JPH03211719A - Method of applying resist - Google Patents
Method of applying resistInfo
- Publication number
- JPH03211719A JPH03211719A JP576090A JP576090A JPH03211719A JP H03211719 A JPH03211719 A JP H03211719A JP 576090 A JP576090 A JP 576090A JP 576090 A JP576090 A JP 576090A JP H03211719 A JPH03211719 A JP H03211719A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- light
- wafer
- thickness
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はレジスト塗布方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a resist coating method.
[従来の技術及び発明が解決すべき課題]一般に半導体
製造工程では、ウェハ上にCVDやスパッター等により
形成されたSiC2やポリシリコン等の薄膜上にレジス
トを塗布し、マスクを通して露光してレジストに光反応
を生じさせ現像して露光(または未露光)部分の反応し
たレジストを除去するりソゲラフイエ程、リソグラフイ
エ程後マスクのパターンに従って残っているレジスト以
外の部分をエツチングして薄膜に回路パターンを転写し
た後レジスト除去するエツチング工程を経て、薄膜にパ
ターンを形成することを反復しなからウェハ上にパター
ンを形成した薄膜を多数積層して半導体チップを形成し
ている。[Prior art and problems to be solved by the invention] Generally, in the semiconductor manufacturing process, a resist is applied on a thin film of SiC2, polysilicon, etc. formed on a wafer by CVD or sputtering, and then exposed to light through a mask to form a resist. A circuit pattern is formed on a thin film by causing a photoreaction and developing to remove the exposed (or unexposed) areas of the reacted resist, or by etching the parts other than the remaining resist according to the pattern of the mask after a photoreaction process or a lithography process. A semiconductor chip is formed by stacking a large number of patterned thin films on a wafer, without repeating the process of forming a pattern on the thin film through an etching process in which the resist is removed after transfer.
ここで、ウェハに形成された薄膜上にレジスト塗布を行
うレジスト塗布装置には、ウェハを吸着等で支持したチ
ャックを回転機構により毎分数1oOO回転させ、ウェ
ハ上に滴下されたレジストをウェハ全面に均一に塗布す
るスピンコータが使用されている。スピンコータで塗布
されるレジスト膜厚はウェハの回転速度、回転加速度、
レジスト温度、環境温湿度等に影響され、これらをコン
トロールしながら均一性を保持されている。また、光電
的に膜厚を測定する手段として特開昭59−11287
3号、特開昭63−198329号に開示されている。Here, the resist coating device that coats the resist onto the thin film formed on the wafer uses a rotating mechanism to rotate a chuck that supports the wafer by suction or the like at several tens of microseconds per minute, so that the resist dropped onto the wafer is coated over the entire surface of the wafer. A spin coater is used to apply the coating uniformly. The resist film thickness applied with a spin coater depends on the wafer rotation speed, rotation acceleration,
Uniformity is maintained while controlling resist temperature, environmental temperature and humidity, etc. In addition, as a means for photoelectrically measuring film thickness, Japanese Patent Application Laid-Open No. 59-11287
No. 3, JP-A No. 63-198329.
