[go: up one dir, main page]

JPH0320579B2 - - Google Patents

Info

Publication number
JPH0320579B2
JPH0320579B2 JP61123746A JP12374686A JPH0320579B2 JP H0320579 B2 JPH0320579 B2 JP H0320579B2 JP 61123746 A JP61123746 A JP 61123746A JP 12374686 A JP12374686 A JP 12374686A JP H0320579 B2 JPH0320579 B2 JP H0320579B2
Authority
JP
Japan
Prior art keywords
fuel injection
engine
injection amount
fuel
cumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61123746A
Other languages
Japanese (ja)
Other versions
JPS62282140A (en
Inventor
Yoshiki Yuzuriha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP12374686A priority Critical patent/JPS62282140A/en
Publication of JPS62282140A publication Critical patent/JPS62282140A/en
Publication of JPH0320579B2 publication Critical patent/JPH0320579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は内燃機関の電子制御燃料噴射装置に関
し、詳しくは機関の始動性を向上させる技術に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more particularly to a technique for improving engine startability.

<従来の技術> 内燃機関の電子制御燃料噴射装置の従来例とし
ては例えば以下のようなものがある。
<Prior Art> Examples of conventional electronically controlled fuel injection devices for internal combustion engines include the following.

即ち、エアフローメータによつて検出される吸
入空気流量Qと点火信号等から検出される機関回
転速度Nとから、1回転当たりの吸入空気量に相
当する基本燃料噴射量Tp(=K×Q/N;Kは定
数)を演算すると共に、機関冷却水温度等の機関
運転状態に応じた各種補正係数COEFと空燃比フ
イードバツク補正係数αとバツテリ電圧による補
正分Tsとを演算した後、燃料噴射量Ti(=Tp×
COEF×α+Ts)を演算する。
That is, the basic fuel injection amount Tp (=K×Q/ N; K is a constant), as well as various correction coefficients COEF according to engine operating conditions such as engine cooling water temperature, air-fuel ratio feedback correction coefficient α, and battery voltage correction Ts, and then calculate the fuel injection amount. Ti(=Tp×
COEF×α+Ts) is calculated.

そして、演算された燃料噴射量Tiに相当する
パルス巾の噴射パルス信号を燃料噴射弁に出力
し、機関に所定量の燃料を噴射供給させるように
していた(特開昭59−203828号公報等参照)。
Then, an injection pulse signal with a pulse width corresponding to the calculated fuel injection amount Ti is output to the fuel injection valve, thereby injecting and supplying a predetermined amount of fuel to the engine (Japanese Unexamined Patent Publication No. 59-203828, etc. reference).

<発明が解決しようとする問題点> ところで、かかる従来の電子制御燃料噴射装置
においては、機関の始動時にスタータモータによ
つて機関が回転し始めると直ちに燃料噴射を開始
するようにしていたため、特に冷機時には始動初
期に未燃焼燃料が多く発生して始動性を損なう惧
れがあつた。
<Problems to be Solved by the Invention> By the way, in such a conventional electronically controlled fuel injection device, fuel injection is started immediately when the engine starts rotating by the starter motor when the engine is started. When the engine is cold, there is a risk that a large amount of unburned fuel will be generated in the early stages of startup, impairing startability.

即ち、通常、始動時には燃料噴射量を増量補正
することによつて着火性を向上させるようにして
いるが、冷機時の始動初期においてはこのような
増量補正を行つても、燃料の霧化が不十分であつ
たり燃焼室壁が低温であるため火炎伝播が不良と
なるなどの原因によつて着火ミスが発生すること
は避けきれない。このため、スタータモータによ
る機関の回転初めから燃料噴射を開始させても、
この始動初期に噴射供給された燃料が良好に燃焼
しないで未燃焼燃料となり、点火栓を濡らす原因
となつたりそのまま排出されて排気性状を悪化さ
せる惧れがあつた。換言すれば、機関の始動初期
に噴射供給される燃料は、機関の始動に関与しな
い無駄な供給となる惧れがあつたものである。
In other words, normally, the ignitability is improved by increasing the fuel injection amount at startup, but even if such an increase is performed at the beginning of cold engine startup, the atomization of the fuel will not be achieved. It is inevitable that ignition errors will occur due to insufficient flame propagation due to insufficient heat or low temperature of the combustion chamber walls. Therefore, even if fuel injection is started from the beginning of engine rotation by the starter motor,
There is a risk that the fuel injected at the early stage of startup may not burn well and become unburned fuel, which could cause the spark plug to become wet or be exhausted as is, worsening the exhaust properties. In other words, there is a risk that the fuel that is injected and supplied at the initial stage of engine startup becomes a wasteful supply that does not contribute to engine startup.

本発明は上記問題点に鑑みなされたものであ
り、機関始動時における未燃焼燃料の発生を抑止
して、機関の始動性を向上させることを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to improve the startability of the engine by suppressing the generation of unburned fuel when starting the engine.

<問題点を解決するための手段> そのため本発明では、第1図に示すように、機
関運転状態検出手段によつて検出された機関運転
状態に基づいて燃料噴射量を設定する燃料噴射量
設定手段と、これによつて設定された燃料噴射量
に応じて燃料噴射弁を開閉駆動制御する駆動制御
手段と、を備えた内燃機関の電子制御燃料噴射装
置において、機関の始動状態を検出する機関始動
状態検出手段と、機関の始動開始が前記機関始動
状態検出手段で検出されてからの累積機関回転数
が所定回転数になるまでの間において前記駆動制
御手段の作動を強制的に停止させて燃料噴射を停
止させる燃料噴射停止手段と、を設けるようにし
た。また、上記構成において、前記累積機関回転
数の所定回転数を、機関温度に応じて可変設定す
るようにした。
<Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. 1, the fuel injection amount setting method sets the fuel injection amount based on the engine operating state detected by the engine operating state detection means. and a drive control means for controlling the opening and closing of a fuel injection valve according to a set fuel injection amount in an electronically controlled fuel injection system for an internal combustion engine, which detects a starting state of the engine. The operation of the drive control means is forcibly stopped between the time when the start of the engine is detected by the engine start state detection means and the cumulative engine speed reaches a predetermined number of revolutions. A fuel injection stop means for stopping fuel injection is provided. Further, in the above configuration, the predetermined rotation speed of the cumulative engine rotation speed is variably set according to the engine temperature.

<作用> かかる電止制御燃料噴射装置によると、機関始
動状態検出手段により機関の始動開始が検出され
ると、この時点から累積機関回転数が所定回転数
になるまでの間は燃料噴射量設定手段によつて燃
料噴射量の設定がなされても、燃料噴射量停止手
段により駆動制御手段の作動が強制的に停止され
て燃料噴射が停止される。
<Function> According to this electrostatic control fuel injection device, when the start of engine starting is detected by the engine starting state detection means, the fuel injection amount is set from this point until the cumulative engine speed reaches a predetermined speed. Even if the fuel injection amount is set by the means, the fuel injection amount stopping means forcibly stops the operation of the drive control means and stops the fuel injection.

即ち、機関の始動が開始されても直ちに燃料噴
射を開始させるのではなく、始動開始からの累積
機関回転数が所定回転数になつてから噴射を開始
させ、累積回転数が所定数になるまでの間は燃料
噴射を停止させて、かかる噴射停止期間中に機関
に空気圧縮を行わせて、燃料室温度の上昇を図
り、燃料噴射を遅れて開始させたときに着火に充
分な燃料霧化性と火炎伝播性を得られるようにし
たものである。ここで、前記噴射を開始させる累
積回転数を機関温度に応じて可変設定させること
で、所望の燃焼室温度の上昇を、無駄に燃料噴射
停止期開を長引かせることなく得ることができ
る。
In other words, fuel injection is not started immediately when the engine starts, but injection is started after the cumulative engine speed from the start of engine startup reaches a predetermined speed, and until the cumulative engine speed reaches a predetermined speed. During this period, fuel injection is stopped, and the engine compresses air during the injection stop period to increase the fuel chamber temperature, and when fuel injection is started later, sufficient fuel atomization for ignition is achieved. This makes it possible to obtain properties such as fire resistance and flame propagation properties. Here, by variably setting the cumulative rotational speed at which the injection is started according to the engine temperature, a desired increase in combustion chamber temperature can be obtained without unnecessarily prolonging the fuel injection stop period.

<実施例> 以下に本発明の一実施例を図面に基づいて説明
する。
<Example> An example of the present invention will be described below based on the drawings.

第2図に本発明にかかる電子制御燃料噴射装置
の一実施列のハードウエア構成を示してある。
FIG. 2 shows the hardware configuration of one embodiment of the electronically controlled fuel injection device according to the present invention.

この図において、回転速度センサ1の出力であ
る機関回転速度信号N、エアフローメータ2の出
力である吸入空気流量信号Q、水温センサ3の出
力である機関の冷却水温度信号Tw及びスタータ
スイツチ(スタータモータの通電を制御するスイ
ツチ)7のON・OFF信号が、入出力装置、記憶
装置、中央演算装置によつて構成されるマイクロ
コンピユータを内蔵したコントロールユニツト4
にそれぞれ入力され、コントロールユニツト4は
これらの信号に基づいて後述するように設定され
る噴射パルプ信号を燃料噴射弁5の駆動回路6に
出力すると共に、始動初期(始動開始からの機関
の累積回転数が所定数になるまでの期間)におい
て噴射パルス信号の出力を停止する。
In this figure, the engine rotation speed signal N is the output of the rotation speed sensor 1, the intake air flow rate signal Q is the output of the air flow meter 2, the engine cooling water temperature signal Tw is the output of the water temperature sensor 3, and the starter switch (starter switch) The ON/OFF signals of the switch (switch) 7 that controls the energization of the motor are transmitted by the control unit 4, which has a built-in microcomputer that is composed of an input/output device, a storage device, and a central processing unit.
Based on these signals, the control unit 4 outputs an injection pulp signal set as described below to the drive circuit 6 of the fuel injection valve 5, and also outputs an injection pulp signal to the drive circuit 6 of the fuel injection valve 5. output of the injection pulse signal is stopped during the period until the number reaches a predetermined number).

即ち、本実施例において、コントロールユニツ
ト4は、スタータスイツチ7とによつて機関始動
状態検出手段を構成すると共に、駆動回路6とに
よつて駆動制御手段を構成し、一方、燃料噴射量
設定手段及び燃料噴射停止手段はソフトウエア的
に備えている。また、本実施例において機関運転
状態検出手段とは、上記回転速度センサ1、エア
フローメータ2及び水温センサ3が相当する。
That is, in this embodiment, the control unit 4 constitutes an engine starting state detection means with the starter switch 7, and a drive control means with the drive circuit 6, while the control unit 4 constitutes a drive control means with the starter switch 7. and fuel injection stop means are provided in terms of software. In this embodiment, the engine operating state detection means corresponds to the rotational speed sensor 1, air flow meter 2, and water temperature sensor 3.

次に第3図のフローチヤートに基づいて作用を
説明する。
Next, the operation will be explained based on the flowchart shown in FIG.

ステツプ(図中では「S」としてあり、以下同
様とする)1では、各センサによつて検出される
機関回転速度N、吸入空気流量Q及び機関冷却水
温度Tw、更にスタータスイツチ7のON・OFF
信号を入力する。
In step 1 (indicated as "S" in the figure, the same applies hereinafter), the engine rotational speed N, intake air flow rate Q, and engine cooling water temperature Tw detected by each sensor, and the ON/OFF state of the starter switch 7 are determined. OFF
Input the signal.

ステツプ2では、スタータスイツチ7のON・
OFFを判定し、OFFであると判定された場合、
即ち、スタータモータの非駆動状態で機関の始動
状態でないと判定された場合には、ステツプ5へ
ジヤンプして後述する通常の燃料噴射制御が行わ
れる。一方、スタータスイツチ7がONであると
判定された場合、即ちスタータモータが駆動され
ている機関始動状態であると判定された場合に
は、次のステツプ3へ進む。
In step 2, turn on the starter switch 7.
If it is determined to be OFF,
That is, if it is determined that the starter motor is not driven and the engine is not started, the routine jumps to step 5 and normal fuel injection control, which will be described later, is performed. On the other hand, if it is determined that the starter switch 7 is ON, that is, if it is determined that the engine is in a starting state where the starter motor is being driven, the process proceeds to the next step 3.

ステツプ3では、スタータスイツチ7がON
(始動開始)されてから燃料噴射を開始させるま
での期間、即ち、燃料噴射を強制的に停止させる
期間を設定する。ここで、前記噴射停止期間は、
始動開始からの機関の累積回転機が所定回転数n
に達するまでの期間であり、本実施例では、機関
冷却水温度Twが低く燃料の霧化性が悪化すると
きほど前記所定回転数nが高く設定されるように
なつており、これによつて冷機時ほど始動開始か
ら燃料噴射を開始させる時期を遅らせるようにな
つている。
In step 3, starter switch 7 is turned on.
The period from when the engine is started (starting) until the fuel injection is started, that is, the period during which the fuel injection is forcibly stopped is set. Here, the injection stop period is
The cumulative rotation speed of the engine from the start of the engine is the specified rotation speed n
In this embodiment, the predetermined rotation speed n is set higher as the engine cooling water temperature Tw is lower and the fuel atomization is worse. The timing at which fuel injection starts is delayed from the start of the engine when the engine is cold.

ステツプ4では、スタータスイツチ7のON状
態が初めて判定されてからの累積回転数がステツ
プ3において設定された所定回転数n以下である
か否かを判定する。ここで、YESと判定された
場合、即ち、スタータスイツチ7がONされてか
らの累積回転数が前記所定回転数nに至つていな
い場合には、ステツプ5〜7をジヤンプさせるこ
とにより燃料噴射を行わずにそのままリターンさ
せる。
In step 4, it is determined whether the cumulative number of revolutions since the ON state of the starter switch 7 is first determined is less than or equal to the predetermined number of revolutions n set in step 3. Here, if it is determined as YES, that is, if the cumulative number of revolutions since the starter switch 7 is turned on has not reached the predetermined number of revolutions n, steps 5 to 7 are jumped to inject fuel. Return without doing anything.

一方、ステツプ4でONと判定された場合、即
ち、前記累積回転数が所定回転数nを越えた場合
には、ステツプ5〜7へ進んで通常の燃料噴射制
御を行う。
On the other hand, if it is determined to be ON in step 4, that is, if the cumulative number of revolutions exceeds the predetermined number of revolutions n, the routine proceeds to steps 5 to 7, where normal fuel injection control is performed.

このように、スタータスイツチ7がONされて
スタータモータによつて機関が回転し初めても直
ちに燃料噴射を開始するのではなく、機関冷却水
温度Twに応じて設定される所定の累積回転数n
だけ機関が回転してから燃料噴射を開始する。即
ち、機関が回転し始めると従来第4図点線示のよ
うに燃料噴射量Tiに相当する噴射パルス信号が
出力されていたが、前記n回転の間は燃料噴射を
停止する。従つて、燃料噴射を判わずに回転する
前記回転数nの間は、空気のみが吸入・圧縮・排
出されることになり、着火ミスの起きやすいこの
間における未燃焼燃料の発生を抑止でき、かつ、
空気の圧縮によつて発生する熱によつて第4図に
示すように燃焼室壁が暖められることになる。
In this way, even when the starter switch 7 is turned ON and the engine is rotated by the starter motor, fuel injection does not start immediately, but instead starts at a predetermined cumulative rotation speed n that is set according to the engine cooling water temperature Tw.
Only after the engine has rotated will fuel injection begin. That is, when the engine starts rotating, conventionally an injection pulse signal corresponding to the fuel injection amount Ti is output as shown by the dotted line in FIG. 4, but fuel injection is stopped during the n rotations. Therefore, only air is taken in, compressed, and discharged during the rotation speed n when fuel injection is not determined, and it is possible to suppress the generation of unburned fuel during this period when ignition errors are likely to occur. and,
The heat generated by compressing the air warms the combustion chamber walls as shown in FIG.

始動初期における未燃焼燃料の発生が抑止され
れば、点火栓の濡れや未燃焼燃料による排気性状
の悪化が防止できる。また、上記のように燃料噴
射開始前に燃焼室壁が暖められると火炎伝播が良
好となり、燃料噴射開始時(スタータスイツチ7
ONからn回転後)における混合気の燃焼を良好
にすることができ、点火栓の濡れ回避とあいまつ
て機関の始動性を向上させることができる。ま
た、噴射を停止させる期間を、機関温度に応じた
累積回転数に基づいて判別するから、燃料噴射を
停止させた状態で所定回数だけ空気圧縮を行わせ
ることができ、所望の燃焼室温度の上昇を、無駄
に燃料噴射停止期間を長引かせることなく得るこ
とが可能となる。
If the generation of unburned fuel at the initial stage of startup is suppressed, wetting of the ignition plug and deterioration of exhaust properties due to unburned fuel can be prevented. In addition, as mentioned above, if the combustion chamber wall is warmed before the start of fuel injection, flame propagation will be good, and at the start of fuel injection (starter switch 7
This improves the combustion of the air-fuel mixture after n rotations from ON, and together with preventing the spark plug from getting wet, it is possible to improve the startability of the engine. In addition, since the period for stopping injection is determined based on the cumulative rotational speed according to the engine temperature, air compression can be performed a predetermined number of times while fuel injection is stopped, and the desired combustion chamber temperature can be achieved. It becomes possible to obtain the increase without unnecessarily prolonging the fuel injection stop period.

一方、機関の始動初期(スタータスイツチ7の
ON判定から機関の累積回転数が所定回転数nに
達するまでの間)以外においては、ステツプ5〜
7の燃料噴射制御が行われる。
On the other hand, in the early stages of engine startup (starter switch 7
Steps 5 to
7 fuel injection control is performed.

ステツプ5では、ステツプ1において入力した
機関回転速度Nと吸入空気流量Qとに基づいて基
本燃料噴射量Tp(=K×Q/N;Kは定数)を演
算する。
In step 5, a basic fuel injection amount Tp (=K×Q/N; K is a constant) is calculated based on the engine rotational speed N and intake air flow rate Q input in step 1.

そして、次のステツプ6では、ステツプ5で演
算した基本燃料噴射量Tpを補正演算して最終的
な燃料噴射量Tiを求める。即ち、ステツプ1に
おいて入力した機関冷却水温度Twや機関加速状
態等の各種運転状態から、記憶装置に設定・記憶
されるそれぞれの運転状態に基づく補正係数を検
索し、これらの補正係数を中央演算装置で演算し
て得られる各種補正係数COEFや空燃比フイード
バツク補正係数α、更にバツテリ補正分Tsによ
つて前記基本燃料噴射量Tpを補正した燃料噴射
量Ti(=Tp×COEF×α+Ts)を設定する。
Then, in the next step 6, the basic fuel injection amount Tp calculated in step 5 is corrected to obtain the final fuel injection amount Ti. That is, from various operating states such as the engine cooling water temperature Tw and engine acceleration state entered in step 1, correction coefficients based on each operating state set and stored in the storage device are retrieved, and these correction coefficients are centrally calculated. Set the fuel injection amount Ti (=Tp×COEF×α+Ts) by correcting the basic fuel injection amount Tp using various correction coefficients COEF and air-fuel ratio feedback correction coefficient α calculated by the device, as well as the battery correction amount Ts. do.

ステツプ7では、前記燃料噴射量Tiに相当す
るパルス巾の噴射パルス信号を燃料噴射弁5の駆
動回路6に出力して燃料噴射を行わせる。
In step 7, an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti is outputted to the drive circuit 6 of the fuel injection valve 5 to perform fuel injection.

<発明の効果> 以上説明したように、本発明によると、機関の
始動状態が検出されてから機関の累積回転数が所
定回転数に達するまでの間は燃料噴射を停止させ
るようにしたことにより、機関の始動初期に未燃
焼燃料が発生することを回避でき、未燃焼燃料に
よる点火栓の濡れや未燃焼燃料による排気性状の
悪化を未然に防止して、機関の始動性を向上させ
ることができる。
<Effects of the Invention> As explained above, according to the present invention, fuel injection is stopped from when the starting state of the engine is detected until the cumulative engine speed reaches a predetermined speed. , it is possible to avoid the generation of unburned fuel in the initial stage of engine startup, prevent wetting of the spark plug due to unburned fuel and deterioration of exhaust characteristics due to unburned fuel, and improve engine startability. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は本発明の一
実施例を示すシステム図、第3図は同上実施例に
おける燃料噴射制御を示すフローチヤート、第4
図は同上実施例における制御を示すタイムチヤー
トである。 1……回転速度センサ、2……エアフローメー
タ、3……水温センサ、4……コントロールユニ
ツト、5……燃料噴射弁、6……駆動回路、7…
…スタータスイツチ。
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is a system diagram showing an embodiment of the present invention, FIG. 3 is a flowchart showing fuel injection control in the same embodiment, and FIG.
The figure is a time chart showing control in the same embodiment. DESCRIPTION OF SYMBOLS 1... Rotation speed sensor, 2... Air flow meter, 3... Water temperature sensor, 4... Control unit, 5... Fuel injection valve, 6... Drive circuit, 7...
...Starter switch.

Claims (1)

【特許請求の範囲】 1 機関運転状態検出手段によつて検出された機
関運転状態に基づいて燃料噴射量を設定する燃料
噴射量設定手段と、設定された燃料噴射量に応じ
て燃料噴射弁を開閉駆動制御する駆動制御手段
と、を備えた内燃機関の電子制御燃料噴射装置に
おいて、機関の始動状態を検出する機関始動状態
検出手段と、機関の始動開始が前記機関始動状態
検出手段で検出されてからの累積機関回転数が所
定回転数になるまでの間において前記駆動制御手
段の作動を強制的に停止させて燃料噴射を停止さ
せる燃料噴射停止手段と、を設けたことを特徴と
する内燃機関の電子制御燃料噴射装置。 2 前記燃料噴射停止手段によつて燃料噴射が停
止される累積機関回転数の所定回転数を機関温度
に応じて可変設定するようにしたことを特徴とす
る特許請求の範囲第1項記載の内燃機関の電子制
御燃料噴射装置。
[Scope of Claims] 1. Fuel injection amount setting means for setting the fuel injection amount based on the engine operating state detected by the engine operating state detection means, and a fuel injection amount setting means for setting the fuel injection amount according to the set fuel injection amount. An electronically controlled fuel injection device for an internal combustion engine, comprising: a drive control means for controlling an opening/closing drive; and an engine start state detection means for detecting a start state of the engine; and a fuel injection stop means for forcibly stopping the operation of the drive control means and stopping fuel injection until the cumulative engine speed reaches a predetermined speed. The engine's electronically controlled fuel injection system. 2. The internal combustion engine according to claim 1, wherein a predetermined number of cumulative engine revolutions at which fuel injection is stopped by the fuel injection stop means is variably set according to engine temperature. The engine's electronically controlled fuel injection system.
JP12374686A 1986-05-30 1986-05-30 Electronically controlled fuel injection system for internal combustion engines Granted JPS62282140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12374686A JPS62282140A (en) 1986-05-30 1986-05-30 Electronically controlled fuel injection system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12374686A JPS62282140A (en) 1986-05-30 1986-05-30 Electronically controlled fuel injection system for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS62282140A JPS62282140A (en) 1987-12-08
JPH0320579B2 true JPH0320579B2 (en) 1991-03-19

Family

ID=14868298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12374686A Granted JPS62282140A (en) 1986-05-30 1986-05-30 Electronically controlled fuel injection system for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS62282140A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859733B2 (en) * 1993-01-22 2006-12-20 株式会社デンソー Fuel injection control device for internal combustion engine
JP2002213280A (en) * 2001-01-15 2002-07-31 Nissan Motor Co Ltd Fuel supply controller for engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620732A (en) * 1979-07-27 1981-02-26 Nissan Motor Co Ltd Fuel supply controller for internal combustion engine

Also Published As

Publication number Publication date
JPS62282140A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
EP1199460B1 (en) Fuel injection control apparatus and fuel injection control method for direct injection engine
JP2002180871A (en) Catalyst early warming-up controller for internal combustion engine
JP3859733B2 (en) Fuel injection control device for internal combustion engine
JP3498392B2 (en) Electronic control fuel injection device
JP3589011B2 (en) Fuel injection control device for internal combustion engine
JPH0320579B2 (en)
JP3152024B2 (en) Fuel injection control device for starting internal combustion engine
JPS6165042A (en) Air-fuel ratio control system for internal-combustion engine
JPH09151777A (en) Fuel property detection device for internal combustion engine
JP2712429B2 (en) Control device for internal combustion engine
JP2775676B2 (en) Fuel supply control device for internal combustion engine
JP3334403B2 (en) Start determination device for internal combustion engine
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JPH1130143A (en) Fuel supplying amount controller of internal combustion engine
JPH06307270A (en) Starting fuel injection controller for internal combustion engine
JPS6217337A (en) Method of controlling air fuel ratio of internal-combustion engine
JPH0574705B2 (en)
JP3994755B2 (en) Ignition device control method when internal combustion engine is stopped
JP2536297B2 (en) Fuel control method for starting internal combustion engine
JP4258077B2 (en) Engine fuel injection control device
JP3156612B2 (en) Fuel supply control device for internal combustion engine
JPH0643819B2 (en) Engine fuel supply controller
JP2694654B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0237140A (en) Starting fuel injection control device of engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term