[go: up one dir, main page]

JPH03206412A - Halation removing device for endoscope and electronic endoscope - Google Patents

Halation removing device for endoscope and electronic endoscope

Info

Publication number
JPH03206412A
JPH03206412A JP2001120A JP112090A JPH03206412A JP H03206412 A JPH03206412 A JP H03206412A JP 2001120 A JP2001120 A JP 2001120A JP 112090 A JP112090 A JP 112090A JP H03206412 A JPH03206412 A JP H03206412A
Authority
JP
Japan
Prior art keywords
light
image
halation
plate
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001120A
Other languages
Japanese (ja)
Inventor
Narusada Kobayashi
小林 成禎
Shinya Sato
信也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIKOUDOU KK
Original Assignee
BIKOUDOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIKOUDOU KK filed Critical BIKOUDOU KK
Priority to JP2001120A priority Critical patent/JPH03206412A/en
Publication of JPH03206412A publication Critical patent/JPH03206412A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To preclude halation effect and to make a film image shape by specifying the angle between the optical axes of circular polarized light filter on the sides of a light guide and an image guide. CONSTITUTION:The angle between the optical axes of the circular polarized light filters 4 and 10 on the light-guide and image-guide sides is set to 80-90 deg.. Consequently, halation is nearly eliminated. Namely, a light beam which is made incident on the mucous membrane of the stomach from the light-guide side is clockwise circular polarized light, but reflected to become counterclock wise polarized light. A circular polarizing plate on the image-guide side, how ever, is a clockwise polarizing plate, so the reflecting counterclockwise polariz ing plate is an image-side 1/4-wavelength plate and the light is reconverted into linear polarized light, so that its considerably large part is cut off and removed by a linear polarizing film. Consequently, the halation is eliminated and the uniform and sharp image is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内視鏡あるいは電子内視鏡先端部に円偏光フィ
ルターを取り付け、フィルム画像を鮮明に撮影可能とし
たものである.特に、術者が直接内視鏡のファインダー
を覗き、あるいは電子内視,鏡の固体撮像素子を経由し
たテレビ映像診断する勉合にフィルムii体を鮮明にし
ようとするハレーシッン除去装置に関する. 〔従来の技術とその問題点〕 従来内視鏡を用いて胃壁などのフィルム撮影を行う場合
、光源から、ライトガイドファイバーを経て、胃壁など
に照射される光威分は、直線偏光、円偏光或分を含んで
いる. ところで、胃壁に例をとれば胃壁の表面には第1図に示
すように胃液、水の層1as胃粘膜層1bがそれぞれ5
00μm程度づつの厚さに層着している.このため、ラ
イトガイドファイバー先端部から照射した光は散光して
胃壁面に到達するが、胃液、水の層1a、胃粘膜層1b
があたかもレンズのような役目を果たし、光はこのレン
