JPH03208886A - Molecular beam crystal growing device - Google Patents
Molecular beam crystal growing deviceInfo
- Publication number
- JPH03208886A JPH03208886A JP421790A JP421790A JPH03208886A JP H03208886 A JPH03208886 A JP H03208886A JP 421790 A JP421790 A JP 421790A JP 421790 A JP421790 A JP 421790A JP H03208886 A JPH03208886 A JP H03208886A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- molecular beam
- steepness
- raw materials
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線結晶成長装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a molecular beam crystal growth apparatus.
分子線結晶成長法はIQ−16〜10−”Torrとい
う超高真空の真空槽の中に半導体基板を置いておき分子
線源から分子線を飛ばして基板の上に結晶成長させるも
のである。In the molecular beam crystal growth method, a semiconductor substrate is placed in an ultra-high vacuum chamber of IQ-16 to 10-'' Torr, and a molecular beam is emitted from a molecular beam source to grow crystals on the substrate.
分子線源は一般的にパイロリチック窒化ホウ素(PBN
)製の固定るつぼとこれを加熱するためのヒーターから
なっている。ヒーターはるつぼの外周に取りつけられて
おり、これを通電加熱することによってるつぼ中の原料
を加熱する。加熱された原料は蒸発して分子線となり基
板上に吸着される。るつぼの底部には熱電対がありるつ
ぼの温度を測定し温度制御されるようになっている。こ
の分子線結晶成長方法により電界効果トランジスター(
FET)や高電子移動度トランジスタ(HEMT)等の
電子デバイスや発光デバイスを作製することができる。Molecular beam sources are generally pyrolytic boron nitride (PBN).
) and a heater to heat it. The heater is attached to the outer periphery of the crucible, and heats the raw material in the crucible by heating the heater with electricity. The heated raw material evaporates into molecular beams that are adsorbed onto the substrate. There is a thermocouple at the bottom of the crucible that measures the temperature of the crucible and controls the temperature. Using this molecular beam crystal growth method, field effect transistors (
Electronic devices and light emitting devices such as FETs) and high electron mobility transistors (HEMTs) can be manufactured.
しかしながら従来の分子線結晶方法に用いられている装
置で作製した半導体薄膜には表面欠陥が数千側〜数万個
/cj程度という多数にありこのような薄膜を用いて作
製したデバイスには信頼性が乏しいという問題がある。However, semiconductor thin films fabricated using equipment used in conventional molecular beam crystallization methods have surface defects ranging from several thousand to tens of thousands/cj, making devices fabricated using such thin films unreliable. There is a problem of lack of sexuality.
即ち、従来の分子線結晶成長装置では安定した均一な分
子線強度が得られず基板にエピタキシャル成長する際に
均一な組成が得られず基板面内の膜厚の均一性にも劣り
、良質なエピタキシャル成長膜が得られないのである。In other words, with conventional molecular beam crystal growth equipment, stable and uniform molecular beam intensity cannot be obtained, a uniform composition cannot be obtained during epitaxial growth on the substrate, and the uniformity of film thickness within the substrate surface is poor, resulting in high quality epitaxial growth. A film cannot be obtained.
また当然界面の急峻性という点でも劣っているので超格
子デバイスや量子効果デバイスといったデバイスの作製
は困難である。Naturally, it is also inferior in terms of the steepness of the interface, making it difficult to fabricate devices such as superlattice devices and quantum effect devices.
このような問題を生じる原因としては種々考えられるが
分子線源に関しては分子線源内の原料に突沸が起こり、
液状の原料微粒子が原料液面から飛び出し液体のまま基
板に耐着するために起こることが考えられる。There are various possible causes for such problems, but in the case of molecular beam sources, bumping occurs in the raw material inside the molecular beam source,
This is thought to occur because liquid raw material fine particles fly out from the raw material liquid surface and adhere to the substrate as a liquid.
これは従来の分子線源はるつぼは固定された状態で加熱
を行っているためるつぼに内蔵した原料の融解状態での
温度の空間分布が不均一であることや、激しい対流を起
こすことによるものと考えられる。即ち表面よりも底部
の温度が高くなり、底面近くで蒸発が起こると気泡が底
部に発生し上部へ浮き上り表面に出たとき突沸となるの
である。This is because conventional molecular beam sources perform heating with the crucible in a fixed state, so the spatial distribution of temperature in the molten state of the raw material contained in the crucible is uneven, and intense convection occurs. it is conceivable that. In other words, when the temperature at the bottom becomes higher than at the surface and evaporation occurs near the bottom, bubbles are generated at the bottom and rise to the top, causing bumping when they reach the surface.
