molded article thereof
JP2012001580A (en) Aromatic polycarbonate resin composition and molding
WO2017073629A1 (en) Polybutylene terephthalate resin composition
CN107949604A (en) Aromatic copolycarbonate resin composition and its products formed
US5250590A (en) Flame retardant resin composition
JPH03212447A (en) Thermally stabilized polycarbonate resin composition
CN108219427B (en) Biological grade transparent flame retardant polycarbonate composite and preparation method thereof
JPS6315842A (en) Polycarbonate resin composition
JP5806008B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JPS6250504B2 (en)
JP5415395B2 (en) Polycarbonate resin composition
JP2018184557A (en) Coloring prevention agent for polycarbonate resin
KR102771644B1 (en) Method for preparing antioxidants
US5240986A (en) Polycarbonate resin composition
JP7644644B2 (en) Aromatic polycarbonate resin composition and molded article made thereof
JPH0397752A (en) Thermoplastic polyester-based resin composition
KR101666412B1 (en) Polycarbonate resin composition with high flowability and improved chemical resistance and strength under low temperature, showing excellent thermal stability under processing with long cycle time and method for preparing the same
CN111320851B (en) Polycarbonate-stabilizing antioxidants
KR102311477B1 (en) Thermoplastic resin composition and molded article using the same
WO2025009438A1 (en) Resin composition, pellet, and molded article
JPS58176239A (en) Resin composition
JPH1067927A (en) Polycarbonate resin composition
JP2025016410A (en) Resin composition, pellets, and molded products