さらにまた、レジスト膜を露光する露光工程ではアライ
メントされたウェハの例えば20mm四方の露光エリヤ
に回路パターンが形成されたマスクを通して等倍または
縮少投影してステップアンドリピート方式で遂次焼付け
を行うステッパーが使用されている。ステッパーの投影
レンズ光学系は多数のレンズの組合せであるため、露光
には単色光が使用され、これらの単色光をレジストに照
射すると、屈折率の差の大きいレジストと薄膜の境界面
で主に反射されるが、一部は多層薄膜中まで進みウェハ
基板で反射される。この入射光と反射光が互いに干渉し
あい、レジスト膜中に定在波が生じることとなる。レジ
ストの膜厚と多層薄膜の膜厚により同じ材質で同じ単色
光であっても反射率は変わるものである。この結果、前
記定在波の位相は変位するものである。これら下地の反
射率、屈折率、膜厚及びレジスト膜厚は形成されるパタ
ーン幅を規定するため高精度に均一なパターン幅を得る
ためにはレジスト膜厚と多層薄膜の膜厚の微少な差によ
り定在波の位相がシフトする事によって非常に大きく影
響を及ぼすものである。レジスト塗布装置で形成される
レジスト膜は、約±0゜3%の誤差があり、さらに薄膜
成膜装置で形成される薄膜にいたってはロット間のバラ
ツキが大きく(誤差±3%位)、シかも何層にも積層さ
れるため、ロフトによって膜厚は非常に異なり、パター
ン幅を高精度に均一に形成するのは非常に困難であった
。Furthermore, in the exposure process of exposing the resist film, a stepper is used to perform successive baking in a step-and-repeat method by projecting a circuit pattern at the same size or reduction through a mask on which a circuit pattern is formed on an exposure area of, for example, 20 mm square on an aligned wafer. is used. Since the projection lens optical system of a stepper is a combination of many lenses, monochromatic light is used for exposure, and when the resist is irradiated with these monochromatic lights, light is mainly emitted at the interface between the resist and the thin film, where there is a large difference in refractive index. A portion of the light travels into the multilayer thin film and is reflected by the wafer substrate. This incident light and reflected light interfere with each other, and a standing wave is generated in the resist film. Even if the material is the same and the same monochromatic light is used, the reflectance changes depending on the thickness of the resist and the thickness of the multilayer thin film. As a result, the phase of the standing wave is displaced. These base reflectance, refractive index, film thickness, and resist film thickness determine the pattern width to be formed, so in order to obtain a uniform pattern width with high precision, the minute difference between the resist film thickness and the multilayer thin film thickness is necessary. This has a very large effect due to the phase shift of the standing wave. The resist film formed by a resist coating device has an error of approximately ±0°3%, and the thin film formed by a thin film deposition device has large lot-to-lot variations (error about ±3%). Since the film is laminated in many layers, the film thickness varies greatly depending on the loft, and it is extremely difficult to form a uniform pattern width with high precision.
本発明は上記の欠点を解消するためになされたものであ
って、ロット間バラツキのある多層薄膜であっても高精
度に均一なパターン幅を有するように露光可能なレジス
ト膜を形成できるレジスト塗布方法を提供することを目
的とする。The present invention has been made in order to eliminate the above-mentioned drawbacks, and is a resist coating that can form a resist film that can be exposed to light with a uniform pattern width with high precision even for multilayer thin films with lot-to-lot variations. The purpose is to provide a method.
[課題を解決するための手段]
上記の目的を達成するため本発明のレジスト塗布方法は
、半導体ウェハ表面にレジストを塗布し、この塗布膜厚
を測定して所望する膜厚のレジストを塗布するに際し、
前記半導体ウェハの半導体チップの形成をされてない周
縁部に不感波長光を照射して膜厚を測定する。[Means for Solving the Problems] In order to achieve the above object, the resist coating method of the present invention coats a resist on the surface of a semiconductor wafer, measures the coating thickness, and coats a resist with a desired thickness. On this occasion,
The film thickness is measured by irradiating insensitive wavelength light onto the peripheral portion of the semiconductor wafer where no semiconductor chips are formed.
[作用]
本発明は単色光をウェハ上に積層された薄膜上に塗布さ
れたレジストに照射する場合、レジストと多層薄膜の境
界で100%反射されずに一部は多層薄膜中を進みウェ
ハ基板で反射される。そのため、種々の定在波が生じ、
同じ材質であってもレジストの膜厚、多層薄膜の膜厚に
より前記定在波の位相が異なるため露光されるレジスト
の線幅(パターン幅)が異なってしまう。この線幅を一
定にして高精度に均一なパターンを形成するため、ウェ
ハ上に形成されたロット間の膜厚の誤差の大きい多層薄
膜の均一な線幅を形成する反射率、概算膜厚から演算装
置により最適なレジストの膜厚を算出し、最適膜厚にレ
ジストを塗布するようウェハを支持したチャックの回転
数を制御して、自動的に多層薄膜の膜厚のロット間に生
じる大きな誤差を相殺するものである。[Function] According to the present invention, when monochromatic light is applied to a resist coated on a thin film laminated on a wafer, it is not 100% reflected at the boundary between the resist and the multilayer thin film, but a portion of the light travels through the multilayer thin film and reaches the wafer substrate. reflected. Therefore, various standing waves occur,
Even if the material is the same, the phase of the standing wave differs depending on the thickness of the resist and the thickness of the multilayer thin film, so the line width (pattern width) of the exposed resist differs. In order to keep this line width constant and form a uniform pattern with high precision, we use the reflectance and approximate film thickness to form a uniform line width for multilayer thin films formed on wafers, which have large variations in film thickness between lots. A calculation device calculates the optimal resist film thickness, and controls the rotation speed of the chuck that supports the wafer so that the resist is applied to the optimal film thickness, automatically eliminating large differences between lots in the film thickness of multilayer thin films. This is to offset the
この時、多層薄膜の膜厚を測定するのは、半導体チップ
が形成されていないウェハの周縁部に検知部位を設定し
、周辺露光装置によりウェハ周辺のレジストを露光現像
を行い除去する際に、同時にこの部位を露光現像して通
常ならば露光されないため薄膜とレジスト膜が交互に積
層されるところを、塗布されたレジスト除去してウェハ
上に形成される半導体チップと同様の多層薄膜厚を有す
る部位を形成する。この部位に投受光装置により光を照
射し、多層膜中の反射率、屈折率の測定を行い、概算膜
厚を求めるものである。凹凸のある半導体チップでは膜
厚を測定するのは困難であっても半導体チップのパター
ンが形成されていない平坦な周縁部で半導体チップの膜
厚と等しい反射率、屈折率を測定することができ、露光
パターンの線幅が高精度に均一な半導体回路素子を製造
することができる。At this time, the thickness of the multilayer thin film is measured by setting a detection area on the periphery of the wafer where no semiconductor chips are formed, and when removing the resist around the wafer by exposure and development using a peripheral exposure device. At the same time, this area is exposed and developed, and the applied resist is removed from the areas where thin films and resist films are alternately layered because they would normally not be exposed, resulting in a multilayer thin film with the same thickness as the semiconductor chip formed on the wafer. form a part. This area is irradiated with light by a light emitting/receiving device, and the reflectance and refractive index in the multilayer film are measured to determine the approximate film thickness. Although it is difficult to measure the film thickness of a semiconductor chip with uneven surfaces, it is possible to measure the reflectance and refractive index equal to the film thickness of the semiconductor chip at the flat periphery where no pattern is formed on the semiconductor chip. , it is possible to manufacture a semiconductor circuit element in which the line width of the exposure pattern is uniform with high precision.
[実施例コ
本発明のレジスト塗布方法を適用した一実施例を図面を
参照して説明する。[Embodiment] An embodiment to which the resist coating method of the present invention is applied will be described with reference to the drawings.
第1図に図示のレジスト塗布装置は、真空吸着等によっ
てウェハ1を載置固定し、回転機構であるモータ2の回
転軸に固定される上面円板状チャック3の円板中心部上
方にノズル4が設けられる。The resist coating apparatus shown in FIG. 1 mounts and fixes a wafer 1 by vacuum suction or the like, and installs a nozzle above the center of the disc of an upper disc-shaped chuck 3 that is fixed to the rotating shaft of a motor 2, which is a rotating mechanism. 4 is provided.
ノズル4は図示しないスキャナに接続されダミーディス
ペンスを実行する場合チャック3の上方から移動可能に
なっている。ノズル4はレジスト供給系5に接続される
。レジスト供給系5はレジストを収納するレジスト容器
、レジストを所望の一定量供給するベローズポンプ、フ
ィルタ、ベローズポンプと連動して開閉するバルブ、レ
ジストの液だれを防止するサックバックバルブ等を設け
ている。また、レジスト塗布時にレジストの飛散防止の
ためチャック3を包囲してカップ6が設けられ、カップ
6はウェハ1の搬入8時に下降してウェハ1の搬入出を
容易にするようになっている。The nozzle 4 is connected to a scanner (not shown) and is movable from above the chuck 3 when performing dummy dispensing. Nozzle 4 is connected to resist supply system 5 . The resist supply system 5 includes a resist container that stores resist, a bellows pump that supplies a desired constant amount of resist, a filter, a valve that opens and closes in conjunction with the bellows pump, a suckback valve that prevents resist from dripping, etc. . Further, a cup 6 is provided surrounding the chuck 3 to prevent the resist from scattering during resist application, and the cup 6 is lowered when the wafer 1 is loaded at 8 to facilitate loading and unloading of the wafer 1.
さらに、ウェハ1上に積層された多層薄膜7の反射率、
屈折率、膜厚を測定するための投受光装置8が設けられ
る。投受光装置8はキセノン水銀ランプ等の露光に使用
される光源からの光を、光ファイバー8の先端から所定
部位1oに例えば500−800nm等の直径2II1
m程度のビームb1として照射し、このビームb1の反
射光b2を光ファイバー9の先端から入射し、受光素子
により電気信号に変換して薄膜7の膜厚を光干渉法を用
いて測定するものである。また、ステッパーで露光に用
いられる■ラインやGラインを用いて薄膜中の定在波の
位相を予見するものである。また、この投受光装置8を
用いて薄膜上に塗布されたレジストの膜厚を測定する場
合は、光源からの光でレジストが感光しないように光源
の光の波長を例えば560mn以上とするフィルタを設
ければよい。Furthermore, the reflectance of the multilayer thin film 7 stacked on the wafer 1,
A light emitting/receiving device 8 is provided for measuring the refractive index and film thickness. The light emitting/receiving device 8 transmits light from a light source used for exposure, such as a xenon mercury lamp, from the tip of the optical fiber 8 to a predetermined portion 1o with a diameter of 2II1, such as 500-800 nm.
A beam b1 of about m is irradiated, and the reflected light b2 of this beam b1 enters from the tip of an optical fiber 9, and is converted into an electric signal by a light receiving element to measure the thickness of the thin film 7 using optical interferometry. be. Furthermore, the phase of the standing wave in the thin film is predicted by using the ■ line and G line used for exposure with a stepper. In addition, when measuring the film thickness of a resist coated on a thin film using this light emitting/receiving device 8, a filter is used to set the wavelength of the light from the light source to, for example, 560 mm or more so that the resist is not exposed to the light from the light source. Just set it up.
この投受光装置8の近傍には投光素子と受光素子とを有
するウェハの位置を検品する位置検出装置11が備えら
れ、ウェハの周辺部に設けられた所定部位10を検品し
、投受光装置8に入力するようになっている。A position detection device 11 is provided near the light emitting/receiving device 8 to inspect the position of the wafer having the light emitting element and the light receiving element. 8.
投受光装置8により検知された検出値は検出値に基き最
適なレジスト膜厚を演算する演算装置12に入力され、
さらにここで最適レジスト膜厚を形成するためのモータ
2の回転数が求められ、演算装置12からの信号により
モータ2の回転を制御する制御装置13が設けられる。The detection value detected by the light emitting/receiving device 8 is input to the calculation device 12 which calculates the optimum resist film thickness based on the detection value.
Further, the rotation speed of the motor 2 for forming the optimum resist film thickness is determined here, and a control device 13 is provided which controls the rotation of the motor 2 based on a signal from the arithmetic device 12.
このような構成のレジスト塗布装置により処理される製
造途中のウェハ1は第2図に示すように、円形に形成さ
れその周縁の一部を切除してオリエンテーションフラッ
ト14が設けられ、その中心部にはパターン形成された
膜厚か積層された半導体チップ15が多数形成される。As shown in FIG. 2, a half-manufactured wafer 1 processed by a resist coating apparatus having such a configuration is formed into a circular shape, and a part of its periphery is cut off to provide an orientation flat 14, and an orientation flat 14 is provided in the center of the circular shape. A large number of layered semiconductor chips 15 are formed with patterned film thicknesses.
これらの半導体チップ15は矩形であるため、ウェハ1
の周縁部16には余剰領域17が形成されるため、この
部分に検知部位10が設けられる。検知部位10は、ウ
ェハ1の汚染源となる周辺部16に塗布されたレジスト
を除去するために、周辺露光装!!18により周縁部1
6を露光する際、例えば周辺を通常2no++幅で露光
し、ある一定角を例えば4m+n露光を行うようにプロ
グラム設定して同時に露光して現像することによりウェ
ハ1上に形成された半導体チップ15と同様にレジスト
除去され、半導体チップ15と同じ膜厚に形成されてな
る。しかもこの検知部位1oは、パターン形成されない
ため、平坦であってパターン形成されて表面が凹凸状に
なっている半導体チップ15では乱反射されてしまうた
め、測定不可能な反射光も測定可能となっている。Since these semiconductor chips 15 are rectangular, the wafer 1
Since a surplus area 17 is formed in the peripheral edge part 16 of , the detection part 10 is provided in this part. The detection area 10 is equipped with a peripheral exposure device in order to remove the resist applied to the peripheral area 16 which is a source of contamination of the wafer 1! ! By 18 the peripheral part 1
When exposing the semiconductor chips 15 and 6 formed on the wafer 1, for example, the periphery is exposed with a normal width of 2no++, and a certain angle is exposed with a program of 4m+n, for example, and the semiconductor chips 15 formed on the wafer 1 are exposed and developed at the same time. Similarly, the resist is removed and the film is formed to have the same thickness as the semiconductor chip 15. Moreover, since this detection part 1o is not patterned, it is possible to measure reflected light that is flat and cannot be measured because it is diffusely reflected by the semiconductor chip 15, which has a patterned surface and an uneven surface. There is.
以上のような構成のレジスト塗布方法を用いてウェハ上
の薄膜上にレジストを塗布する方法を説明する。A method of applying a resist onto a thin film on a wafer using the resist applying method configured as above will be described.
まず、搬送機構によりチャック3上に載置固定されたウ
ェハ1上に形成された薄膜の反射率、屈折率、膜厚を測
定するため、モータ2をゆっくり回転させ位置検出装置
11によりオリエンテーションフラット14から検知部
位10を検出し、検知部位10が光ファイバー9の下位
に来た時にモータ2を停止させ、投受光装置8を作動さ
せる。First, in order to measure the reflectance, refractive index, and film thickness of the thin film formed on the wafer 1 mounted and fixed on the chuck 3 by the transport mechanism, the motor 2 is slowly rotated, and the position detection device 11 moves the orientation flat 14 When the detection site 10 is located below the optical fiber 9, the motor 2 is stopped and the light emitting/receiving device 8 is activated.
投受光装置8は、光ファイバー9から露光装置で使用す
る単色光例えば波長436nmのg線を検知部位10に
照射させる。g線のビームb1が検知部位10で反射し
反射光b2が光ファイバー9から受光素子を備えた投受
光装置8に入射され、ここでウェハ1上に形成された薄
膜7の反射率、屈折率が検知される。この検出値が演算
装置12に入力されると最適レジスト膜厚が演算される
。The light emitting/receiving device 8 causes the detection region 10 to be irradiated with monochromatic light, for example, the g-line having a wavelength of 436 nm, which is used in the exposure device from the optical fiber 9 . The g-line beam b1 is reflected by the detection part 10, and the reflected light b2 is incident from the optical fiber 9 into the light projecting/receiving device 8 equipped with a light receiving element, where the reflectance and refractive index of the thin film 7 formed on the wafer 1 are determined. Detected. When this detected value is input to the calculation device 12, the optimum resist film thickness is calculated.
ここで、ステッパ等の露光装置で単色光がレジスト膜に
照射された場合、単色光の持つ節と腹部分のエネルギー
量の相違から、レジスト膜の焼付速度が節の部分は遅く
、腹の部分は速く進行するためレジスト膜の露光により
形成される線幅(Critical Dimensio
n)は第3図に示すようにレジスト膜厚に依存する。線
幅はレジスト膜厚の変化量Δdに対して変化量Δaが少
い極値部分に設定すれば、レジスト膜厚が多少変化して
も一定の線幅を保つことができる。このように決定され
た線幅を得るために薄膜7の屈折率、反射率を検知して
最適レジスト膜厚が演算され、演算装N12により最適
レジスト膜厚を得るため予め求められているモータ2の
回転数を設定し、制御装置13に入力すると制御装置1
3によりモータ2を駆動させ、レジスト供給系5から適
量のレジストを供給し、ノズル4からウェハ1上に滴下
させ所望の膜厚のレジストを塗布する。この時、レジス
ト膜厚に影響を及ぼすレジスト温度、環境温度、湿度等
の制御を行ってもよいことは言うまでもないことである
。When a resist film is irradiated with monochromatic light using an exposure device such as a stepper, the baking speed of the resist film is slow at the nodal portions and slow at the abdominal portions due to the difference in the amount of energy in the nodal and abdominal portions of the monochromatic light. Because the process progresses quickly, the line width (critical dimension) formed by exposure of the resist film is
n) depends on the resist film thickness as shown in FIG. If the line width is set to an extreme value where the amount of change Δa is smaller than the amount of change Δd in the resist film thickness, a constant line width can be maintained even if the resist film thickness changes somewhat. In order to obtain the line width determined in this way, the refractive index and reflectance of the thin film 7 are detected to calculate the optimum resist film thickness, and the motor 2, which has been determined in advance, is When the rotation speed is set and inputted to the control device 13, the control device 1
3 drives the motor 2, supplies an appropriate amount of resist from the resist supply system 5, and drops it onto the wafer 1 from the nozzle 4 to coat the resist with a desired thickness. It goes without saying that at this time, the resist temperature, environmental temperature, humidity, etc., which affect the resist film thickness, may be controlled.