ズ部分で屈曲収斂した後、胃壁1面から反射することに
なる. 電 』このため、反射した光は対物レンズを通り、イメージ
ガイドファイバーを経て、フィルム面に感光すると、ハ
レーション効果を起こす.すなわち、病巣や粘膜面に対
して照射した光が、その中央のスポット部が明るくなり
過ぎ白くなり、その周辺部は適性な画像を結ぶ. この理由は、光源からの光は直接偏光、円偏光の光威分
を含み、胃壁表面のレンズ部分における屈折率がアトラ
ンダムなことに起因すると考えられる. 特に内視鏡の場合、光の照射点と被写体との距離が1〜
2cm以内であるため、上記のようなスポット面の反射
が大きくクローズアップされてくる.c問題点を解決す
るための手段とその作用〕本発明は上記従来の内視鏡の
問題点を解決するため、つぎのような構戒をとったもの
である.すなわち、入射、反射側対物レンズ2、2aと
、ライトガイドファイバー3、イメージガイドファイバ
ー3aあるいは固体撮像素子CCDとの間に直線偏光フ
ィルム102、1/4波長板103を重ね合わせた円偏
光フィルター4,4aを、1/4波長坂103を対物レ
ンズ2,2aに向けて同一位相角に設けた内視鏡、電子
内視鏡において、(a)  ライトガイド側とイメージ
ガイド側円偏光フVルター4,4aの光軸のなす角度を
80@〜90′″としたこと、 (b)かつ、円偏光フィルター4.4aの直線偏光フィ
ルター102として32ボラライザーを用いたこと、 (c)1/4波長板103としてカットすべき波長14
5ns±5n一のものを用いたこと、の構威を採用した
ものである. 本発明は上記構戒を採用することにより、ハレーション
のきわめて少ない撮影画像を得ることに威功したもので
ある. 〔内視鏡の実施例の説明〕 以下まず内視鏡に本発明装置を採用した場゛合の実施例
について説明する. 本出願人は先に特願平1−130245号として、次に
述べる構威のハレーシテン除去装置について出願した. 図面において、1は胃壁で、1aはその表面の胃液、水
の層、lbは胃粘膜層である.2,2aは入射側、反射
側対物レンズ、3,3aはそれぞれ、ライトガイドファ
イバー イメージガイドファイバー 4,4aは対物レ
ンズ2,2aとライトガイドファイバー3、イメージガ
イドファイバー3aとの間に設けられた円偏光フィルタ
ーである. 5は内視鏡を指す. 以下その作用について説明する. 本発明の反射除去装置は従来からテレビのディスプレイ
に用いられていたフィルターを、内視鏡の対物レンズ2
,2aとライトガイドファイバー3、イメージガイドフ
ァイバー3aとの間に設けたものである. このフィルターはマルチコーティングガラスl01,グ
レイ偏光フィルム102、1/4波長板103、ガラス
104を重ね合わせたラミネート構造となっている.た
だし、ガラス1−4はマルチコーティングガラスとして
もよい. マルチコーティングガラス101はディスプレイ表面の
わずらわしい反射を相当程度減らさせ、スッキリした画
面を実現できる. グレイ偏光フィルム102と1/4波長板103゛は本
発明の円偏光フィルター4を形戒する.このフィルター
は、次のような効果を有する.(a) グレイ偏光フィ
ルム102でほどよいコントラストをつけ、見やすい画
面を実現できる.(b)円偏光効果によってディスプレ
イのちらつきを抑え、解像力を向上する. (c) iiji像面の反射をほぼ解消できる.すなわ
ち、マルチコーティングガラス104の反射率はコーテ
ィングのない場合に比べ450〜650nmの波長の範
囲で著しく低くなる.また、光線透過率は第7図のよう
に4 0 0 nm以上の波長で著しく大きいので、内
視鏡に用いる光源においては、反射率、透過率において
著しい効果を有する. (d)有害な紫外線をカットできる. ところで円偏光フィルター4.4a(両者を一体にして
もよい.)のその作用を説明すると次のようである. ライトガイドファイバー3から照射された光は、まづ円
偏光フィルター4のグレイ直線偏光フィルム102を通
った後1/4波長坂103を透過する.直線偏光フィル
ム102では、直線偏光戒分以外の他の円偏光戒分はカ
ットされる.そしてこの直線偏光が174波長坂103
を通過すると、その振動方向に45゜の位相差が生ずる
ため、第4図に示すように円偏光が形威される.この円
偏光は楕円偏光になってもよい.この円偏光は第2図の
ように胃壁lに入射側対物レンズ2を通って、そして、
胃壁1で反射して反射側対物レンズ2aを通り、再び反
射側円偏光フィルター4aを通り、イメージガイドファ
イバ−3aに入る.以下従来と同様フィルムに感光され
る. ところで、本発明においては上記先行技術のハレーシゴ
ン除去装Iにおいて次の構戒を採用したちのでる.すな
わち、 ■ ライトガイド側、イメージガイド側の直線偏光フィ
ルム102の光軸のなす角度を90°〜801とし、 Q直線偏光フィルム102として32ボラライザーを用
い、 0  1/4波長板として145±5n■、すなわち円
偏光フィルターとしては560〜600n一のものを用
いた、 ものである. 以下、その詳細について説明する. ■の説明: 第6図aのように、直線偏光フィルムの光軸は透過軸の
角度をO”,45゜.901として表す.第6図bのよ
うに1/4波長板も、その先軸の角度をO@,45°,
906のように表す.そして、直線偏光フィルム、1/
4波長板が丸型の場合は第6図c,dのようにO゜の位
置から時針方向に回転させることにより、その先軸は0
45°,90@と変化することになる.そして、次のよ
うな場合も角度表示が行われる.円偏光板は普通直線偏
光板と1/4波長板を組合せて作られる.そして直線偏
光板と1/4波長板を組み合わせたとき、そのそれぞれ
の持つ光学的な軸すなわち光軸同志がどのような方向で
組み合わせるかを決めなくてはならない. 例えば、第6図eのように直線偏光板の光軸方向90°
と、174波長板の光軸45゜との組合せは第6図fの
ようになる。第6図rの光軸の組合せを第6図gのよう
に表示する. 正門偏光板を作る場合は、直線偏光板と1/4波長板を
組合せて作るので、第6図hのようになる. この表現は直線偏光板とh波長板の組合せの場合に限ら
ず、直線偏光板同志の場合にも使われる.すなわち第6
図■では直線偏光板同志の平行位の状態という.第7図
に示すように■の場合は右円線偏光板となり■の場合は
左円偏光板となる.本発明では第8図のようにライトガ
イド側とイメージガイド側の円偏光板をともに右円偏光
板あるいはともに左円偏光板としたものである.本発明
ではこのような構成とることにより、ライトガイド側か
ら右偏光として入射した光は胃壁に当って反射すると左
偏光となる.この結果反射して左円偏光とした光は右円
偏光板に入りその直線偏光フィルムと%波長板の光軸角
度が45°となっているため,イメージ側の丸波長板で
90’の直線偏光となるため,0°の光軸方向である直
線偏光板で多量に遮光される. かくしてハレーシ璽ンの原因となる反射部分の光は除去
される. ■の説明             ,ついて説明する
.POLAX−32Nの商品名で”POLAX−32N
は単体透過率、偏光性能などの特性がPOLAXシリー
ズの可視光線円偏光板の中で、最も平均的な偏光板です
. 単体透過率は、約32%となっており、カメラ用の偏光
フィルター,円偏光フィルターなどへの使用においても
十分な透過率です.また、直交位透過率は、使用波長域
700nm〜350nmにおいて,10−3〜10−5
オーダーと優れた性能も兼ね備えています. 透過率、消光比など、一つの要素を偏光するのではなく
、トータル的にバランスのとれた偏光板を必要とするよ
うな用途に、最適な偏光板です.POLAX−32Nは
、カメラ用の偏光フィルター、円偏光フィルターなどの
ほか、歪検査器など光学計測機器の分野においても、そ
のバランスのとれた特性について、高い評価を得ていま
す.′ この種内視鏡においては従来38ボラライザーが用いら
れていたが、本発明では32ポラライザーを用い、ハレ
ーション除去効果に著るしい改善を見た. その試験結果を第9〜11図に,また第12図に38ボ
ラライザーの試験結果を示した.第9図は32ボラライ
ザーと丸波長板145nmを第lO図は同じく嵐波長板
140nmを,第1l図は嵐波長坂150nmのものを
用いた試験結果を示し、それらのグラフの横軸はイメー
ジガイド側とライトガイド側の円偏光フィルターの光軸
のなす角度を示している. また第12図は38ボラライザーの直線偏光板とh波長
板エタックス、%λ−5800を用いた場合の試験結果
を示している. @の説明 %波長板として140±5nmのもの、すなわち円偏光
板としては560〜600nmのものを用いたのはこの
烏波長板の透過する光の波長の領域が胃壁の本来の色調
すなわち青みがかった赤紫色に合致するからである. (電子内視鏡の実施例の説明) 本発明を電子内視鏡に用いた場合を第13図に示してい
る.この場合は個体撮像素子CCD側の円偏光フィルタ
ーは対物レンズ2aと個体撮像素子CCDの間に置かれ
る.一般の形態としては、個体撮像素子CODに貼り付
けられる.なおライトガイドファイバーは内視鏡、電子
内視鏡とも2本並列されているが,第3図、第12図で
は1本として表示してある. (その他) 本発明は宝石鑑定、金属断面検査、精密部品検査などに
も用いられる. (発明の効果) ■ ライトガイド側とイメージガイド側の円偏光フィル
ターの光軸のなす角度を90″〜800としたので、第
6図のようにハレーションはほとんど消える.すなわち
ライトガイド側から胃の粘膜に入射した光線は右円偏光
であるが、反射して左円偏光にかわるところがイメージ
ガイド側の円光板はイメージ側の烏波長板で直線偏光に
戻され、直線偏光フィルムでかなりの部分が遮光除去さ
れる.この結果ハレーションはきわめて少なくなる. 第9〜l1図に直線偏光フィルムとして32ポラライザ
ーを用いた場合を示している.すなわち第9〜l1図は
円偏光フィルムの直線偏光フィルムとして32ボラライ
ザーを用い、h波長板として14Snm±5nmのもの
を用いた場合を示した. 第9〜11図に示すように,イメージガイド側をライト
ガイド側の円偏光板の光軸のなす角度が90°とした場
合において、波長500〜350nm、および650〜
700nmの部分が極端に少なくなり、青色残光が少な
くなったことを示している.すなわちハレーションが消
え,均一な鮮明な画像が得られた. ■ 本発明においては直線偏光フィルムとして32ボラ
ライザーを用いた.このことは、従来38ボラライザー
を用いていた場合に比べ光の透過率が少なくなりハレー
ション除去効果が大きくなったことを示している. すなわち第9〜11図のように、32ポラライザーを用
いた場合と、第12図のように38ボラライザーを用い
た場合とを比べてみると38ボラライザーの場合は波長
450〜400nmの部分が極端に大きくなり、青色の
残光がきわめて大きい. この点32ボラライザーを用いた場合は青色の残光がき
わめて少なく、ハレーションの少ない画像が得られるこ
とを示している. ■ また丸波長板として145±5nmのものを用いた
ので、胃壁本来の色調に合致し、画像の色調が本来の胃
壁のものに合致する.
[Detailed Description of the Invention] [Industrial Application Field] The present invention attaches a circularly polarizing filter to the tip of an endoscope or electronic endoscope, making it possible to take clear film images. In particular, it relates to a Halley thin removal device that aims to make the film clear when the operator looks directly into the finder of the endoscope, or when diagnosing television images via the solid-state imaging device of the electronic endoscope or mirror. [Conventional technology and its problems] When conventionally using an endoscope to film the stomach wall, etc., the light intensity irradiated from the light source, through the light guide fiber, to the stomach wall, etc. is linearly polarized light or circularly polarized light. Contains a certain amount. By the way, if we take the stomach wall as an example, on the surface of the stomach wall, there are 5 layers of gastric juice, 5 layers of water 1as, and 5 layers of gastric mucosa layer 1b, respectively, as shown in FIG.
It is layered to a thickness of approximately 00 μm. Therefore, the light emitted from the tip of the light guide fiber is scattered and reaches the stomach wall surface, but the gastric juice, water layer 1a, and gastric mucosal layer 1b
acts like a lens, and after the light is bent and converged by this lens, it is reflected from one side of the stomach wall. Therefore, when the reflected light passes through the objective lens, passes through the image guide fiber, and is exposed to the film surface, it causes a halation effect. In other words, when light is irradiated onto a lesion or mucosal surface, the central spot becomes too bright and becomes white, while the surrounding area forms a suitable image. The reason for this is thought to be that the light from the light source contains direct polarized light and circularly polarized light, and the refractive index of the lens on the stomach wall surface is at random. Especially in the case of endoscopes, the distance between the light irradiation point and the subject is 1~
Since the distance is within 2 cm, the reflection of the spot surface as described above is brought into close-up. (c) Means for Solving the Problems and Their Effects] In order to solve the above-mentioned problems of the conventional endoscope, the present invention takes the following precautions. That is, a circularly polarizing filter 4 has a linearly polarizing film 102 and a quarter wavelength plate 103 superimposed between the incident and reflective objective lenses 2 and 2a and the light guide fiber 3, image guide fiber 3a, or solid-state image sensor CCD. , 4a, in an endoscope or electronic endoscope in which the 1/4 wavelength slope 103 is set at the same phase angle toward the objective lenses 2 and 2a, (a) circular polarization filters on the light guide side and the image guide side The angle formed by the optical axes of 4 and 4a was set to 80@~90'', (b) and a 32 Volaizer was used as the linear polarizing filter 102 of circular polarizing filter 4.4a, (c) 1/4 Wavelength 14 to be cut by wave plate 103
This structure employs the following structure: 5ns±5n. By adopting the above-mentioned precepts, the present invention has succeeded in obtaining captured images with extremely low halation. [Explanation of an embodiment of an endoscope] First, an embodiment in which the device of the present invention is applied to an endoscope will be described. The present applicant previously filed an application as Japanese Patent Application No. 1-130245 for a Halley stain removal device having the following structure. In the drawing, 1 is the stomach wall, 1a is the gastric juice and water layer on its surface, and lb is the gastric mucosal layer. 2 and 2a are incident side and reflection side objective lenses, 3 and 3a are light guide fibers and image guide fibers, respectively. 4 and 4a are provided between the objective lenses 2 and 2a and the light guide fiber 3 and image guide fiber 3a. It is a circular polarizing filter. 5 refers to the endoscope. The effect will be explained below. The reflection removing device of the present invention replaces the filter conventionally used in television displays with the objective lens of an endoscope.
, 2a and the light guide fiber 3 and image guide fiber 3a. This filter has a laminate structure in which multi-coated glass 101, gray polarizing film 102, quarter-wave plate 103, and glass 104 are layered. However, glasses 1-4 may be multi-coated glasses. Multi-coated glass 101 significantly reduces troublesome reflections on the display surface, making it possible to create a clear screen. The gray polarizing film 102 and the quarter-wave plate 103 constitute the circularly polarizing filter 4 of the present invention. This filter has the following effects. (a) The gray polarizing film 102 provides a suitable contrast and provides an easy-to-read screen. (b) The circular polarization effect suppresses display flickering and improves resolution. (c) Reflection on the iiji image plane can be almost eliminated. That is, the reflectance of the multi-coated glass 104 is significantly lower in the wavelength range of 450 to 650 nm than in the case without coating. Furthermore, as shown in FIG. 7, the light transmittance is extremely large at wavelengths of 400 nm or more, so it has a significant effect on reflectance and transmittance in light sources used in endoscopes. (d) It can block harmful ultraviolet rays. By the way, the function of the circularly polarizing filter 4.4a (the two may be integrated) is explained as follows. The light emitted from the light guide fiber 3 first passes through the gray linearly polarizing film 102 of the circularly polarizing filter 4 and then transmits through the 1/4 wavelength slope 103. In the linearly polarizing film 102, circularly polarized lights other than the linearly polarized lights are cut off. And this linearly polarized light is 174 wavelength slope 103
When the light passes through it, a 45° phase difference occurs in the direction of vibration, resulting in circularly polarized light as shown in Figure 4. This circularly polarized light may also become elliptically polarized light. As shown in FIG. 2, this circularly polarized light passes through the entrance objective lens 2 to the stomach wall l, and then
It is reflected by the stomach wall 1, passes through the reflective objective lens 2a, passes through the reflective circular polarizing filter 4a again, and enters the image guide fiber 3a. The film is then exposed to light in the same way as before. By the way, in the present invention, the following precautions are adopted in the above-mentioned prior art Hareshigon removal device I. That is, (1) the angle formed by the optical axes of the linearly polarizing film 102 on the light guide side and the image guide side is 90° to 801°, a 32 Volaizer is used as the Q linearly polarizing film 102, and 145±5n is used as the 0 1/4 wavelength plate; In other words, a circularly polarizing filter of 560 to 600n was used. The details are explained below. Explanation of ■: As shown in Figure 6a, the optical axis of the linearly polarizing film is represented by the angle of the transmission axis as O'', 45°.901.As shown in Figure 6b, the 1/4 wavelength plate is also The angle of the axis is O@, 45°,
Expressed as 906. And linear polarizing film, 1/
If the 4-wave plate is round, by rotating it in the direction of the hour hand from the 0° position as shown in Figure 6c and d, its leading axis will be set to 0.
It will change to 45°, 90@. The angle is also displayed in the following cases: A circularly polarizing plate is usually made by combining a linearly polarizing plate and a quarter-wave plate. When a linear polarizing plate and a quarter-wave plate are combined, it is necessary to decide in what direction their respective optical axes, that is, the optical axes, should be combined. For example, as shown in Figure 6e, the optical axis direction of the linear polarizing plate is 90°.
The combination of this and the optical axis of the 174-wave plate at 45 degrees is as shown in Figure 6f. The combination of optical axes in Figure 6r is displayed as in Figure 6g. When making a front gate polarizing plate, it will be made by combining a linear polarizing plate and a quarter wavelength plate, so it will look like the one shown in Figure 6h. This expression is used not only for the combination of a linear polarizer and an h-wave plate, but also for the combination of linear polarizers. That is, the sixth
In Figure ■, it is said that the linear polarizers are parallel to each other. As shown in Figure 7, if it is ■, it is a right-handed circularly polarizing plate, and if it is ■, it is a left-handed circularly polarizing plate. In the present invention, as shown in FIG. 8, the circularly polarizing plates on the light guide side and the image guide side are both right-handed circularly polarizing plates or both are left-handed circularly polarizing plates. In the present invention, by adopting such a configuration, light that enters as right-polarized light from the light guide side becomes left-polarized light when it hits the stomach wall and is reflected. As a result, the light that is reflected and becomes left-handed circularly polarized light enters the right-handed circularly polarizing plate, and since the optical axis angle of the linearly polarizing film and the % wave plate is 45 degrees, the circular wave plate on the image side forms a 90' straight line. Since it is polarized light, a large amount of light is blocked by a linear polarizing plate, which has an optical axis of 0°. In this way, the reflected light that causes hareshi blemishes is removed. ■Explanation , I will explain about it. The product name of POLAX-32N is "POLAX-32N".
is a polarizing plate with the most average characteristics such as single transmittance and polarization performance among the visible light circularly polarizing plates of the POLAX series. The single transmittance is approximately 32%, which is sufficient for use in polarizing filters for cameras, circularly polarizing filters, etc. In addition, the orthogonal transmittance is 10-3 to 10-5 in the used wavelength range of 700 nm to 350 nm.
It also combines order and excellent performance. This polarizing plate is ideal for applications that require a polarizing plate that is totally balanced, rather than polarizing a single element such as transmittance or extinction ratio. POLAX-32N has received high praise for its well-balanced characteristics in the field of polarizing filters for cameras, circular polarizing filters, and optical measurement equipment such as strain testers. ' Conventionally, a 38 polarizer was used in this type of endoscope, but in the present invention, a 32 polarizer was used, and a significant improvement was achieved in the halation removal effect. The test results are shown in Figures 9 to 11, and the test results of the 38 Volaizer are shown in Figure 12. Figure 9 shows the test results using a 32 Volaizer and a round wave plate of 145 nm, Figure 1 shows the test results using a 140 nm Arashi wave plate, and Figure 1 l shows the test results using a 150 nm Arashi wave plate.The horizontal axis of these graphs is the image guide. It shows the angle between the optical axis of the circularly polarizing filter on the side and the light guide side. Furthermore, Figure 12 shows the test results when using a linear polarizing plate of 38 Volalyzer and h wavelength plate Etax, %λ-5800. @Explanation% A wavelength plate of 140±5 nm, that is, a circularly polarizing plate of 560 to 600 nm, was used because the wavelength range of light transmitted by this wavelength plate has the original color tone of the stomach wall, which is bluish. This is because it matches the reddish-purple color. (Explanation of Embodiment of Electronic Endoscope) FIG. 13 shows a case where the present invention is applied to an electronic endoscope. In this case, the circularly polarizing filter on the solid-state image sensor CCD side is placed between the objective lens 2a and the solid-state image sensor CCD. In general form, it is attached to a solid-state image sensor COD. Although two light guide fibers are arranged in parallel in both the endoscope and the electronic endoscope, they are shown as one in Figures 3 and 12. (Others) The present invention can also be used for jewelry appraisal, metal cross-section inspection, precision parts inspection, etc. (Effects of the invention) ■ Since the angle formed by the optical axes of the circularly polarizing filters on the light guide side and the image guide side is set to 90" to 800, halation almost disappears as shown in Figure 6. In other words, from the light guide side to the stomach The light beam incident on the mucous membrane is right-handed circularly polarized light, but when it is reflected and changed to left-handed circularly polarized light, the circular light plate on the image guide side is converted back to linearly polarized light by the coronal wave plate on the image side. As a result, halation is extremely reduced. Figures 9 to 11 show the case where a 32 polarizer is used as a linearly polarizing film. In other words, Figures 9 to 11 show a case where a 32 polarizer is used as a linearly polarizing film of a circularly polarizing film. The case where a polarizer is used and a 14Snm±5nm h wavelength plate is used.As shown in Figures 9 to 11, the angle formed by the optical axis of the circularly polarizing plate with the image guide side and the light guide side is 90°. In the case of °, the wavelength is 500 to 350 nm, and 650 to 350 nm.
The 700nm portion is extremely small, indicating that the blue afterglow is reduced. In other words, halation disappeared and a uniform, clear image was obtained. ■ In the present invention, 32 Volaizer was used as the linearly polarizing film. This shows that the light transmittance is lower and the halation removal effect is greater than when the conventional 38 Volaizer was used. In other words, when comparing the case where a 32 polarizer is used as shown in Figures 9 to 11 and the case where a 38 polarizer is used as shown in Figure 12, in the case of a 38 polarizer, the wavelength range of 450 to 400 nm is extremely large. It grows larger and the blue afterglow is extremely large. In this respect, when using the 32 Volaizer, there is very little blue afterglow, indicating that images with little halation can be obtained. ■ Also, since we used a round wave plate with a wavelength of 145±5 nm, it matches the original color tone of the stomach wall, and the color tone of the image matches that of the original stomach wall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:胃壁の一部断面図、 第2図二本発明装置のスケルトン図、 第3図:同じく要部見取図、 第4図:グレイ偏光フィルム102と嵐波長板103の
作用説明図、 第5図二本発明円偏光フィルター4の説明図、第6図■
〜■:光軸の表示方法についての説明、 第7図■、■:左右円偏光板の説明図、第8図二本発明
円偏光板の配置説明図、第9図:32ボラライザー、職
波長板145nmを用いた試験結果のグラフ、 第10図:同じく波長板140nmを用いた場合のグラ
フ、 第11図:同じく波長板150nmを用いた場合のグラ
フ、 第12図:38ボラライザーを用いた場合のグフフ、 第13図二電子内視鏡の場合の見取図、l:胃壁、 la:胃粘液層、 2−2a:入射側,反射側対物レンズ、3.3a:ライ
トガイドファイバー、イメージガイドファイバー 4,4a:入射側、反射側案偏光フィルター10l:マ
ルチコーティングガラス、 102:グレイ偏光フィルム、 102s:縦スリット、 103:丸波長板、 104:ガラス、 5:内視鏡. 図面の浄書 第 1 図 面面の浄書 第 2 図 X面の浄書 第 3 図 図面の浄書 第 5 図 図面の浄書 第 6 図 O 第 6 図 b 第 6 図 C 0 45 篇 6 図 d 0 90 90 90” 第 6 図 第 6 図f 笥 6 図g 第 6 図 h 第 6 図 平或B年 参月 Φ日
Fig. 1: Partial sectional view of the stomach wall, Fig. 2: Skeleton diagram of the device of the present invention, Fig. 3: Also a sketch of the main parts, Fig. 4: An explanatory diagram of the action of the gray polarizing film 102 and the storm wave plate 103. Figure 5 2 Explanatory diagram of the circularly polarizing filter 4 of the present invention, Figure 6 ■
~ ■: Explanation of how to display the optical axis, Figure 7 ■, ■: Explanatory diagram of left and right circularly polarizing plates, Figure 8: Explanatory diagram of the arrangement of circularly polarizing plates of the present invention, Figure 9: 32 polarizer, optical wavelength Graph of test results using a 145 nm plate, Figure 10: Graph when using a 140 nm wavelength plate, Figure 11: Graph when using a 150 nm wavelength plate, Figure 12: Using a 38 polarizer Fig. 13 Schematic diagram for a two-electron endoscope, l: stomach wall, la: gastric mucus layer, 2-2a: incident side, reflection side objective lens, 3.3a: light guide fiber, image guide fiber 4 , 4a: Incident side, reflective side polarizing filter 10l: multi-coated glass, 102: gray polarizing film, 102s: vertical slit, 103: round wavelength plate, 104: glass, 5: endoscope. Engraving of drawings 1st Engraving of drawings 2nd Engraving of drawings X 3rd Engraving of drawings 5 ” Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 h Fig. 6

Claims (1)

【特許請求の範囲】 1)入射、反射側対物レンズ2、2aと、ライトガイド
ファイバー3、イメージガイドファイバー3aとの間に
直線偏光フィルム102、1/4波長板103、を重ね
合わせた円偏光フィルター4、4aを、1/4波長板1
03を対物レンズ2、2aに向けて同一位相に取り付け
た内視鏡において、 ライトガイド側とイメージガイド側の直線偏光フィルム
102の光軸のなす角度が90゜〜80゜である、 ハーレーション除去装置。 2)入射、反射側対物レンズ2、2aと、ライトガイド
ファイバー3、固体撮像素子(CCD)との間に直線偏
光フィルム102、1/4波長板103、を重ね合わせ
た円偏光フィルター4、4aを、1/4波長板103を
対物レンズ2、2aに向けて同一位相に取り付けた内視
鏡において、 ライトガイド側と固体撮像素子側の直線偏光フィルム1
02の光軸のなす角度が90゜〜80゜特に90゜であ
る、 ハーレーション除去装置。 3)直線偏光フィルム103として32ポラライザーを
用いた請求項1、2記載のハーレーション除去装置。 4)1/4波長板103として145nm±5nmすな
わち円偏光フィルターとして560〜600nmのもの
を用いた請求項1、2記載のハーレーション除去装置。 5)直線偏光フィルム102、1/4波長板103の両
側に外側にマルチコーティングされたマルチコーティン
グガラス101を貼り合わせた請求項1ないし4のいず
れか1つに記載されたハーレーション除去装置。 6)円偏光フィルター4aを固体撮像素子CCDを貼り
付けた請求項2記載のハーレーション除去装置。
[Claims] 1) Circularly polarized light obtained by superimposing a linear polarizing film 102 and a quarter-wave plate 103 between the incident and reflective objective lenses 2 and 2a, the light guide fiber 3, and the image guide fiber 3a. Filters 4, 4a, 1/4 wavelength plate 1
03 is attached to the objective lenses 2 and 2a in the same phase, and the angle between the optical axes of the linear polarizing films 102 on the light guide side and the image guide side is 90° to 80°. Device. 2) Circular polarizing filters 4, 4a in which a linear polarizing film 102 and a quarter-wave plate 103 are superimposed between the incident and reflective objective lenses 2, 2a, the light guide fiber 3, and the solid-state imaging device (CCD). In an endoscope in which the quarter-wave plate 103 is attached in the same phase toward the objective lenses 2 and 2a, the linear polarizing film 1 on the light guide side and the solid-state image sensor side is
A halation removal device, wherein the angle formed by the optical axis of 02 is 90° to 80°, particularly 90°. 3) The halation removal device according to claim 1 or 2, wherein a 32 polarizer is used as the linearly polarizing film 103. 4) The halation removal device according to claim 1 or 2, wherein the quarter wavelength plate 103 has a wavelength of 145 nm±5 nm, that is, the circular polarizing filter has a wavelength of 560 to 600 nm. 5) The halation removal device according to any one of claims 1 to 4, wherein multi-coated glass 101 which is multi-coated on the outside is bonded to both sides of the linear polarizing film 102 and the quarter-wave plate 103. 6) The halation removal device according to claim 2, wherein a solid-state image sensor CCD is attached to the circularly polarizing filter 4a.
JP2001120A 1990-01-09 1990-01-09 Halation removing device for endoscope and electronic endoscope Pending JPH03206412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120A JPH03206412A (en) 1990-01-09 1990-01-09 Halation removing device for endoscope and electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120A JPH03206412A (en) 1990-01-09 1990-01-09 Halation removing device for endoscope and electronic endoscope

Publications (1)

Publication Number Publication Date
JPH03206412A true JPH03206412A (en) 1991-09-09

Family

ID=11492598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120A Pending JPH03206412A (en) 1990-01-09 1990-01-09 Halation removing device for endoscope and electronic endoscope

Country Status (1)

Country Link
JP (1) JPH03206412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307144A (en) * 1992-04-28 1993-11-19 Bikoudou:Kk Halation removing device for endoscope and electronic endoscope
EP0586162A1 (en) * 1992-08-24 1994-03-09 Ethicon Inc. Glare elimination device
JP2013215582A (en) * 2006-02-09 2013-10-24 Avantis Medical Systems Inc Endoscope assembly with polarizing filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307144A (en) * 1992-04-28 1993-11-19 Bikoudou:Kk Halation removing device for endoscope and electronic endoscope
EP0586162A1 (en) * 1992-08-24 1994-03-09 Ethicon Inc. Glare elimination device
US5406938A (en) * 1992-08-24 1995-04-18 Ethicon, Inc. Glare elimination device
JP2013215582A (en) * 2006-02-09 2013-10-24 Avantis Medical Systems Inc Endoscope assembly with polarizing filter

Similar Documents

Publication Publication Date Title
US9392231B2 (en) Imaging device and endoscope for detecting and displaying the shape of the micro-geometric texture of a transparent structure
JP3338837B2 (en) Composite display
JP6023919B2 (en) Endoscope system
JP3197350B2 (en) Head or face-mounted display device
CN110461203A (en) Endoscopic system
JPWO2015159726A1 (en) Cube-type polarizing beam splitter module
US5893650A (en) Viewfinder system and single-lens reflex camera having the same
JP2001042230A (en) Image pickup optical system
JP3808918B2 (en) Endoscope optical system
US10893793B2 (en) Objective optical system and endoscope device including the same
JPH03206412A (en) Halation removing device for endoscope and electronic endoscope
JPH01185622A (en) Finder optical system for single-lens reflex camera
JP2588460B2 (en) Halation removal device for endoscopes and electronic endoscopes
TWI521242B (en) An optical filter element that corrects spectral aberration
US20060262208A1 (en) Optical low pass filter and image pickup apparatus having the same
US6661579B2 (en) Beam splitting for camera using a multilayer film
US6047139A (en) Camera capable of display in finder
JP4124847B2 (en) Viewfinder system and optical apparatus having the viewfinder system
US4952956A (en) Finder optical system
JP2828451B2 (en) Liquid crystal projector, polarizer used for the same, and polarizing microscope using the polarizer
US5774269A (en) Image pick-up apparatus
JPH02309311A (en) Reflection eliminating device for endoscope
JP2004264687A (en) Combiner optical system
CN221266120U (en) Endoscope optical system and stereoscopic endoscope
JP2589286Y2 (en) Endoscope optical system