JPH03210772A - Device for cooling and method for flowing refrigerant in fuel cell - Google Patents
Device for cooling and method for flowing refrigerant in fuel cellInfo
- Publication number
- JPH03210772A JPH03210772A JP2005620A JP562090A JPH03210772A JP H03210772 A JPH03210772 A JP H03210772A JP 2005620 A JP2005620 A JP 2005620A JP 562090 A JP562090 A JP 562090A JP H03210772 A JPH03210772 A JP H03210772A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- refrigerant
- pipe
- plate
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、燃料電池の電池積層体内に組み込まれた冷
却板に冷媒を通流させて電池積層体を冷却する燃料電池
の冷却装置とその冷媒の通流方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling device for a fuel cell that cools a cell stack by flowing a refrigerant through a cooling plate incorporated in the cell stack of the fuel cell, and the cooling device thereof. This invention relates to a refrigerant flow method.
冷却板を装備した燃料電池の一般的な電池積層体(セル
スタックとも云う)構造を第5図に示す。FIG. 5 shows a general cell stack (also called cell stack) structure of a fuel cell equipped with a cooling plate.
図において1は電解質を保持したマトリックス層11i
燃料極12.酸化剤極13.リプ付き電極基材14゜1
5、およびセパレータ16より成る単電池(単セルとも
云う)であり、かかる単セル1の多数個を積層してセル
スタック2を構成している。さらに前記のセルスタック
2には数セル置きに水冷式の冷却板3が介装されている
。この冷却板3は前記したリプ付き電極基材14,15
およびセパレータ16と熱膨張係数が略等しいカーボン
製の冷却板3と、この冷却板3の内部に埋設して並置配
管された金属製の冷却パイプ5との組立体として成り、
がっ各冷却パイプ5はヘッダバイブロに一括接続した上
で外部の図示されてない冷媒供給配管に接続されている
。第6図は冷却構造を形成する冷却板3の平面図で冷媒
入口配管21より供給された冷媒の冷却水は入口側のヘ
ッダー6、冷却パイプ5を矢印の方向に通流して出口側
のヘッダー6より冷媒出口配管22に至る。第7図はこ
の冷却板3が複数個のセルスタック2と交互に積層配置
されて、冷媒入口配管21より並列に同一方向に冷却水
を供給されている模様を示す側面図で、冷却水は矢印2
3の方向に流れて冷媒出口配管22に至り、ここより図
示されていない冷却用熱交換器によって冷却されて循環
し冷媒入口配管21にもどってくる。なおここで31は
セルスタック2より発電した電気をとり出す集電板、3
2は電気的絶縁板、33はセルスタック2と冷却板3と
の積層体を締め付ける締付板である。In the figure, 1 is a matrix layer 11i holding an electrolyte.
Fuel electrode 12. Oxidizer electrode 13. Electrode base material with lip 14゜1
5 and a separator 16, and a cell stack 2 is constructed by stacking a large number of such single cells 1. Furthermore, water-cooled cooling plates 3 are interposed in the cell stack 2 every few cells. This cooling plate 3 is the electrode base material 14, 15 with lips described above.
It is an assembly of a cooling plate 3 made of carbon having a coefficient of thermal expansion substantially equal to that of the separator 16, and a cooling pipe 5 made of metal buried inside the cooling plate 3 and arranged in parallel.
Each cooling pipe 5 is connected to the header vibro and then to an external refrigerant supply pipe (not shown). FIG. 6 is a plan view of the cooling plate 3 forming the cooling structure, and the cooling water of the refrigerant supplied from the refrigerant inlet pipe 21 flows through the header 6 on the inlet side, the cooling pipe 5 in the direction of the arrow, and then flows into the header on the outlet side. 6 to the refrigerant outlet pipe 22. FIG. 7 is a side view showing how the cooling plates 3 are stacked alternately with a plurality of cell stacks 2, and cooling water is supplied from the refrigerant inlet pipes 21 in parallel and in the same direction. arrow 2
3 and reaches the refrigerant outlet pipe 22, from where it is cooled by a cooling heat exchanger (not shown), circulates, and returns to the refrigerant inlet pipe 21. Note that 31 is a current collector plate that takes out the electricity generated from the cell stack 2;
2 is an electrically insulating plate, and 33 is a tightening plate that tightens the stacked structure of the cell stack 2 and the cooling plate 3.
かかる従来の冷却構造においては、第6図に示すように
冷媒入口配管21より供給される冷却水は当初充分に低
い温度に保たれているが、これが冷却板3内の冷却パイ
プ5に至ると、この冷却板3に隣接して配置されている
セルスタックよりその発電作用に伴う発生熱をもらって
徐々に温度上昇し、ゾーン35あたりで充分に冷えてい
た冷却水はゾーン36に至るときには温度が相当に高く
なる。In such a conventional cooling structure, as shown in FIG. 6, the cooling water supplied from the refrigerant inlet pipe 21 is initially kept at a sufficiently low temperature, but when it reaches the cooling pipe 5 in the cooling plate 3, The temperature gradually rises as the cell stack disposed adjacent to the cooling plate 3 receives the heat generated by its power generation action, and the cooling water that has cooled down sufficiently around zone 35 reaches the zone 36. It will be quite expensive.
これにともなってセルスタックにおいても、積層されて
いる同一面において前記ゾーン35に接する部分の温度
は低く、ゾーン36に接する部分の温度は高くなる。し
たがって同一のセルスタックにおいても発電にかかわ゛
る反応温度が均一でなく場所によっ異なり、発電に最も
適する温度の上限がゾーン36に接する部分で決定され
、そこより温度の低いゾーン35に接する部分では発電
に適さない低い温度で発電せねばならず、セルスタック
全体としては発電性能を充分に発揮できないという問題
が生じる。Accordingly, in the cell stack, the temperature of the portion in contact with the zone 35 on the same stacked surface is low, and the temperature of the portion in contact with the zone 36 is high. Therefore, even in the same cell stack, the reaction temperature related to power generation is not uniform and varies depending on the location, and the upper limit of the temperature most suitable for power generation is determined at the part that contacts zone 36, and the upper limit of the temperature that is most suitable for power generation is determined at the part that contacts zone 35, which has a lower temperature. In this case, power generation must be performed at a low temperature that is not suitable for power generation, and the problem arises that the cell stack as a whole cannot fully demonstrate its power generation performance.
この発明はこの点にかんがみなされたもので、セルスタ
ックの各部において温度を均一にして、充分なる発生性
能の発揮できる燃料電池の冷却装置とその冷媒通流方法
を提供することにある。The present invention has been made in view of this point, and it is an object of the present invention to provide a cooling device for a fuel cell and a coolant flow method therefor, which can uniformize the temperature in each part of a cell stack and exhibit sufficient generation performance.
(!Illを解決するための手段〕
上記課題を解決するために、この発明による燃料電池の
冷却装置として、複数の板状の単電池より形成される電
池積層体に介装された冷却板内の冷却パイプに冷媒用配
管よりヘッダーを介して冷媒を通流させ前記電池積層体
を冷却する燃料電池の冷却装置において、冷却板内の冷
却管にヘッダーを介して接続される冷媒用配管を冷媒の
通流方向が互いに逆方向の2組とした。またこの冷却装
置における冷媒通流方法として、複数の板状の単電池よ
り形成される電池積層体に介装された冷却板内の冷却パ
イプにヘッダーを介して冷媒の通流宝庫が互に逆方向の
2&Ilの冷媒用配管を接続し、この冷媒用配管に供給
される冷媒の通流方向を一定時間毎に反転するものとし
た。(Means for solving !Ill) In order to solve the above problems, as a cooling device for a fuel cell according to the present invention, a cooling plate installed in a battery stack formed of a plurality of plate-shaped unit cells is provided. In a fuel cell cooling device in which the cell stack is cooled by passing a refrigerant through the cooling pipe from the refrigerant pipe through the header, the refrigerant pipe is connected to the cooling pipe in the cooling plate through the header. Two sets of coolant are used in which the flow directions are opposite to each other.Furthermore, as a coolant flow method in this cooling device, cooling pipes in a cooling plate interposed in a battery stack formed of a plurality of plate-shaped unit cells are used. The refrigerant flow reservoir connects the refrigerant pipes 2 & Il in opposite directions through the header, and the flow direction of the refrigerant supplied to the refrigerant pipes is reversed at regular intervals.
この発明によると、燃料電池の冷却装置においては、セ
ルスタックに介装された冷却板に埋め込まれた冷却パイ
プに冷媒を供給する冷媒用配管は、入口、出口用を一対
として2組設け、この2組の冷媒用配管に供給される冷
媒の通流方向を互いに逆方向としたので、この2組の冷
媒用配管により配!された冷却板に一つおきに冷媒を供
給すれば、冷却されるべきセルスタックは一つおきに逆
方向から冷えた冷媒により冷却されるので、セルスタッ
クの温度をほぼ均一に冷却できる。また、この冷却装置
の冷媒通流方法として、冷媒の通流方向を一定時間毎に
反転させるようにしたので、セルスタックは局部的に長
時間過熱されたり、低い温度に保たれることなくその温
度を均一にすることができる。According to this invention, in a cooling device for a fuel cell, two sets of refrigerant pipes are provided, one for an inlet and one for an outlet, for supplying refrigerant to a cooling pipe embedded in a cooling plate installed in a cell stack. Since the flow directions of the refrigerant supplied to the two sets of refrigerant piping are opposite to each other, distribution is possible using these two sets of refrigerant piping! If refrigerant is supplied to every other cooling plate, every other cell stack to be cooled will be cooled by the cooled refrigerant from the opposite direction, so that the temperature of the cell stack can be cooled almost uniformly. In addition, the refrigerant flow method in this cooling device is such that the flow direction of the refrigerant is reversed at regular intervals, so the cell stack is prevented from being locally overheated or kept at a low temperature for a long time. Temperature can be made uniform.
以下この発明を実施例に基づいて説明する。第1図はこ
の発明の一実施例である燃料電池の冷却装置を示す平面
図で、第2図はその側面図である。The present invention will be explained below based on examples. FIG. 1 is a plan view showing a cooling device for a fuel cell, which is an embodiment of the present invention, and FIG. 2 is a side view thereof.
ここでは複数の冷却板3とセルスタック2とが交互に積
層されている例を示す、この例では2組の冷媒用配管2
4.25と26.27とが配置されていて、一番上部に
配置された冷却板3はその冷却パイプ5がヘッダー7を
介して冷却用配管26.27に接続されていて、冷媒と
しての冷却水は冷却用配管26よ、り供給されて、冷媒
方向矢印28に示すごとき方向に通流し、入口側のヘッ
ダー7を介して冷却パイプ5に入り、再び出口側のヘッ
ダー7を介して冷媒用配管27に至る0次に上部より二
番目に配置されている冷却板は冷媒用配管24より冷却
水の供給をうけ、入口側のヘッダー8を介して冷媒方向
矢印29に示す上記一番上部に配置された冷却板内の通
流方向とは逆の方向に冷却パイプ5内を流れ、再び出口
側のヘッダー8を介して冷媒用配管25に至る。上部よ
り三番目に配置されている冷却板は一番上部に配置され
た冷却板と同じ冷媒用配管26゜27に接続ささて、こ
れと同じ通流方向に冷却水を流し、上部より四番目に配
置されている冷却板は上部より二番目に配置されている
冷媒用配管24゜25に接続されて同様にこれと同じ通
流方向に冷却水を流している。かくの如く、積層されて
いるセルスタック2を挟んで交互に一つづつ、冷却水の
通流方向がまったく逆になるように構成されている。し
たがってセルスタック2はその上面と下面で対向する二
つの方向の冷却水により冷却されるので、従来の一方向
よりの冷却に較べてセルスタック全面にわたって温度を
均一にすることができる。Here, an example is shown in which a plurality of cooling plates 3 and cell stacks 2 are alternately stacked. In this example, two sets of refrigerant pipes 2 are shown.
4.25 and 26.27 are arranged, and the cooling plate 3 arranged at the top has its cooling pipe 5 connected to the cooling pipe 26.27 via the header 7, and is used as a refrigerant. Cooling water is supplied from the cooling pipe 26, flows in the direction shown by the refrigerant direction arrow 28, enters the cooling pipe 5 via the header 7 on the inlet side, and flows back into the coolant via the header 7 on the outlet side. The cooling plate located second from the top to the cooling pipe 27 receives cooling water from the refrigerant pipe 24, and passes through the header 8 on the inlet side to the uppermost part indicated by the refrigerant direction arrow 29. The refrigerant flows through the cooling pipe 5 in a direction opposite to the flow direction in the cooling plate disposed in the cooling plate, and reaches the refrigerant pipe 25 again via the header 8 on the outlet side. The third cooling plate from the top is connected to the same refrigerant pipe 26゜27 as the top cooling plate, and the cooling water is passed in the same direction as that of the cooling plate placed at the top. The cooling plate disposed at is connected to the refrigerant pipes 24 and 25 disposed second from the top, and similarly flows cooling water in the same flow direction. As described above, the structure is such that the direction of flow of cooling water is alternately opposite to each other one by one across the stacked cell stacks 2. Therefore, since the cell stack 2 is cooled by the cooling water in two opposing directions on its upper and lower surfaces, the temperature can be made more uniform over the entire surface of the cell stack, compared to conventional cooling in one direction.
次に冷媒の通流方法に関して第3図の系統図及び第4図
のタイムチャートにより説明する。第1図、第2図で複
数の冷却板3内の冷却パイプ5に供給される冷却水は交
互配置されたおのおのに2組の冷媒用配管24.25と
26.27とから供給されるが、このように複数の冷却
板は冷媒用配管26.27よりヘッダー7を介して冷却
水を供給されるグループと、冷媒用配管24.25より
ヘッダー8を介して冷却水を供給されるグループとに2
分されて、それぞれ第3図に示す弁41,42,43.
44.45,46,47.48を冷却水の流通路に配置
し、冷媒供給系より供給される冷却水を弁41,42.
45.46を介して冷却パイプ5に送り、弁43,44
,47.48を介して冷却パイプ5より戻りの冷却水を
冷媒排出系に戻している。Next, the method of circulating the refrigerant will be explained with reference to the system diagram in FIG. 3 and the time chart in FIG. 4. In FIGS. 1 and 2, the cooling water supplied to the cooling pipes 5 in the plurality of cooling plates 3 is supplied from two sets of refrigerant pipes 24.25 and 26.27 arranged alternately. In this way, the plurality of cooling plates are divided into a group that is supplied with cooling water from the refrigerant piping 26.27 via the header 7, and a group that is supplied with cooling water from the refrigerant piping 24.25 via the header 8. to 2
valves 41, 42, 43 . shown in FIG. 3, respectively.
44, 45, 46, 47, 48 are arranged in the cooling water flow path, and the cooling water supplied from the refrigerant supply system is passed through the valves 41, 42.
45, 46 to the cooling pipe 5, valves 43, 44
, 47, 48, the return cooling water is returned from the cooling pipe 5 to the refrigerant discharge system.
そして、第4図のタイムチャートに示すごとく弁41.
42.43,44.45.46.47.48を一定時間
ごとに開。Then, as shown in the time chart of FIG. 4, the valve 41.
42.43, 44.45.46.47.48 open at regular intervals.
閉の制御をすると、冷却板3内の冷却パイプ5内を通流
する冷却水の通流方向は一定時間ごとに反転し、今まで
冷却板内で冷却水の出口近くで温度上昇していた場所が
、冷却水の流通方向が反転することにより冷たい冷却水
が入ってくる入口近くの場所に変り、局部的な温度の高
低をなくすることができる。When the closing control is performed, the flow direction of the cooling water flowing through the cooling pipe 5 in the cooling plate 3 is reversed at regular intervals, and until now the temperature in the cooling plate was rising near the outlet of the cooling water. By reversing the flow direction of the cooling water, the location changes to a location near the inlet where cold cooling water comes in, making it possible to eliminate local temperature fluctuations.
この発明は前述のように燃料電池の冷却装置として、冷
却機内冷却パイプを通流させる冷却系統を2グループに
して、交互に配置された冷却板に互いに逆方向より冷媒
を供給することにより、また冷媒通流方法として冷媒の
通流方向をすべての冷却板において一定時間ごとに反転
させることにより、冷却板に隣接して配置されているセ
ルスタックの運転中の温度がほぼ均一になるように冷却
されるので、セルスタックは局部的な過熱や冷えすぎが
なくなり、効率よく発電性能を充分に発揮できるように
なる。As described above, this invention is a cooling device for a fuel cell, by dividing the cooling system through which the cooling pipes in the cooler flow through into two groups, and supplying refrigerant to alternately arranged cooling plates from opposite directions. The refrigerant flow method is to reverse the flow direction of the refrigerant on all cooling plates at regular intervals to cool the cell stacks located adjacent to the cooling plates so that the temperature during operation is almost uniform. As a result, the cell stack will not be locally overheated or too cold, and will be able to efficiently demonstrate its full power generation performance.
第1図はこの発明になる燃料電池の冷却装置の実施例を
示す平面図、第2図はこの発明になる冷却装置をもった
電池積層体の側面図、第3図はこの発明になる冷媒通流
方法を実現する冷媒の系統図、第4図は第3図に示す冷
媒系統図の通流方法を説明するタイムチャート、第5図
は従来の冷却装置をもった電池積層体の斜視図、第6図
は従来の冷却装置をもった冷却板の平面図、第7図は従
来の冷却装置をもった電池積層体の側面図である。
1:単電池(単セル)、2:電池積層体(セルスタック
) 3:冷却板、5:冷却パイプ、7゜8:ヘッダー
24.25.26.27 :冷媒用配管、28゜29
:冷媒通流方向、31:集電板、32:電気的絶縁板、
33:締付板、41,42,43.44.45,46.
47.48 :弁。
第
1
図
第
図
第
図
第
図FIG. 1 is a plan view showing an embodiment of a cooling device for a fuel cell according to the present invention, FIG. 2 is a side view of a cell stack having a cooling device according to the present invention, and FIG. 3 is a coolant according to the present invention. A system diagram of the refrigerant that realizes the flow method, FIG. 4 is a time chart explaining the flow method of the refrigerant system diagram shown in FIG. 3, and FIG. 5 is a perspective view of a battery stack with a conventional cooling device. , FIG. 6 is a plan view of a cooling plate with a conventional cooling device, and FIG. 7 is a side view of a battery stack with a conventional cooling device. 1: Single battery (single cell), 2: Battery stack (cell stack) 3: Cooling plate, 5: Cooling pipe, 7° 8: Header 24.25.26.27: Refrigerant piping, 28° 29
: Refrigerant flow direction, 31: Current collector plate, 32: Electrical insulating plate,
33: Tightening plate, 41, 42, 43. 44. 45, 46.
47.48: Valve. Figure 1 Figure 1 Figure 1
Claims (1)
装された冷却板内の冷却パイプに冷媒用配管よりヘッダ
ーを介して冷媒を通流させ前記電池積層体を冷却する燃
料電池の冷却装置において、冷却板内の冷却管にヘッダ
ーを介して接続される冷媒用配管を冷媒の通流方向が互
いに逆方向の2組としたことを特徴とする燃料電池の冷
却装置。 2)複数の板状の単電池より形成される電池積層体に介
装された冷却板内の冷却パイプにヘッダーを介して冷媒
の通流方向が互に逆方向の2組の冷媒用配管を接続し、
この冷媒用配管に供給される冷媒の通流方向を一定時間
毎に反転することを特徴とする燃料電池の冷媒通流方法
。[Scope of Claims] 1) A method of causing a refrigerant to flow through a cooling pipe in a cooling plate interposed in a battery stack formed of a plurality of plate-shaped unit cells through a header from a refrigerant pipe to stack the battery stack. A fuel cell cooling device for cooling a fuel cell, characterized in that two sets of refrigerant pipes connected to cooling pipes in a cooling plate via a header are arranged in opposite directions of refrigerant flow. cooling system. 2) Two sets of refrigerant pipes with refrigerant flow directions in opposite directions are connected to the cooling pipes in the cooling plate interposed in the battery stack formed by a plurality of plate-shaped unit cells via headers. connection,
A refrigerant flow method for a fuel cell, characterized in that the flow direction of the refrigerant supplied to the refrigerant pipe is reversed at regular intervals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005620A JPH03210772A (en) | 1990-01-12 | 1990-01-12 | Device for cooling and method for flowing refrigerant in fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005620A JPH03210772A (en) | 1990-01-12 | 1990-01-12 | Device for cooling and method for flowing refrigerant in fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03210772A true JPH03210772A (en) | 1991-09-13 |
Family
ID=11616220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005620A Pending JPH03210772A (en) | 1990-01-12 | 1990-01-12 | Device for cooling and method for flowing refrigerant in fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03210772A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008234993A (en) * | 2007-03-20 | 2008-10-02 | Denso Corp | Fuel cell system |
JP2012094256A (en) * | 2010-10-25 | 2012-05-17 | Toyota Motor Corp | Fuel cell system and control method thereof |
-
1990
- 1990-01-12 JP JP2005620A patent/JPH03210772A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008234993A (en) * | 2007-03-20 | 2008-10-02 | Denso Corp | Fuel cell system |
JP2012094256A (en) * | 2010-10-25 | 2012-05-17 | Toyota Motor Corp | Fuel cell system and control method thereof |
US8785066B2 (en) | 2010-10-25 | 2014-07-22 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6653002B1 (en) | Quick charge battery with thermal management | |
JPS5835876A (en) | Fuel battery device | |
DK0947022T3 (en) | Flow arrangement for the reactants in a multiple system fuel cell stack with internal reforming | |
KR20180013460A (en) | Battery apparatus | |
US20020009648A1 (en) | Liquid-cooled fuel cell battery and method for operating it | |
US5208115A (en) | Solid-electrolyte fuel cell system | |
CN118919976A (en) | Energy storage device | |
JPS6240832B2 (en) | ||
US20040071617A1 (en) | Fuel reformer | |
JPH03210772A (en) | Device for cooling and method for flowing refrigerant in fuel cell | |
JPH06338334A (en) | Cooling plate and cooling system for fuel cell | |
US20240235430A9 (en) | Cogeneration apparatus, thermoelectric power generation system, voltage control method and heating device | |
JPH01265460A (en) | How to operate a fuel cell | |
US20090162713A1 (en) | Stack for fuel cell and bipolar plate and cooling plate adopted in the same | |
JPS58142769A (en) | Fuel battery | |
JPS6280972A (en) | Method for improving temperature distribution in fuel cells | |
JPH01117278A (en) | Fuel cell | |
JP2000149962A (en) | Cooling plate for fuel cell | |
JPH0750614B2 (en) | Fuel cell | |
JPH08306370A (en) | Stacked phosphoric acid fuel cell | |
JPH02103864A (en) | Fuel cell | |
JPS6255873A (en) | Fuel cell | |
JPH0646573B2 (en) | Fuel cell | |
JP2865025B2 (en) | Molten carbonate fuel cell | |
JPH06231774A (en) | Fuel cell cooling plate |