本発明は分子線強度を安定化、均一化することによりエ
ピタキシャル成長膜の欠陥を減らし、さらに制御性を高
め急峻な界面を得るための分子結晶成長装置を開発する
ため鋭意検討の結果得られたものである。即ち本発明は
超高真空に保たれた真空槽と該真空槽内に設定されたる
つぼとヒーターて構成される複数の分子線源と基板保持
装置とからなる分子線結晶成長装置において、るつぼを
回転させる機構を備えたことを特徴とする分子線結晶成
長装置である。The present invention was obtained as a result of intensive studies to develop a molecular crystal growth apparatus that stabilizes and makes the molecular beam intensity uniform, thereby reducing defects in epitaxially grown films, and further improving controllability and obtaining steep interfaces. It is. That is, the present invention provides a molecular beam crystal growth apparatus comprising a vacuum chamber maintained at an ultra-high vacuum, a plurality of molecular beam sources constituted by a crucible and a heater set in the vacuum chamber, and a substrate holding device. This is a molecular beam crystal growth apparatus characterized by being equipped with a rotating mechanism.
次に本発明分子線結晶装置の分子線源の一例を図によっ
て説明する。第1図は分子線源の断面図を示しており図
において1は真空槽外壁、2はヒーター、3は原料、4
はるつぼ、5はセル、εは熱電対、7は支持棒、8,9
は磁石、10はヒータ一端子、11は熱電対用端子であ
る。Next, an example of the molecular beam source of the molecular beam crystallization apparatus of the present invention will be explained with reference to the drawings. Figure 1 shows a cross-sectional view of the molecular beam source. In the figure, 1 is the outer wall of the vacuum chamber, 2 is the heater, 3 is the raw material, and 4 is the
Crucible, 5 is cell, ε is thermocouple, 7 is support rod, 8, 9
1 is a magnet, 10 is a heater terminal, and 11 is a thermocouple terminal.
結晶成長用の原料3を内蔵したるつぼ4をセル5に入れ
て中空の支持棒7で支持し、この支持棒7に磁石8を取
り付ける。るつぼ4はセル5から分離しているヒーター
2により加熱され、るつぼ4の温度はるつぼの底部に接
触されている熱電対6により計測される。また支持棒7
の中空部を透して温度制御熱電対11ヘリード線を結線
している。A crucible 4 containing raw material 3 for crystal growth is placed in a cell 5 and supported by a hollow support rod 7, and a magnet 8 is attached to this support rod 7. The crucible 4 is heated by a heater 2 that is separate from the cell 5, and the temperature of the crucible 4 is measured by a thermocouple 6 that is in contact with the bottom of the crucible. Also support rod 7
A lead wire to the temperature control thermocouple 11 is connected through the hollow part of the thermocouple.
るつぼは磁石8.9の磁力により任意の回転速度で回転
する。The crucible is rotated at an arbitrary rotational speed by the magnetic force of the magnet 8.9.
るつぼが回転することによりるつぼ中の原料は均一に加
熱され原料の空間温度分布は安定化、均一化することに
なり、エピタキシャル成長膜の欠陥は減少しさらに成長
率及び混晶層の組成の制御性が良くなる。また界面の急
峻性が良くなり、l原子層以下の急峻性を持つ良質な界
面が得られる。As the crucible rotates, the raw material in the crucible is heated uniformly, and the spatial temperature distribution of the raw material is stabilized and made uniform. This reduces defects in the epitaxially grown film and further improves the controllability of the growth rate and composition of the mixed crystal layer. gets better. In addition, the steepness of the interface is improved, and a high-quality interface with a steepness of less than 1 atomic layer can be obtained.
本発明装置を用いてGaAs基板上にGaAsWIMを
形成させた。るつぼを30r、p、組で回転させた場合
と回転させないときの比較を第1表に示した。A GaAs WIM was formed on a GaAs substrate using the apparatus of the present invention. Table 1 shows a comparison between when the crucible was rotated at 30 r, p, and when it was not rotated.
第1表
またるつぼを回転して得られたG a A s薄膜より
量子及び超格子構造を作製し、フォトルミネッセンス測
定、X線回折、透過型電子顕微鏡(TEM)測定を行っ
て界面急峻性を調べた結果1原子層以下の急峻性が得ら
れていた。Table 1 In addition, quantum and superlattice structures were fabricated from GaAs thin films obtained by rotating the crucible, and the interface steepness was determined by photoluminescence measurements, X-ray diffraction, and transmission electron microscopy (TEM) measurements. As a result of investigation, a steepness of one atomic layer or less was obtained.
以上の結果より本発明装置を用いた分子線結晶成長によ
って得られた薄膜は表面欠陥が少な(薄膜の膜厚が均一
であり界面急峻性のよいものであることが明らかである
。From the above results, it is clear that the thin film obtained by molecular beam crystal growth using the apparatus of the present invention has few surface defects (the thin film has a uniform thickness and has good interface steepness).
以上述べた如く本発明によれば表面欠陥の少ない膜厚の
均一な界面急峻性の良い半導体薄膜が得られ工業上顕著
な効果を奏するものである。As described above, according to the present invention, a semiconductor thin film having a uniform thickness and good interface steepness with few surface defects can be obtained, and it has a significant industrial effect.
第1図は本発明分子線源の断面図。
3・・・原料、 4・・・るつぼ、 7・・・支持棒、
8.9・・・磁石。FIG. 1 is a sectional view of the molecular beam source of the present invention. 3... Raw material, 4... Crucible, 7... Support rod,
8.9...Magnet.
Claims (1)
るつぼとヒーターで構成される複数の分子線源と基板保
持装置とからなる分子線結晶成長装置において、るつぼ
を回転させる機構を備えたことを特徴とする分子線結晶
成長装置。In a molecular beam crystal growth apparatus consisting of a vacuum chamber maintained at an ultra-high vacuum, a plurality of molecular beam sources and a substrate holding device consisting of a crucible and a heater installed in the vacuum chamber, a mechanism for rotating the crucible is used. A molecular beam crystal growth apparatus characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421790A JPH03208886A (en) | 1990-01-11 | 1990-01-11 | Molecular beam crystal growing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421790A JPH03208886A (en) | 1990-01-11 | 1990-01-11 | Molecular beam crystal growing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03208886A true JPH03208886A (en) | 1991-09-12 |
Family
ID=11578449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP421790A Pending JPH03208886A (en) | 1990-01-11 | 1990-01-11 | Molecular beam crystal growing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03208886A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106796203A (en) * | 2014-10-17 | 2017-05-31 | 瓦里安半导体设备公司 | In the system of high temperature measurement material thickness |
-
1990
- 1990-01-11 JP JP421790A patent/JPH03208886A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106796203A (en) * | 2014-10-17 | 2017-05-31 | 瓦里安半导体设备公司 | In the system of high temperature measurement material thickness |
CN106796203B (en) * | 2014-10-17 | 2020-06-30 | 瓦里安半导体设备公司 | Sheet forming apparatus, system for measuring thickness of sheet, and method for determining interface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1284887C (en) | Method for producing silicon carbide single crystal and apparatus for producing silicon carbide single crystal | |
US4999082A (en) | Process for producing monocrystalline group II-IV or group III-V compounds and products thereof | |
JPH11116399A (en) | Coating of tantalum carbide and single crystal production apparatus produced by the coating | |
US7524375B1 (en) | Growth of uniform crystals | |
JP3637157B2 (en) | Method for producing silicon carbide single crystal and seed crystal used therefor | |
JP3194820B2 (en) | Method for forming oriented diamond film | |
TWI774929B (en) | Manufacturing method of silicon carbide single crystal | |
JP4052678B2 (en) | Large silicon carbide single crystal growth equipment | |
JP4054197B2 (en) | Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot | |
JPH1067600A (en) | Single crystal silicon carbide ingot and method for producing the same | |
JP3662694B2 (en) | Method for producing single crystal silicon carbide ingot | |
JPH03208886A (en) | Molecular beam crystal growing device | |
JPH11209198A (en) | Method for synthesizing SiC single crystal | |
JPH0637354B2 (en) | Method and apparatus for growing silicon carbide single crystal | |
JP3982022B2 (en) | Single crystal manufacturing method and single crystal manufacturing apparatus | |
KR20190000618A (en) | Manufacturing apparatus for silicon carbide single crystal | |
JP4053125B2 (en) | Method for synthesizing SiC single crystal | |
US3649210A (en) | Apparatus for crucible-free zone-melting of crystalline materials | |
CN100366786C (en) | Preparation Technology of Metal Thin Film on Liquid Substrate Surface | |
CA2380145C (en) | Growth of bulk single crystals of aluminum | |
JP2006027976A (en) | Method for producing nitride single crystal and producing apparatus therefor | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JPH04305091A (en) | Method and device for pulling up single crystal | |
JPH01305889A (en) | molecular beam cell | |
Gotoh et al. | SEM observation of nucleation and growth of Ag crystallites on graphite substrate |