レジスト塗布後、形成されたレジスト膜厚を位置検出装
置11により検知部位1oを検出後、検知部位10に投
受光装置8からレジストが感光しない波長(不感光波長
)になるようフィルタを設けて光を照射させ、レジスト
膜厚を測定しチエツクを行う。After applying the resist, the position detection device 11 detects the thickness of the formed resist film at the detection site 1o, and then a light emitting/receiving device 8 is provided at the detection site 10 with a filter so that the resist is not sensitive to light (non-sensitivity wavelength). The resist film thickness is measured and checked.
このようにロット毎にウェハ1上に形成された薄膜7の
屈折率、反射率を測定して塗布するレジスト膜厚を設定
することにより線幅が一定なパターンを自動的に形成す
ることができる。In this way, by measuring the refractive index and reflectance of the thin film 7 formed on the wafer 1 for each lot and setting the resist film thickness to be applied, a pattern with a constant line width can be automatically formed. .
[発明の効果]
以上の説明からも明らかなように本発明のレジスト塗布
方法によれば、ウェハの周縁部にウェハ上に形成された
半導体チップと同様のレジスト除去されて薄膜を積層さ
れた検知部位を設けたため、パターン形成された半導体
チップでは乱反射により測定が困難であったウェハ上の
薄膜の反射率、屈折率、膜厚が簡単に測定でき、この反
射率、屈折率、膜厚に伴い塗布されるレジスト膜厚を自
動的に微妙に変えることができるため、ロットによって
異る薄膜の膜厚に対応してレジスト膜の塗布を行い、そ
のため薄膜の膜厚に大きなバラツキがあっても高精度に
均一なパターンを自動的に形成することができる。[Effects of the Invention] As is clear from the above explanation, according to the resist coating method of the present invention, it is possible to detect that the resist is removed and a thin film is stacked on the peripheral edge of the wafer, similar to the semiconductor chips formed on the wafer. Because of the location, it is possible to easily measure the reflectance, refractive index, and film thickness of a thin film on a wafer, which was difficult to measure with patterned semiconductor chips due to diffuse reflection. Since the thickness of the applied resist film can be automatically and slightly changed, the resist film can be applied in accordance with the thickness of the thin film that differs from lot to lot. A highly uniform pattern can be automatically formed.
第1図は本発明のレジスト塗布方法を適用した一実施例
の構成図、第2図は第1@に示す一実施例に適用される
ウェハの正面図、第3図は第1図に示す一実施例を説明
する図である。
1■−・1ウエハ
2・・・・・・・モータ(回転機構)
3・・・・・・・チャック
5・・・・・・・レジスト供給系
7・・・・・・・薄膜
8・・・・・・・投受光装置
9・・・・・・・光ファイバー
10・・・・・検知部位
12・・・・・演算装置
13・・・・・制御装置
15・・・・・半導体チップ
16・・・・・周縁部
18・・・・・周辺露光装置Fig. 1 is a block diagram of an embodiment to which the resist coating method of the present invention is applied, Fig. 2 is a front view of a wafer applied to the embodiment shown in Fig. 1@, and Fig. 3 is shown in Fig. 1. It is a figure explaining one example. 1 - 1 Wafer 2 Motor (rotating mechanism) 3 Chuck 5 Resist supply system 7 Thin film 8 ...Light emitting and receiving device 9 ... Optical fiber 10 ... Detection part 12 ... Arithmetic device 13 ... Control device 15 ... Semiconductor chip 16... Peripheral section 18... Peripheral exposure device
Claims (1)
測定して所望する膜厚のレジストを塗布するに際し、前
記半導体ウェハの半導体チップの形成されてない周縁部
に不感波長光を照射して膜厚を測定することを特徴とす
るレジスト塗布方法。A resist is applied to the surface of a semiconductor wafer, the thickness of the applied film is measured, and when applying the resist to a desired thickness, the peripheral edge of the semiconductor wafer where no semiconductor chips are formed is irradiated with insensitive wavelength light to form a film. A resist coating method characterized by measuring thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005760A JP3017762B2 (en) | 1990-01-12 | 1990-01-12 | Resist coating method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005760A JP3017762B2 (en) | 1990-01-12 | 1990-01-12 | Resist coating method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03211719A true JPH03211719A (en) | 1991-09-17 |
JP3017762B2 JP3017762B2 (en) | 2000-03-13 |
Family
ID=11620081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005760A Expired - Fee Related JP3017762B2 (en) | 1990-01-12 | 1990-01-12 | Resist coating method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3017762B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151893A (en) * | 2001-11-19 | 2003-05-23 | Dainippon Screen Mfg Co Ltd | Substrate processing unit, substrate processing apparatus, and substrate processing method |
JP2004045491A (en) * | 2002-07-09 | 2004-02-12 | Sumitomo Bakelite Co Ltd | Method for forming film of positive type photosensitive resin |
WO2010037452A1 (en) * | 2008-10-01 | 2010-04-08 | Peter Wolters Gmbh | Method for measuring the thickness of a discoidal workpiece |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115072U (en) * | 1984-06-29 | 1986-01-28 | ホ−ヤ株式会社 | Resist coating equipment |
JPS62235734A (en) * | 1986-04-04 | 1987-10-15 | Nec Corp | Manufacture of semiconductor device |
-
1990
- 1990-01-12 JP JP2005760A patent/JP3017762B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115072U (en) * | 1984-06-29 | 1986-01-28 | ホ−ヤ株式会社 | Resist coating equipment |
JPS62235734A (en) * | 1986-04-04 | 1987-10-15 | Nec Corp | Manufacture of semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151893A (en) * | 2001-11-19 | 2003-05-23 | Dainippon Screen Mfg Co Ltd | Substrate processing unit, substrate processing apparatus, and substrate processing method |
JP2004045491A (en) * | 2002-07-09 | 2004-02-12 | Sumitomo Bakelite Co Ltd | Method for forming film of positive type photosensitive resin |
WO2010037452A1 (en) * | 2008-10-01 | 2010-04-08 | Peter Wolters Gmbh | Method for measuring the thickness of a discoidal workpiece |
CN102171000A (en) * | 2008-10-01 | 2011-08-31 | 彼特沃尔特斯有限公司 | Method for measuring the thickness of a discoidal workpiece |
KR101311320B1 (en) * | 2008-10-01 | 2013-09-25 | 페터 볼터스 게엠베하 | Method for measuring the thickness of a discoidal workpiece |
Also Published As
Publication number | Publication date |
---|---|
JP3017762B2 (en) | 2000-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5393624A (en) | Method and apparatus for manufacturing a semiconductor device | |
JP4040697B2 (en) | High efficiency photoresist coating | |
US7371022B2 (en) | Developer endpoint detection in a track lithography system | |
JP2560371B2 (en) | Substrate processing system | |
TWI585540B (en) | Microlithography device and component manufacturing method | |
US20210066140A1 (en) | Semiconductor device manufacturing system, semiconductor device inspection device, and semiconductor device manufacturing method | |
WO2007013540A1 (en) | Mask blank fabrication method and exposure mask fabrication method | |
JP4800347B2 (en) | Substrate processing method and device manufacturing method | |
US7443487B2 (en) | Exposure apparatus | |
KR20190114787A (en) | Lithography apparatus, pattern forming method, and article manufacturing method | |
US7238454B2 (en) | Method and apparatus for producing a photomask blank, and apparatus for removing an unnecessary portion of a film | |
JPH02146720A (en) | Manufacture of semiconductor device | |
JPH03211719A (en) | Method of applying resist | |
US20080289656A1 (en) | Substrate processing method and substrate processing apparatus | |
JPS59178729A (en) | Exposure method in photoresist process | |
KR20000018615A (en) | Fabrication apparatus of semiconductor device | |
KR0139814B1 (en) | Manufacturing method of semiconductor device | |
US7884950B2 (en) | Substrate processing method, program, computer-readable storage medium, and substrate processing system | |
JPH11340134A (en) | Substrate processing device | |
JPH07161628A (en) | Peripheral exposure device | |
JPH03112121A (en) | exposure system | |
JPH09275058A (en) | Projected exposure | |
JP2690526B2 (en) | Application method | |
JPH0239520A (en) | Resist film thickness measuring method | |
JP3225722B2 (en) | Method of forming photosensitive layer for pattern exposure and method of forming pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |