JPH0321099B2 - - Google Patents
Info
- Publication number
- JPH0321099B2 JPH0321099B2 JP60282734A JP28273485A JPH0321099B2 JP H0321099 B2 JPH0321099 B2 JP H0321099B2 JP 60282734 A JP60282734 A JP 60282734A JP 28273485 A JP28273485 A JP 28273485A JP H0321099 B2 JPH0321099 B2 JP H0321099B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- substrate
- semiconductor substrate
- conductivity type
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/854—Complementary IGFETs, e.g. CMOS comprising arrangements for preventing bipolar actions between the different IGFET regions, e.g. arrangements for latchup prevention
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Description
【発明の詳細な説明】
〔概要〕
半導体装置に関し、電源投入時の基板電位の変
動分を抑制し、回路規模を増大させることなくラ
ツチアツプの発生を防止することを目的とし、一
導電型を有する半導体基板と、該半導体基板の表
面に形成され、逆導電型を有し且つ電気的に接地
される第1の領域と、前記半導体基板上の該第1
の領域と異なる領域上に形成され、逆導電型を有
する第2の領域と、該第2の領域内に形成され、
一導電型を有し且つ電源電圧が印加される第3の
領域と、前記半導体基板上の前記第1および第2
の領域と異なる領域上に形成され、逆導電型を有
し且つ該第1の領域と電気的に接続される第4の
領域とを有し、電源投入時に前記半導体基板の電
位が該半導体基板と前記第1の領域との間のpn
接合における順方向電圧の大きさよりも小さくな
るように該半導体基板と前記第4の領域との間の
接合容量が設定されるよう構成する。[Detailed Description of the Invention] [Summary] The purpose of this invention is to suppress fluctuations in substrate potential when power is turned on in semiconductor devices, and to prevent latch-up without increasing the circuit scale, and which has one conductivity type. a semiconductor substrate; a first region formed on the surface of the semiconductor substrate, having an opposite conductivity type and electrically grounded;
a second region formed on a region different from the region and having an opposite conductivity type; and a second region formed within the second region,
a third region having one conductivity type and to which a power supply voltage is applied; and the first and second regions on the semiconductor substrate.
a fourth region formed on a region different from the region, having an opposite conductivity type and electrically connected to the first region; pn between and the first area
The structure is such that the junction capacitance between the semiconductor substrate and the fourth region is set to be smaller than the magnitude of the forward voltage at the junction.
本発明は半導体装置に関し、特に、基板バイア
スを使用している相補型金属酸化物半導体(以下
CMOSと称する)装置に関する。本発明による
装置は、例えばコンピユータ等の情報機器、電子
機器等において記憶素子としてのSRAM(スタテ
イツク形ランダムアクセスメモリ)に利用され得
る。
The present invention relates to semiconductor devices, and in particular to complementary metal oxide semiconductors (hereinafter referred to as "complementary metal oxide semiconductors") using substrate bias.
(referred to as CMOS) device. The device according to the present invention can be used, for example, as an SRAM (static random access memory) as a storage element in information equipment such as computers, electronic equipment, and the like.
p型基板にn型ウエルが形成されてなる
CMOS装置の一例が第6図に模式的に示される。
CMOSはその構成上、破線で示されるように等
価的に、2個のトランジスタからなるサイリスタ
で表わされる。すなわち、一方は、基板1(p領
域)とウエル3(n領域)と拡散層2(n領域)
で構成されるNPN形トランジスタTr1であり、他
方は、基板1(p領域)とウエル3(n領域)と
拡散層4(p領域)で構成されるPNP形トラン
ジスタTr2である。従つて、今仮に何らかの要因
で基板1の電位レベルが所定時間の間、所定レベ
ル以上に上昇したものとすると、トランジスタ
Tr1がオン状態となつてそのコレクタ電位が低下
し、それによつてトランジスタTr2のベース電位
が低下してトランジスタTr2がオン状態となり、
電源Vccから拡散層4、トランジスタTr2,Tr1お
よび拡散層2を介してアースに貫通電流が流れる
(ラツチアツプ)。いつたんラツチアツプが発生す
ると、たとえサイリスタのトリガが消滅しても貫
通電流を止めることはできず、これを止めるには
電源電圧Vccをゼロにする必要がある。
An n-type well is formed on a p-type substrate.
An example of a CMOS device is schematically shown in FIG.
Due to its structure, CMOS is equivalently represented by a thyristor consisting of two transistors, as shown by the broken line. That is, one side is the substrate 1 (p region), the well 3 (n region), and the diffusion layer 2 (n region).
The other is a PNP transistor T r2 consisting of a substrate 1 (p region), a well 3 (n region), and a diffusion layer 4 (p region). Therefore, if for some reason the potential level of the substrate 1 rises above a predetermined level for a predetermined period of time, the transistor
T r1 turns on and its collector potential drops, which causes the base potential of transistor T r2 to drop and transistor T r2 turns on,
A through current flows from the power supply V cc to the ground via the diffusion layer 4, the transistors T r2 and T r1 , and the diffusion layer 2 (latch-up). Once latch-up occurs, the through current cannot be stopped even if the thyristor trigger disappears; to stop this, the power supply voltage V cc must be reduced to zero.
従来、このような異常現象(ラツチアツプ)を
防止するために種々の手段がとられている。1つ
の手段としては、トランジスタTr1,Tr2をオン
状態にしないようにする観点からトランジスタ
Tr1,Tr2のベース幅に相当する間隔d1,d2を大き
くする方法があるが、これは回路規模の微細化に
逆行する手段であるので好ましくない。そこで、
一般的に用いられている手段として、基板バイア
スを使用する方法がある。これは、他の周辺回路
に適宜配置された基板バイアス発生回路(図示せ
ず)により基板1に負の電圧(およそ−3V)を
供給するようにしたものである。 Conventionally, various measures have been taken to prevent such abnormal phenomena (latch-up). As one means, from the viewpoint of preventing transistors T r1 and T r2 from turning on,
Although there is a method of increasing the distances d 1 and d 2 corresponding to the base widths of T r1 and T r2 , this is not preferable because it goes against the trend of miniaturization of the circuit scale. Therefore,
A commonly used method is to use a substrate bias. This is designed to supply a negative voltage (approximately -3V) to the substrate 1 by a substrate bias generation circuit (not shown) appropriately arranged in other peripheral circuits.
第5図a,bにはCMOSおよび基板バイアス
発生回路に電源Vccが投入されてから定常状態に
落ち着くまでの基板1の電位VBBと電源電圧VCC
の関係が示される。基板バイアス発生回路は所定
の電圧V0に達した時点t0で動作するため、この時
点t0に達するまでは、基板1の電位VBBは、ウエ
ル3と基板1の間の接合容量C1と、基板1と拡
散層2の間の接合容量C2との逆比に応じて上昇
する。すなわち、第7図に示される等価回路から
も明らかなように、電位VBBは次式で表わされ
る。 Figures 5a and 5b show the potential V BB of the substrate 1 and the power supply voltage V CC from when the power supply V cc is applied to the CMOS and substrate bias generation circuit until it settles into a steady state.
The relationship between is shown. Since the substrate bias generation circuit operates at the time t 0 when the predetermined voltage V 0 is reached, the potential V BB of the substrate 1 is equal to the junction capacitance C 1 between the well 3 and the substrate 1 until it reaches this time t 0 . , increases in accordance with the inverse ratio of the junction capacitance C2 between the substrate 1 and the diffusion layer 2. That is, as is clear from the equivalent circuit shown in FIG. 7, the potential V BB is expressed by the following equation.
VBB=C1/(C1+C2)・VCC…… (1)
〔発明が解決しようとする問題点〕
上述した従来形の基板バイアスを使用している
CMOS装置においては、CMOSの構造上、接合
容量C1の方が接合容量C2に比べ極めて大きい
ため、(1)式の関係から明らかなように、電源VCC
が投入された時の基板の電位VBBはサイリスタの
トリガとなり得るほど充分大きい値となり、これ
によつてラツチアツプが発生し易いという問題が
あつた。 V BB = C1/(C1+C2)・V CC …… (1) [Problems to be solved by the invention] The conventional substrate bias described above is used.
In a CMOS device, due to the CMOS structure, the junction capacitance C1 is much larger than the junction capacitance C2, so as is clear from the relationship in equation (1), the power supply V CC
The potential V BB of the substrate when the voltage is turned on becomes a sufficiently large value that it can trigger the thyristor, and this causes a problem in that latch-up is likely to occur.
また、基板1と拡散層2の間のpn接合におけ
る順方向等価抵抗が比較的大きいことに起因して
放電が速やかに行われず、それによつて、微小な
雑音信号が基板に印加された場合でも基板の電位
VBBが比較的大きい値を維持することになり、ラ
ツチアツプに移行する可能性も充分予想される。 Furthermore, due to the relatively large forward equivalent resistance in the pn junction between the substrate 1 and the diffusion layer 2, discharge does not occur quickly, so that even when a minute noise signal is applied to the substrate, Substrate potential
V BB will maintain a relatively large value, and it is highly anticipated that there will be a shift to latch-up.
本発明は、上述した従来形における問題点に鑑
み創作されたもので、電源投入時の基板の電位の
変動分を抑制し、回路規模を増大させることなく
ラツチアツプの発生を防止することができる半導
体装置を提供することを目的としている。 The present invention was created in view of the problems with the conventional type described above, and is a semiconductor device capable of suppressing fluctuations in the potential of the substrate when power is turned on, and preventing the occurrence of latch-up without increasing the circuit scale. The purpose is to provide equipment.
第1図の原理ブロツク図に示されるように、本
発明の半導体装置は、一導電型を有する半導体基
板1と、該半導体基板1の表面に形成され、逆導
電型を有し且つ電気的に接地される第1の領域2
と、前記半導体基板1上の該第1の領域2と異な
る領域上に形成され、逆導電型を有する第2の領
域3と、該第2の領域3内に形成され、一導電型
を有し且つ電源電圧Vccが印加される第3の領域
4と、前記半導体基板1上の前記第1および第2
の領域2,3と異なる領域上に形成され、逆導電
型を有し且つ該第1の領域2と電気的に接続され
る第4の領域6とを有し、電源投入時に前記半導
体基板1の電位VBBが該半導体基板1と前記第1
の領域2との間にpn接合における順方向電圧の
大きさよりも小さくなるように該半導体基板1と
前記第4の領域6との間の接合容量C3が設定さ
れていることを特徴とする。
As shown in the principle block diagram of FIG. 1, the semiconductor device of the present invention includes a semiconductor substrate 1 having one conductivity type, and a semiconductor device formed on the surface of the semiconductor substrate 1 having an opposite conductivity type and electrically First area 2 to be grounded
a second region 3 formed on a region different from the first region 2 on the semiconductor substrate 1 and having an opposite conductivity type; and a second region 3 formed within the second region 3 and having one conductivity type. and a third region 4 to which a power supply voltage V cc is applied, and the first and second regions on the semiconductor substrate 1.
A fourth region 6 is formed on a region different from the regions 2 and 3, has an opposite conductivity type, and is electrically connected to the first region 2, and when the power is turned on, the semiconductor substrate 1 The potential V BB between the semiconductor substrate 1 and the first
A junction capacitance C3 between the semiconductor substrate 1 and the fourth region 6 is set to be smaller than the magnitude of the forward voltage at the pn junction between the semiconductor substrate 1 and the fourth region 2.
上述した構成によれば、電源投入時に基板電位
VBBが半導体基板1と第1の領域2との間のpn接
合における順方向電圧の大きさよりも小さくなる
ように該半導体基板と第4の領域6との間の接合
容量C3が設定されているので、電源の投入時に
各領域間の接合容量のカツプリングに起因して生
じる。基板の電位の変動分を抑制することがで
き、それによつてラツチアツプへの移行を防止す
ることが可能となる。
According to the configuration described above, when the power is turned on, the substrate potential
The junction capacitance C3 between the semiconductor substrate 1 and the fourth region 6 is set so that V BB is smaller than the magnitude of the forward voltage at the pn junction between the semiconductor substrate 1 and the first region 2. This occurs due to the coupling of junction capacitance between each region when the power is turned on. Fluctuations in the potential of the substrate can be suppressed, thereby making it possible to prevent the transition to latch-up.
第2図および第3図に本発明の一実施例として
の半導体装置が示されており、第2図は第3図の
−線から見た概略的な断面図で、第3図は概
略的な平面図である。
2 and 3 show a semiconductor device as an embodiment of the present invention, FIG. 2 is a schematic sectional view taken from the - line in FIG. 3, and FIG. FIG.
本実施例においてはp型基板・n型ウエル方式
のCMOSデバイスが用いられ、インバータとし
て形成されている。すなわち、負荷用トランジス
タとしてのpチヤネルMOS電界効果トランジス
タ(PMOSFET)はn型ウエル3内に形成され、
増幅用トランジスタとしてのnチヤネル
MOSFET(nMOSFET)はp型基板1内に形成
されている。 In this embodiment, a p-type substrate/n-well type CMOS device is used and is formed as an inverter. That is, a p-channel MOS field effect transistor (PMOSFET) as a load transistor is formed in the n-type well 3,
N-channel as an amplification transistor
A MOSFET (nMOSFET) is formed within a p-type substrate 1.
CMOSデバイスは知られている方法を用いて
形成されており、一例として、基板1の全面酸化
→n型ウエル3を形成するためのPイオン打込み
およびドライブイン拡散→フイールド酸化→
FET領域の形成→pMOSのフイールドへのイオ
ン打込み→nMOSのフイールドへのイオン打込み
→フイールドおよびゲート酸化→pMOSおよび
nMOSのパンチスルー防止およびVth(しきい値電
圧)制御用イオン打込み→多結晶Siデポジシヨン
(絶縁層10の形成)→ゲート用多結晶Siのエツ
チング→拡散層(n+)2を形成するためのPイ
オン打込み→拡散層(p+)4を形成するための
Bイオン打込み→拡散→コンタクト孔形成→Al
デポジシヨン(電極11S,11G,11D,12S,
12G,12Dの形成→Alのエツチング、といつた
工程を経て形成される。 The CMOS device is formed using a known method, and as an example, the entire surface of the substrate 1 is oxidized → P ion implantation and drive-in diffusion to form the n-type well 3 → field oxidation →
Formation of FET region → ion implantation into pMOS field → ion implantation into nMOS field → field and gate oxidation → pMOS and
Ion implantation for nMOS punch-through prevention and V th (threshold voltage) control → Polycrystalline Si deposition (formation of insulating layer 10) → Etching of polycrystalline Si for gate → To form diffusion layer (n + ) 2 P ion implantation → B ion implantation to form the diffusion layer (p + ) 4 → diffusion → contact hole formation → Al
Deposition (electrodes 11 S , 11 G , 11 D , 12 S ,
It is formed through the steps of forming 12G and 12D → etching Al.
基板1の外部において、電極11Sは後述の
GND(接地)ライン13に電気的に接続され、電
極12Sは電源VCCに接続されている。また、電極
11Gおよび12Gは相互接続され、かつ入力端子
INに接続され、電極11Dおよび12Dは相互接
続され、かつ出力端子OUTに接続されている。 On the outside of the substrate 1, the electrode 11S is
It is electrically connected to a GND (ground) line 13, and the electrode 12S is connected to a power supply V CC . Moreover, the electrodes 11 G and 12 G are interconnected, and the input terminal
The electrodes 11 D and 12 D are interconnected and connected to the output terminal OUT.
GNDライン13は、第3図に示されるように、
チツプ14上においてGNDパツド15から導出
され、チツプ上の周辺回路16まで延びている。
本実施例におけるCMOSデバイスは周辺回路1
6内に含まれるものであり、第2図に示される破
線部分は周辺回路16側とGNDライン13側の
境界を示すものである。 As shown in FIG. 3, the GND line 13 is
It is derived from the GND pad 15 on the chip 14 and extends to the peripheral circuit 16 on the chip.
The CMOS device in this example is the peripheral circuit 1.
6, and the broken line portion shown in FIG. 2 indicates the boundary between the peripheral circuit 16 side and the GND line 13 side.
GNDライン13側においても、6は拡散層
(n+)であつて、前述したCMOSデバイスの製造
工程において拡散層(n+)2を形成する時に同
時に形成されるものである。基板1と拡散層
(n+)6の間の接合容量(C3とする)が基板1
と拡散層(n+)2の間の接合容量(C2とする)
に比べて大きくなるようにする必要がある。この
拡散層(n+)6はAlからなるGNDライン13に
接続されている。 Also on the GND line 13 side, reference numeral 6 is a diffusion layer (n + ), which is formed at the same time as the diffusion layer (n + ) 2 in the CMOS device manufacturing process described above. The junction capacitance (assumed to be C3) between the substrate 1 and the diffusion layer (n + ) 6 is the substrate 1
and the junction capacitance between the diffusion layer (n + )2 (assumed to be C2)
It needs to be larger than . This diffusion layer (n + ) 6 is connected to a GND line 13 made of Al.
また、図示はしないがp型基板1に負のバイア
ス電圧(および−3V)を供給するための基板バ
イアス発生回路路が内部接続されており、この回
路はp型基板・n型ウエル方式のCMOSデバイ
スと共に通常用いられるものであつて、周知の回
路である。 Although not shown, a substrate bias generation circuit for supplying a negative bias voltage (and -3V) to the p-type substrate 1 is internally connected, and this circuit is a p-type substrate/n-well type CMOS transistor. It is a well-known circuit that is commonly used with the device.
前述したようにCMOSの構造上、n型ウエル
3とp型基板1の間の接合領域面積(接合容量を
C1とする)は、拡散層(n+)2とp型基板1
の間の接合領域面積(接合容量C2)に比べ極め
て大きい。しかしながら本実施例の装置において
は、接合容量C2と並列に、前述の極めて大きい
値をもつ接合容量C3が接続されることになる。
電源VCCが投入された時の基板電位VBBは、前述
した(1)式の関係を参照すると次式で表わされる。 As mentioned above, due to the structure of CMOS, the area of the junction region between the n-type well 3 and the p-type substrate 1 (assuming the junction capacitance is C1) is the area between the diffusion layer (n + ) 2 and the p-type substrate 1.
This is extremely large compared to the area of the junction region between them (junction capacitance C2). However, in the device of this embodiment, the aforementioned junction capacitance C3 having an extremely large value is connected in parallel with the junction capacitance C2.
The substrate potential V BB when the power supply V CC is turned on is expressed by the following equation with reference to the relationship of equation (1) described above.
VBB=C1/(C1+C2+C3)・VCC…… (2)
第4図には第2図に示される装置の電源投入時
の等価回路が示される。さらに第5図bには、本
実施例の装置に電源VCCを投入した時の基板電位
VBBの変化が破線で示されており、実線で示され
る従来形における基板電位VBBの変化との対比か
らも明らかなように、基板電位VBBの電源投入時
の変動分はΔVだけ低減されている。 V BB =C1/(C1+C2+C3)・V CC (2) FIG. 4 shows an equivalent circuit when the power of the device shown in FIG. 2 is turned on. Furthermore, FIG. 5b shows the substrate potential when the power supply V CC is applied to the device of this embodiment.
The change in V BB is shown by the broken line, and as is clear from the comparison with the change in the substrate potential V BB in the conventional type shown by the solid line, the variation in the substrate potential V BB at power-on is reduced by ΔV. has been done.
従つて、基板バイアス発生回路が動作を開始す
る時点t0における基板電位VBB(=
C1/(C1+C2+C3).V0)の大きさを、少なくとも、
基板1と拡散層(n+)2および6との間にpn接
合における順方向電圧の大きさより小さくするこ
とにより、ラツチアツプの発生を防止することが
できる。また、本実施例の装置においては
CMOSデバイスの回路規模を大きくすることな
く、基板1の対地容量を充分に大きくすることが
できる。 Therefore, the substrate potential V BB (=
C1/(C1+C2+C3). Latch-up can be prevented by making the magnitude of V 0 ) smaller than at least the magnitude of the forward voltage at the pn junction between the substrate 1 and the diffusion layers (n + ) 2 and 6. Furthermore, in the device of this example,
The ground capacitance of the substrate 1 can be sufficiently increased without increasing the circuit scale of the CMOS device.
なお、上述した実施例ではCMOS構造のデバ
イスについて説明したが、本発明は、CMOSに
限定されず、半導体基板内にpnpn接合が形成さ
れ且つ同様の電位関係が有れば、同様に適用され
得ることは当業者には明らかであろう。 Although the above-mentioned embodiment describes a device with a CMOS structure, the present invention is not limited to CMOS, and can be similarly applied as long as a pnpn junction is formed in a semiconductor substrate and there is a similar potential relationship. This will be clear to those skilled in the art.
以上説明したように本発明によれば、電源投入
時における基板の電位の変動分を抑制し、回路規
模を増大させることなくラツチアツプの発生を防
止することができる。
As described above, according to the present invention, it is possible to suppress the variation in the potential of the substrate when the power is turned on, and to prevent the occurrence of latch-up without increasing the circuit scale.
第1図は本発明による半導体装置の原理ブロツ
ク図、第2図は本発明の一実施例を示す概略的な
断面図、第3図は第2図に示される装置を示す概
略的な平面図、第4図は第2図に示される装置の
電源投入時の等価回路図、第5図a,bは電源電
圧VCCと基板電位VBBの関係を示す図、第6図は
CMOS装置の一例を示す模式図、第7図は第6
図に示される装置の電源投入時の等価回路図、で
ある。
1……基板、2……第1の領域(拡散層)、3
……第2の領域(ウエル)、4……第3の領域
(拡散層)、6……第4の領域(拡散層)、VCC…
…電源(電圧)、VBB……基板電位、C1,C2,
C3……接合容量。
FIG. 1 is a principle block diagram of a semiconductor device according to the present invention, FIG. 2 is a schematic sectional view showing an embodiment of the present invention, and FIG. 3 is a schematic plan view showing the device shown in FIG. 2. , FIG. 4 is an equivalent circuit diagram of the device shown in FIG. 2 when the power is turned on, FIGS. 5 a and b are diagrams showing the relationship between the power supply voltage V CC and the substrate potential V BB , and FIG.
A schematic diagram showing an example of a CMOS device.
FIG. 3 is an equivalent circuit diagram when the device shown in the figure is powered on; FIG. 1...Substrate, 2...First region (diffusion layer), 3
... second region (well), 4 ... third region (diffusion layer), 6 ... fourth region (diffusion layer), V CC ...
...Power supply (voltage), V BB ...Substrate potential, C1, C2,
C3... Junction capacitance.
Claims (1)
有し且つ電気的に接地される第1の領域2と、 前記半導体基板1上の該第1の領域2と異なる
領域上に形成され、逆導電型を有する第2の領域
3と、 該第2の領域3内に形成され、一導電型を有し
且つ電源電圧Vccが印加される第3の領域4と、 前記半導体基板1上の前記第1および第2の領
域2,3と異なる領域上に形成され、逆導電型を
有し且つ該第1の領域2と電気的に接続される第
4の領域6とを有し、 電源投入時に前記半導体基板1の電位VBBが該
半導体基板1と前記第1の領域2との間にpn接
合における順方向電圧の大きさよりも小さくなる
ように該半導体基板1と前記第4の領域6との間
の接合容量C3が設定されていることを特徴とす
る半導体装置。[Claims] 1. A semiconductor substrate 1 having one conductivity type; a first region 2 formed on the surface of the semiconductor substrate 1, having an opposite conductivity type and electrically grounded; and the semiconductor substrate a second region 3 formed on a region different from the first region 2 on the first region 1 and having an opposite conductivity type; and a second region 3 formed in the second region 3 having one conductivity type and having a power supply voltage V a third region 4 to which cc is applied, which is formed on a region different from the first and second regions 2 and 3 on the semiconductor substrate 1, has an opposite conductivity type, and has a conductivity type different from the first region 2; and a fourth region 6 that is electrically connected to the semiconductor substrate 1, and when the power is turned on, the potential VBB of the semiconductor substrate 1 is equal to the forward voltage at the p-n junction between the semiconductor substrate 1 and the first region 2. A semiconductor device characterized in that a junction capacitance C3 between the semiconductor substrate 1 and the fourth region 6 is set to be smaller than the size of the semiconductor substrate 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60282734A JPS62143454A (en) | 1985-12-18 | 1985-12-18 | semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60282734A JPS62143454A (en) | 1985-12-18 | 1985-12-18 | semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62143454A JPS62143454A (en) | 1987-06-26 |
JPH0321099B2 true JPH0321099B2 (en) | 1991-03-20 |
Family
ID=17656350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60282734A Granted JPS62143454A (en) | 1985-12-18 | 1985-12-18 | semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62143454A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0548020A (en) * | 1991-08-12 | 1993-02-26 | Mitsubishi Electric Corp | Semiconductor integrated circuit |
-
1985
- 1985-12-18 JP JP60282734A patent/JPS62143454A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62143454A (en) | 1987-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0836194B1 (en) | Semiconductor device | |
JP2001352077A (en) | SOI field effect transistor | |
US11699697B2 (en) | Electrostatic protection circuit | |
CA1289202C (en) | Latch-up protection circuit for integrated circuits using complementarymos circuit technology | |
JP2710113B2 (en) | Integrated circuits using complementary circuit technology | |
US4799101A (en) | Substrate bias through polysilicon line | |
JPH0415955A (en) | Method for manufacturing input circuit of semiconductor device | |
KR980012291A (en) | Semiconductor device | |
CA1275457C (en) | Integrated circuit in complementary circuit technology comprising a substrate bias generator | |
US4907059A (en) | Semiconductor bipolar-CMOS inverter | |
US5945715A (en) | Semiconductor memory device having a memory cell region and a peripheral circuit region and method of manufacturing the same | |
KR100379286B1 (en) | Semiconductor device having a protective circuit | |
US4689653A (en) | Complementary MOS integrated circuit including lock-up prevention parasitic transistors | |
JP2679046B2 (en) | Memory device | |
US4868621A (en) | Input protection circuit | |
JP2006005089A (en) | Semiconductor device | |
JPH0321099B2 (en) | ||
US7154133B1 (en) | Semiconductor device and method of manufacture | |
KR0163459B1 (en) | Output circuit with three power supplies | |
US5343087A (en) | Semiconductor device having a substrate bias generator | |
JPH0144023B2 (en) | ||
KR19980043416A (en) | ESD protection circuit | |
JPS61283158A (en) | Complementary mos transistor circuit | |
JPH0532908B2 (en) | ||
KR100244287B1 (en) | Cmosfet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |