[go: up one dir, main page]

JPH03205566A - Current intensity transformer - Google Patents

Current intensity transformer

Info

Publication number
JPH03205566A
JPH03205566A JP2096148A JP9614890A JPH03205566A JP H03205566 A JPH03205566 A JP H03205566A JP 2096148 A JP2096148 A JP 2096148A JP 9614890 A JP9614890 A JP 9614890A JP H03205566 A JPH03205566 A JP H03205566A
Authority
JP
Japan
Prior art keywords
measuring
current
terminal
circuit
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096148A
Other languages
Japanese (ja)
Inventor
Marcel Etter
マルセル、エテ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaisons Electroniques Mecaniques LEM SA
Original Assignee
Liaisons Electroniques Mecaniques LEM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaisons Electroniques Mecaniques LEM SA filed Critical Liaisons Electroniques Mecaniques LEM SA
Publication of JPH03205566A publication Critical patent/JPH03205566A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE: To obtain a current intensity transformer which can measure a direct current upon which a strong high-frequency vibrating component is superimposed or a low-frequency alternating current by providing a measurement circuit which generates a signal which is the function of a magnetic field in the void of a magnetic circuit and another signal which is the function of a winding current. CONSTITUTION: A current Ip to be measured flows through a conductor 1 and a magnetic circuit 2 having a void 3 surrounds the conductor 1. A measuring winding 4 is connected to a measuring resistor R through a switch 6. A Hall battery 5 is placed in the void 3. An energizing current (i) is supplied to the battery 5 from a circuit incorporating a Zener element Z and a transistor T and the potential at a terminal 8 is controlled by means of an operational amplifier 11. A terminal 9 is maintained at a reference potential and a measured voltage for ground proportional to the magnetic field H in the void 3 is obtained at a terminal 10. Then the measured voltage is inputted to an operational amplifier 13 and the level of the output USD from a terminal 15 is adjusted by means of a variable resistor. The output US indicates the actual magnetic flux in the void 3. The measured voltage appears at a terminal M through the resistor R. At the time of calibrating the voltage US against UR, a direct current or sine wave alternating current is used as a reference main current and, when the sine wave current is used, the winding 4 is disconnected by opening the switch 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくとも一つの空隙を有する磁気回路を備
え前記空隙には磁場検出器が設けられた電流強さ変戊器
を右し、前記磁気回路は測定すべき電流用導体と磁気的
に糺み合わせうるように配置され、かつ少なくとも一つ
の測定巻線と磁気的に組み合わされる、可変電流を測定
する電流強さ変戊器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a current intensity transformer comprising a magnetic circuit having at least one air gap, the air gap being provided with a magnetic field detector; The magnetic circuit relates to a current intensity transformer for measuring a variable current, which is arranged in magnetic coupling with the current conductor to be measured and is magnetically associated with at least one measuring winding.

〔従来の技術〕[Conventional technology]

この型の装置はたとえばヨーロッパ特許出iji第0 
 194  225号に記載されている。
This type of device is known, for example, from European Patent No. 0
No. 194 225.

このような公知の装置は、一方では測定すべき電流によ
って、他方では測定巻線を通される測定電流によって発
生する磁場の補償理論に従って作用する。
Such known devices operate according to the theory of compensation of the magnetic field generated by the current to be measured on the one hand and by the measuring current passed through the measuring winding on the other hand.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

たとえばパルス電流または強い非対称波形の周期的電流
のまたは交番電流回路網のスイッチオン電流の測定のよ
うなある種の用途において、通常の電流変成器は飽和し
、したがって、使用できない。さらにまた、比較的簡単
、安価かつコンパクトな装置によって、強い高周波振動
分が重畳された直流または低周波交流の側定を考慮しう
ろことが望まれる。
In certain applications, such as the measurement of pulsed currents or periodic currents with strong asymmetrical waveforms or switch-on currents of alternating current networks, conventional current transformers become saturated and are therefore unusable. Furthermore, it is desirable to be able to take into account the determination of direct current or low-frequency alternating current on which strong high-frequency vibration components are superimposed, using a relatively simple, inexpensive, and compact device.

本発明はこの要求を解決する装置を提供することを目的
とする。
The present invention aims to provide a device that solves this need.

〔課題を解決するための手段〕[Means to solve the problem]

このため、本発明による装置は、一方では、磁気回路の
空隙における磁場の関数である第141リ定信号(US
)を、他方では、前記測定巻線における電流の数である
第2測定信号(UR)を允生ずるように配置された電気
測定回路を有する。
For this reason, the device according to the invention provides, on the one hand, a 141st constant signal (US
), on the other hand, it has an electrical measuring circuit arranged to produce a second measuring signal (UR) which is the number of currents in said measuring winding.

磁場検出器はホール効果装置とするのか好ましく、測定
回路は、第1測定信号として、空隙における磁場に調節
可能に比例する第1測定電圧(US)を発生するように
配置され、第2 all定信号は前記測定巻線に直列に
接続された測定抵抗器の端子に現れる電圧(UR)であ
る。
Preferably, the magnetic field detector is a Hall effect device, and the measuring circuit is arranged to generate, as a first measuring signal, a first measuring voltage (US) adjustably proportional to the magnetic field in the air gap, and a second all constant. The signal is the voltage (UR) appearing at the terminals of a measuring resistor connected in series with said measuring winding.

測定回路は前記第1および第2測定電圧を加算するよう
に配置するのが好ましい。
Preferably, the measuring circuit is arranged to add the first and second measured voltages.

測定回路は測定すべき電流用の前記導体に流れる正弦波
基準電流が、測定巻線がしゃ断されたとき、空隙のない
理想的電流強さ食成器によって前記測定抵抗器の端子に
発生するであろう理論的電圧に等しい測定電圧を発生す
るように配置されかつ調節されるのがさらに好ましい。
The measuring circuit is such that a sinusoidal reference current flowing in said conductor for the current to be measured is generated at the terminals of said measuring resistor by means of an ideal current strength converter without air gaps when the measuring winding is interrupted. More preferably, it is arranged and adjusted to generate a measured voltage equal to the theoretical voltage that would exist.

好ましい丈施例において、ホール効果装置は入力電力供
給端子および出力電力端子によって付勢電流発生器に接
続され、ホール効果装置の前記出力電力端子は二つの入
力端子を有する膚算増幅器の出力端子に接続されるのか
好ましく、前記端子の一方は接地のような測定用基準電
位に接続され、これらの入力の他方はホール効果装置の
測定端子の一方に接続される。この場合、ホール効果装
置の一方の測定端子は基準電位に保持され、ホール効果
装置によって得られた測定電圧は前記基準電位に対して
他方のρり定端子に現れる。
In a preferred embodiment, the Hall effect device is connected to the energizing current generator by an input power supply terminal and an output power terminal, the output power terminal of the Hall effect device being connected to the output terminal of a power amplifier having two input terminals. Preferably, one of the terminals is connected to a measuring reference potential, such as ground, and the other of these inputs is connected to one of the measuring terminals of the Hall effect device. In this case, one measuring terminal of the Hall-effect device is held at a reference potential, and the measuring voltage obtained by the Hall-effect device appears at the other constant terminal ρ with respect to said reference potential.

本発明装置は調節可能なゲイン増幅器を備え、その一方
の入力はホール効果装置によって発生されたflj+定
電圧が加えられその一方の出力は前記測定抵抗器の一方
の端子に接続され、この抵抗器の他方の端子は測定回路
の出力端子を形成する。測定抵抗器はまた、測定信号を
発生する、ホール効果装置の出力端子にも接続すること
ができ、ホール効果装置は電力供給端子を通しーで可調
節付勢電流を供給する電流発生器から付勢される。
The device according to the invention comprises an adjustable gain amplifier, one input of which is applied with a flj+ constant voltage generated by a Hall effect device, one output of which is connected to one terminal of said measuring resistor, said resistor The other terminal of forms the output terminal of the measuring circuit. The measurement resistor can also be connected to the output terminal of a Hall effect device that generates the measurement signal, and the Hall effect device is connected to a current generator that supplies an adjustable energizing current through the power supply terminal. Forced.

本発明装置は二つ以上の空隙を備えることができ、空隙
はそれぞれ磁場検出器を有し、各検出器は対応する空隙
における磁場の関数である信号を発生し、測定回路はこ
れらの検出器によって発生された信号および測定巻線に
おける電流の関数である第2ifllj定信号の加算を
実施するように配置されている。
The device according to the invention may comprise two or more air gaps, each air gap having a magnetic field detector, each detector generating a signal that is a function of the magnetic field in the corresponding air gap, and the measurement circuit detecting these detectors. and a second ifllj constant signal which is a function of the current in the measuring winding.

本発明装置は、ホール効果装置によって発生された測定
電圧の少なくとも一つの閾値以上の上昇を検出するよう
に配置された安全回路を備え、そのような上昇が起こっ
たとき故障信号を発生するのがさらに好ましい。
The device according to the invention comprises a safety circuit arranged to detect an increase in the measured voltage generated by the Hall effect device above at least one threshold, and is configured to generate a fault signal when such an increase occurs. More preferred.

本発明の他の特徴、利点および特色は添付図面に示され
た例示的実施例に関する下記の説明から明らかになるで
あろう。
Other features, advantages and features of the invention will become apparent from the following description of an exemplary embodiment, which is illustrated in the accompanying drawings.

〔実施例〕〔Example〕

第1図の線図において、測定すべき主電流!,は導体1
を流れ、導体1は空隙3を有する磁気回路2によって横
方向に囲まれている。この磁気回路は、たとえば、透磁
率のよい材料または変或器のコアと同様の積層構造を形
成する積層金属板から作られた環状コアの型式とするこ
とかできる。
In the diagram of Figure 1, the main current to be measured! , is conductor 1
The conductor 1 is laterally surrounded by a magnetic circuit 2 having an air gap 3. This magnetic circuit may be of the type, for example, of an annular core made of a highly permeable material or laminated metal plates forming a laminated structure similar to the transformer core.

測定巻線4はこの磁気回路上に設けられ、かつスイッチ
6によって略示された接続装置を通して測定抵抗Rに接
続されている。ホール電池5は、空隙3に現れる磁場の
作用をうけるように、この空隙3内に置かれている。ホ
ール電池5はその接続を第1図の線図て別に示されてい
る。付勢電流lは、たとえば、第1図に示すように第1
電力供給端子7に接続されたトランジスタT1抵抗器r
1、r2およびツエナダイオードZを含む回路よりなる
電流発生器を通して電池5に供給される。第2電力供給
端子8の電位は第1図に示すように演算j曽幅器11に
よって連続的に制御され、増幅器11の第1入力(一)
に接続されたホール電池の第1 itFl定端子9はこ
の増幅器の第2入力(+)に加えられた電位に維持され
、この電位は第1図の例の接地のような基準電位を形或
する。したがって、ホール電池の第2測定端子10には
、空隙3に生ずる磁場Hに比例する接地に対する測定電
圧か現れる。
A measuring winding 4 is arranged on this magnetic circuit and is connected to the measuring resistor R through a connecting device, schematically indicated by a switch 6. The Hall battery 5 is placed within the gap 3 so as to be affected by the magnetic field appearing in the gap 3. The Hall battery 5 is shown separately in the diagram of FIG. 1 with its connections. The energizing current l is, for example, the first
Transistor T1 resistor r connected to power supply terminal 7
1, r2 and a Zener diode Z through a current generator. As shown in FIG.
The first itFl constant terminal 9 of the Hall battery, connected to do. Therefore, at the second measuring terminal 10 of the Hall cell there appears a measuring voltage relative to ground that is proportional to the magnetic field H occurring in the air gap 3.

出力端子10は演算増幅器13の第1入力端子12に接
続され、その第2入力端子14は接地とこの演算増幅器
13の出力端子15との間に接続された分圧器の中間点
に接続されている。分圧器ほこの場合固定抵抗器r3お
よび可変抵抗器rを有し、可変抵抗器rは出力端子15
に現れる測定電圧U8のレベルを制御しこの電圧と磁場
Hとの間の比例定数を調節することができる。
The output terminal 10 is connected to a first input terminal 12 of an operational amplifier 13, whose second input terminal 14 is connected to the midpoint of a voltage divider connected between ground and the output terminal 15 of this operational amplifier 13. There is. In the case of a voltage divider, it has a fixed resistor r3 and a variable resistor r, and the variable resistor r is the output terminal 15.
It is possible to control the level of the measured voltage U8 present at , and to adjust the proportionality constant between this voltage and the magnetic field H.

測定すべき電流IPがたとえば直流成分および可変戊分
を含むとき、直′a戊分は巻線4に逆起電力を誘起する
。この巻線は抵抗″rrRに接続され、対応するアンペ
ア回数A T s、主アンペア回数AT   すなわち
この場合,および磁場Hの間にPゝ は、Lを空隙の幅とするとき、ATP−H−L+AT 
 の関数が成り立つ。電圧U5は主電流l,S の或分H−Lの大きさを示し、その戊分は磁気回路の磁
化を示し、すなわち実際空隙中の磁束を示す。その訳は
回路の鉄部分のきわめて高い透磁率のため、回路の残り
の部分に循環する磁束に対して必要な起磁力を無視しつ
るからである。抵抗器Rの端子における電圧URに関し
て、主電流の戊分の測定は磁束の突化から生ずる二次ア
ンペア回数によって補償される。
When the current IP to be measured contains, for example, a DC component and a variable component, the direct component induces a back electromotive force in the winding 4. This winding is connected to a resistor "rrR, with a corresponding amperage AT s, the main amperage AT s, i.e. in this case, and during the magnetic field H P゜, where L is the width of the air gap, ATP-H- L+AT
The function holds true. The voltage U5 indicates the magnitude of a certain H-L of the main current l,S, which fraction indicates the magnetization of the magnetic circuit, ie actually the magnetic flux in the air gap. This is because the extremely high magnetic permeability of the iron parts of the circuit negates the magnetomotive force required for the magnetic flux circulating in the rest of the circuit. With respect to the voltage UR at the terminals of the resistor R, the measurement of the fraction of the main current is compensated by the secondary ampere-turns resulting from the surge of magnetic flux.

電圧U に対して電圧U,を較正するため、直R 流または正弦波電流とすることができる、基準主電流が
使用される。止弦波電流によって較正するため、巻線4
はスイッチ6を開くことによってしゃ断され、電流測定
は空隙における磁場のM+定のみによってなされる。電
圧U8は抵抗器rにより増札器13のゲインを設定する
ことによって調節され、U8の振躯は空隙のない理想的
な電流強さは変成器によって発生されるてあろう電圧U
Rの振幅の理論値に等しく、すなわちこの場合、N8を
巻線4の巻数とすると、U  −R−1,/N8S となる。電圧URおよびU8を加算すると直AI).3
2分を含む全電流強さの値を得ることができる。第1図
の線図において、全測定電圧は端子Mに現れ、抵抗器R
は端子15とMとの間に接続されている。
To calibrate the voltage U, with respect to the voltage U, a reference mains current is used, which can be a direct R current or a sinusoidal current. Winding 4 is calibrated by a stop string current.
is interrupted by opening the switch 6, and the current measurement is made only by the M+ constant of the magnetic field in the air gap. The voltage U8 is regulated by setting the gain of the multiplier 13 by the resistor r, and the vibration of U8 is equal to the voltage U that the ideal current strength without air gaps would be generated by the transformer.
It is equal to the theoretical value of the amplitude of R, that is, in this case, if N8 is the number of turns of winding 4, then U - R-1, /N8S. When voltages UR and U8 are added, it becomes direct (AI). 3
A value of the total current strength including 2 minutes can be obtained. In the diagram of FIG. 1, the total measured voltage appears at terminal M and resistor R
is connected between terminal 15 and M.

本発明の(図示しない)一実施例によれば、測定抵抗R
はlfi接ホール電池にすなわちその端子10に接続さ
れ、この電通は、ホール電池の出力電圧を調節しうるよ
うにする調節可能な付勢電流を発生する、電流発生器か
ら電力が供給される。
According to an embodiment (not shown) of the invention, the measuring resistance R
is connected to the lfi-connected Hall battery, i.e. to its terminal 10, and is powered by a current generator which generates an adjustable energizing current making it possible to adjust the output voltage of the Hall battery.

また抵抗器Rの一端子を接地して電圧URをホール電池
の出力電圧に加えることも可能であり、出力電圧は公知
の方法に従って演算増!Ii器の入力”に接続された適
当な抵抗器により、増娼されたりまたは増幅されなかっ
たりすることかできる。しかしながら、抵抗器Rを測定
電圧USに直列に接続すると、演算増幅器の振幅および
帯域幅の制限により測定信号URにひずみを牛しない利
点か得られる。
It is also possible to ground one terminal of the resistor R and add the voltage UR to the output voltage of the Hall battery, and the output voltage can be calculated according to a known method. It can be amplified or unamplified by a suitable resistor connected to the input of the Ii amplifier. However, if the resistor R is connected in series with the measuring voltage US, The advantage of not introducing distortion to the measurement signal UR is obtained by limiting the width.

本発明装置は、パルス電流または大振幅の短絡回路電流
の正確な測定、または比較的小さい連続成分を有する大
きい主電流の場合、さらに交番電流回路網のスイッチオ
ン電充のような、短い期間の間直流或分を有する交番主
電流測定の場合に、特に有利である。
The device according to the invention is suitable for the precise measurement of pulsed currents or short-circuit currents of large amplitude, or for large mains currents with a relatively small continuous component, as well as for short-duration measurements such as switch-on charging of alternating current networks. This is particularly advantageous in the case of alternating mains current measurements with a certain amount of direct current.

第1図の線図はさらに符号16を付した安全回路装置を
示し、安全回路はホール電池によって得られたM1定電
圧の、一極または他極の方向における、閾値以上の上昇
を検出するように構成されている。このため、端子15
は二つのコンパレータ17、18の各入力“一”および
“+”に接続され、これらのコンバレー夕の反対符号の
対応する入力は二つのツエナダイオードの直列接続の端
子に接続され、その共通の接続点は抵抗器を通してそれ
ぞれ回路の正負の電圧供給端子に接続されている。これ
らのツエナダイオードと並列に電位差計19か接続され
、そのスライダは抵抗器r4を通して濱算増幅器11の
入力20に接続され、抵抵抗の抵抗器「5かこの入力と
接地との間に接続されている。この電位差計は主電流の
ないときU8のオフセット電圧を相殺擦ることができ、
前記オフセット電圧は電池5のまた堆幅器11、13の
オフセット電圧の加算によって得られる。
The diagram of FIG. 1 further shows a safety circuit device, designated 16, which is adapted to detect an increase of the M1 constant voltage obtained by the Hall battery, in the direction of one pole or the other, above a threshold value. It is composed of Therefore, terminal 15
are connected to the respective inputs "1" and "+" of the two comparators 17 and 18, and the corresponding inputs of the opposite signs of these comparators are connected to the terminals of the series connection of the two Zener diodes, and their common connection The points are connected through resistors to the positive and negative voltage supply terminals of the circuit, respectively. A potentiometer 19 is connected in parallel with these Zener diodes, the slider of which is connected to the input 20 of the summation amplifier 11 through a resistor r4, and a resistor ``5'' connected between this input and ground. This potentiometer can offset the offset voltage of U8 when there is no main current,
The offset voltage is obtained by adding the offset voltages of the battery 5 and the amplifiers 11 and 13.

コレクタが開いたトランジスタよりなる、コンバレータ
17、18の出力端子は一緒にかつ抵抗器を通して電圧
供給源の正端子に接続されている。
The output terminals of the converters 17, 18, consisting of transistors with open collectors, are connected together and through a resistor to the positive terminal of the voltage supply.

各コンパレー夕は、加えられる測定電圧かこの電圧の極
性の方向の対応するツエナダイオードの電圧によって限
定される閾値を超えるとき導通するように、接続されて
いる。そして負の誤差{エ号白のような出力信号が図示
の回路に現れ、また、たとえば、磁気回路の飽和または
ホール電池の範囲内にもはや直線的でない作用を生する
Each comparator is connected in such a way that it conducts when the applied measuring voltage exceeds a threshold defined by the voltage of the corresponding Zener diode in the direction of the polarity of this voltage. An output signal such as a negative error (E) then appears in the illustrated circuit and also produces a no longer linear effect, for example within the saturation of the magnetic circuit or the Hall cell.

用途によっては、開かれた回路に主抵抗器を挿入しうる
ような回路を得るように、磁器回路を二つの分路に分け
ることかH利である。この場合、磁器回路はたとえば、
それぞれホールzhを備えた二つの空気間隙を有し、こ
れらの電池の別々に調節しうる厠定電圧か測定回路に加
えられる。測定巻線は磁器回路の二つの分路に設けるこ
とかでき、クリップ・おん(chip−on )型電流
計のように蝶着することができる。
In some applications, it may be advantageous to divide the magnetic circuit into two shunts, so as to obtain a circuit in which the main resistor can be inserted into the open circuit. In this case, the magnetic circuit is e.g.
It has two air gaps, each with a hole zh, and the separately adjustable constant voltage of these cells is applied to the measuring circuit. The measuring windings can be placed in the two branches of the magnetic circuit and can be hinged like a chip-on ammeter.

空隙および対応するホール電池の数は二つに限定される
ものでなく、測定すべき電流かきわめて大きい場合は二
つ以上とするのが好ましい。
The number of gaps and corresponding Hall cells is not limited to two, but is preferably two or more if the current to be measured is extremely large.

いくつかの電泊を備えた装置の場合、異なった電池電圧
の加算は、例えば、第1電泊の端子1oを後の電池の電
力供給回路の入力に、すなわち端子20に対応する端子
に接続する。そして各電池の出力端子10のような出力
に現れる電圧は後の電通の基$電位を形成し、すべての
電進の測定電圧は最後の電池の出力に現れる。
In the case of a device with several batteries, the addition of the different battery voltages can be done, for example, by connecting the terminal 1o of the first battery to the input of the power supply circuit of the later battery, i.e. to the terminal corresponding to terminal 20. do. The voltage appearing at an output such as output terminal 10 of each cell then forms the base potential of the subsequent current, and the measured voltage of every current appears at the output of the last cell.

一方、測定電圧が比較的小さい場合、直流或分の111
定精度を高めるため数回の巻線から作られた主導体を使
用するのか好ましい。
On the other hand, if the measured voltage is relatively small, the DC
It is preferable to use a main conductor made from several windings to increase the accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明は、一方では、前記磁気回路の空隙における磁場
の関数である第1測定信号を、他方では、前記測定巻線
における電流の関数である第2測定信号を発生するよう
に配置された電気測定回路を有することにより、比較的
簡fJi、安価かつコンパクトな装置によって、別々に
測定可能であるかまたは測定すべき電流の直流或分を測
定し、パルス電流または強い非対称波形の周期的電流の
または交番電流回路網のスイッチオン電流を測定するこ
とができる。
The invention provides an electric current arranged to generate, on the one hand, a first measurement signal that is a function of the magnetic field in the air gap of the magnetic circuit and, on the other hand, a second measurement signal that is a function of the current in the measurement winding. By having a measuring circuit, it is possible to measure, with a relatively simple, inexpensive and compact device, the direct current component of the current that can or should be measured separately, and to measure the direct current component of the current that can be or is to be measured separately, as well as of pulsed currents or periodic currents with strong asymmetrical waveforms. Or the switch-on current of an alternating current network can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

図面は測定回路を備えた本発明による電流変成器装置を
示す図である。 1・・・導体、2・・・磁気回路、3・・・空隙、4・
・・測定巻線、5・・・ホール電池、6・・・スイッチ
、7・・・第1電力供給端子、8・・・第2電力供給端
子、9・・・第1測定端子、10・・・第2測定端子、
1 1 −..演算増幅器、12・・・第1入力端子、
13・・・演算堆幅器、14・・・第2入力端子、15
・・・出力端子、16・・・安全回路装置、17、18
・・・コンパレータ。
The drawing shows a current transformer arrangement according to the invention with a measuring circuit. 1... Conductor, 2... Magnetic circuit, 3... Air gap, 4...
... Measuring winding, 5... Hall battery, 6... Switch, 7... First power supply terminal, 8... Second power supply terminal, 9... First measurement terminal, 10... ...Second measurement terminal,
1 1 -. .. Operational amplifier, 12... first input terminal,
13... Arithmetic amplifier, 14... Second input terminal, 15
...Output terminal, 16...Safety circuit device, 17, 18
···comparator.

Claims (1)

【特許請求の範囲】 1、少なくとも一つの空隙を有する磁気回路を備え前記
空隙には磁場検出器が設けられた電流強さ変成器を有し
、前記磁気回路は測定すべき電流用導体と磁気的に組み
合わせうるように配置され、かつ少なくとも一つの測定
巻線と磁気的に組み合わされる、可変電流を測定する電
流強さ変成器において、一方では、前記磁気回路の空隙
における磁場の関数である第1測定信号(U_S)を、
他方では、前記測定巻線における電流の関数である第2
測定信号(U_R)を発生するように配置された電気測
定回路を有することを特徴とする電流強さ変成器。 2、磁場検出装置はホール効果装置であり、測定回路は
第1測定信号として空隙における磁場に調節可能に比例
する第1測定信号(U_S)を発生するように配置され
たこと、および前記第2測定信号は前記測定巻線と直列
に接続された測定抵抗の端子に現れる電圧(U_R)で
あることを特徴とする請求項1に記載の装置。 3、測定回路は前記第1および第2測定電圧を加算する
ように配置されたことを特徴とする請求項1に記載の装
置。 4、測定回路は前記測定すべき電流用導体を通す正弦波
基準電流が測定巻線のしゃ断状態において、空隙のない
理想的電流強さによつて抵抗器の端子に発生するであろ
う理論的電圧に等しい測定電圧を発生するように配置さ
れかつ調節されることを特徴とする請求項3に記載の装
置。 5、ホール効果装置の前記電力供給端子は第1および第
2入力を有する演算増幅器の出力端子に接続され、前記
第1入力は接地のような測定用基準電位に接続され、前
記第2入力はホール効果装置の第1測定端子に接続され
、そこで前記第1測定端子は基準電位に維持されホール
効果装置によって発生した測定電圧が前記第2測定端子
に前記基準電位に対して現れることを特徴とするホール
効果装置は入力電力供給端子および出力電力供給端子を
電流発生器を付勢するため接続され、かつ第1および第
2測定装置を有する磁場検出装置がホール効果装置であ
る請求項1に記載の、または請求項2ないし4のいずれ
か一項に記載の装置。 6、可調節ゲイン増幅器を有し、その一方の入力にホー
ル効果装置によって発生した出力信号を加えられ、その
一方の出力は測定装置の一方の端子に接続され、この抵
抗器の他方の端子は測定回路の出力端子を形成する請求
項3または4、3および5、4および5のいずれか一項
に記載の装置。 7、測定抵抗がホール効果装置の出力端子に接続され、
前記ホール効果装置は調節可能な付勢電流を供給する電
流発生器の電力供給端子を通して付勢されることを特徴
とする請求項3または4に記載の、または3および5ま
たは4および5のいずれか一項に記載の装置。 8、磁気回路はそれぞれ磁場検出器を備えた二つ以上の
空隙を有し、各検出器は対応する空隙における磁場の関
数である信号を発生し、測定回路はこれらの検出器によ
って供給される信号のまた測定巻線における電流の関数
である第2の測定信号を加算するように配置された請求
項1ないし7のいずれか一項に記載の装置。 9、ホール効果装置によって発生した測定電圧が少なく
とも一つの閾値以上の上昇を検出しまた前記上昇が起こ
るとき誤信号を発生するように配置された安全回路を有
する請求項2ないし8のいずれか一項に記載の装置。
[Claims] 1. A current intensity transformer comprising a magnetic circuit having at least one air gap, the air gap being provided with a magnetic field detector, and the magnetic circuit is connected to a current conductor to be measured and a magnetic field detector. In a current strength transformer for measuring a variable current, which is arranged to be combinable and magnetically combined with at least one measuring winding, on the one hand, the current strength transformer is a function of the magnetic field in the air gap of said magnetic circuit; 1 measurement signal (U_S),
On the other hand, a second
Current strength transformer, characterized in that it has an electrical measuring circuit arranged to generate a measuring signal (U_R). 2. The magnetic field detection device is a Hall effect device, and the measuring circuit is arranged to generate a first measuring signal (U_S) adjustably proportional to the magnetic field in the air gap as the first measuring signal; 2. Device according to claim 1, characterized in that the measuring signal is a voltage (U_R) appearing at the terminals of a measuring resistor connected in series with the measuring winding. 3. The device according to claim 1, characterized in that the measuring circuit is arranged to add the first and second measured voltages. 4. The measuring circuit is constructed based on the theory that a sinusoidal reference current passing through the current conductor to be measured would be generated at the terminals of the resistor by an ideal current strength without a gap in the cut-off state of the measuring winding. 4. Device according to claim 3, characterized in that it is arranged and adjusted to generate a measuring voltage equal to the voltage. 5. The power supply terminal of the Hall effect device is connected to the output terminal of an operational amplifier having first and second inputs, the first input being connected to a measuring reference potential such as ground, and the second input being connected to a measuring reference potential, such as ground. connected to a first measuring terminal of a Hall effect device, wherein said first measuring terminal is maintained at a reference potential and a measuring voltage generated by the Hall effect device appears at said second measuring terminal with respect to said reference potential. 2. A Hall effect device having an input power supply terminal and an output power supply terminal connected to energize the current generator, and wherein the magnetic field sensing device having the first and second measuring devices is a Hall effect device. or any one of claims 2 to 4. 6. has an adjustable gain amplifier, one input of which is applied the output signal generated by the Hall effect device, one output of which is connected to one terminal of the measuring device, and the other terminal of this resistor is 6. A device according to any one of claims 3 or 4, 3 and 5, 4 and 5, forming an output terminal of a measuring circuit. 7. A measuring resistor is connected to the output terminal of the Hall effect device,
or any of claims 3 and 5 or 4 and 5, characterized in that the Hall effect device is energized through a power supply terminal of a current generator providing an adjustable energization current. The device according to item 1. 8. The magnetic circuit has two or more air gaps each equipped with a magnetic field detector, each detector generating a signal that is a function of the magnetic field in the corresponding air gap, and the measuring circuit being supplied by these detectors. 8. The device according to claim 1, wherein the device is arranged to add a second measurement signal which is also a function of the current in the measurement winding. 9. A safety circuit according to any one of claims 2 to 8, comprising a safety circuit arranged to detect an increase in the measured voltage generated by the Hall effect device above at least one threshold value and to generate a false signal when said increase occurs. The equipment described in section.
JP2096148A 1989-04-13 1990-04-11 Current intensity transformer Pending JPH03205566A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1399/89A CH679527A5 (en) 1989-04-13 1989-04-13
CH1399/89-9 1989-04-13

Publications (1)

Publication Number Publication Date
JPH03205566A true JPH03205566A (en) 1991-09-09

Family

ID=4209518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096148A Pending JPH03205566A (en) 1989-04-13 1990-04-11 Current intensity transformer

Country Status (6)

Country Link
US (1) US5146156A (en)
EP (1) EP0392439A1 (en)
JP (1) JPH03205566A (en)
CN (1) CN1021134C (en)
CH (1) CH679527A5 (en)
RU (1) RU2108587C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493772A (en) * 1990-08-09 1992-03-26 Okuma Mach Works Ltd Dc current detector

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687477B1 (en) * 1992-02-14 1996-06-07 Abb Petercem CURRENT SENSOR.
DE4212461A1 (en) * 1992-04-14 1993-10-21 Vacuumschmelze Gmbh Direct imaging current sensor
FR2693275B1 (en) * 1992-07-06 1994-08-19 Alsthom Gec Ground measurement device for high voltage overhead lines.
FR2703467B1 (en) * 1993-03-29 1995-06-30 Mecagis Zero flow Hall effect current sensor intended in particular for motor vehicles and electric scooters.
FR2706040B1 (en) * 1993-06-01 1995-08-04 Lem Current measurement method and device implementing this method.
US5493211A (en) * 1993-07-15 1996-02-20 Tektronix, Inc. Current probe
US5450000A (en) * 1994-02-14 1995-09-12 Unity Power Corporation Using hall device for controlling current in a switchmode circuit
US5479095A (en) * 1994-06-30 1995-12-26 Power Corporation Of America Method and apparatus for measurement of AC and DC electrical current
CH690465A5 (en) * 1995-04-18 2000-09-15 Lem Liaisons Electron Mec Device magnetic field detector in the current sensor.
JP3153729B2 (en) * 1995-05-11 2001-04-09 矢崎総業株式会社 Non-contact sensor device
ES2113808B1 (en) * 1995-09-29 1999-01-16 Univ Valencia CURRENT SENSOR OF VERY LOW IMPEDANCE AND HIGH STABILITY.
FR2743423B1 (en) * 1996-01-05 1998-03-27 Abb Control Sa CURRENT SENSOR WITH WIDE RANGE OF OPERATION
US5701073A (en) * 1996-02-28 1997-12-23 Tektronix, Inc. Direct current measuring apparatus and method employing flux diversion
JPH09257837A (en) * 1996-03-19 1997-10-03 Yazaki Corp Non-contact sensor
TW427049B (en) * 1997-03-19 2001-03-21 Int Rectifier Corp Current sensing circuit for pulse width modulated motor drive
US5923162A (en) * 1997-04-18 1999-07-13 Bell Technologies Inc. Non-inductive lead path hall effect electrical current sensor
US5874848A (en) * 1997-07-09 1999-02-23 Bell Technologies, Inc. Electric current sensor utilizing a compensating trace configuration
US5952819A (en) * 1997-07-24 1999-09-14 General Electric Company Auto-zeroing current sensing element
CH692260A5 (en) * 1998-01-28 2002-04-15 Lem Liaisons Electron Mec power supply device provided with a current sensor.
US6204657B1 (en) * 1998-09-16 2001-03-20 Crown Audio, Inc. Temperature compensated closed-loop hall effect current transformer
US5999077A (en) * 1998-12-10 1999-12-07 The United States Of America As Represented By The Secretary Of The Navy Voltage controlled variable inductor
DE69920890T2 (en) * 1999-01-21 2005-02-03 Tdk Corp. CURRENT SENSOR
US6087800A (en) * 1999-03-12 2000-07-11 Eaton Corporation Integrated soft starter for electric motor
US6828770B1 (en) * 1999-04-12 2004-12-07 Chk Wireless Technologies Australia Pty Ltd. Apparatus and method for electrical measurements on conductors
EP1058278B1 (en) 1999-06-04 2012-02-29 Liaisons Electroniques-Mecaniques Lem S.A. Wound magnetic circuit
US6348800B1 (en) * 1999-09-28 2002-02-19 Rockwell Automation Technologies, Inc. Multi-phase ground fault current sensor system
US6426617B1 (en) 1999-09-28 2002-07-30 Rockwell Automation Technologies, Inc. Hall effect current sensor system packaging
US6351116B1 (en) 1999-09-30 2002-02-26 Rockwell Automation Technologies, Inc. System and method for on-line hall sensor programming
DE10052171A1 (en) * 2000-10-20 2002-05-02 Vacuumschmelze Gmbh Current sensor based on the compensation principle with floating burden
DE10120524B4 (en) * 2001-04-26 2015-08-20 Infineon Technologies Ag Device for determining the current through a power semiconductor device
DE10145415A1 (en) * 2001-09-14 2003-04-03 Aloys Wobben Instrument transformer, in particular for an inverter of a wind energy plant
US6570373B1 (en) 2002-03-07 2003-05-27 Visteon Global Technologies, Inc. Current sensor programmable through connector
US6836107B2 (en) * 2002-11-22 2004-12-28 Tektronix, Inc. Constant input impedance AC coupling circuit for a current probe system
DE102004014454B4 (en) * 2004-03-24 2014-01-09 Qimonda Ag Integrated circuit
JP4888994B2 (en) * 2005-08-31 2012-02-29 株式会社山武 Current monitoring device
CN100460885C (en) * 2006-06-07 2009-02-11 中国科学院上海技术物理研究所 Multi-Sample Hall Effect Automatic Test Equipment
CN101127282B (en) * 2007-06-08 2010-05-19 西安交通大学 Intelligent AC Contactor Control Unit Based on Variable Current Control
US7893650B2 (en) 2008-01-29 2011-02-22 Azure Dynamics, Inc. Method and system for multiphase current sensing
DE102009010399A1 (en) 2009-02-26 2010-09-02 Aucos Elektronische Geräte GmbH Hall sensor
EP2251704A1 (en) * 2009-05-11 2010-11-17 Liaisons Electroniques-Mecaniques Lem S.A. Closed-loop fluxgate current sensor
ES2593233T3 (en) * 2011-04-21 2016-12-07 Abb Ag Current sensor that works according to the compensation principle
EP2515123B1 (en) * 2011-04-21 2016-07-13 Abb Ag Current sensor operating in accordance with the principe of compensation
CN102495321B (en) * 2011-12-21 2014-04-16 中国科学院上海微系统与信息技术研究所 Method for generating and identifying non-linear signal in semiconductor non-linear oscillation system
TWI458992B (en) 2012-02-02 2014-11-01 Delta Electronics Inc Integrated current sensing apparatus
CN102969136B (en) * 2012-11-17 2015-09-16 郑州三晖电气股份有限公司 A kind of big current, High-accuracy direct current current transformer
DE102013104402B4 (en) * 2013-04-30 2019-11-07 Sma Solar Technology Ag Method and device for monitoring and measuring current on a magnetically biased choke
US9606147B2 (en) * 2013-09-27 2017-03-28 Ge Aviation Systems Llc Apparatus for high bandwidth current sensing
EP3206037B1 (en) * 2016-02-15 2018-09-26 C-Sigma S.R.L. Method and apparatus for the measurement of electrical current by means of a self-compensating configuration of magnetic field sensors
US10466314B2 (en) * 2018-02-15 2019-11-05 Hamilton Sundstrand Corporation Integrated current sensor
CN112462125B (en) * 2020-11-14 2024-09-10 武汉启亦电气有限公司 Clamp ammeter with double breath

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928048A (en) * 1956-08-27 1960-03-08 Mc Graw Edison Co Electrical measuring system
US3573616A (en) * 1969-03-13 1971-04-06 Ibm Current measuring system having a feedback path including a combined high gain amplifier and integrator
JPS599865B2 (en) * 1975-04-07 1984-03-05 株式会社リコー Magnetic field measurement method
DE2735054C2 (en) * 1977-08-03 1979-06-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Clip-on ammeter
JPS56131825A (en) * 1980-03-15 1981-10-15 Hamana Tekko Kk Gas bearing having guide hole on bearing part
DE3040316C2 (en) * 1980-10-25 1983-11-10 Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig & Co KG, 8510 Fürth Method and device for contactless measurement of direct and alternating currents, in particular of instantaneous current values
US4639665A (en) * 1983-08-22 1987-01-27 Borg-Warner Corporation Sensing system for measuring a parameter
CH662000A5 (en) * 1985-02-05 1987-08-31 Lem Sa CURRENT TRANSFORMER FOR DIRECT AND ALTERNATING CURRENT.
FR2624617B1 (en) * 1987-12-11 1990-05-11 Europ Agence Spatiale MAGNETICALLY COUPLED ELECTRIC CURRENT MEASURING APPARATUS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493772A (en) * 1990-08-09 1992-03-26 Okuma Mach Works Ltd Dc current detector

Also Published As

Publication number Publication date
CN1046981A (en) 1990-11-14
CN1021134C (en) 1993-06-09
CH679527A5 (en) 1992-02-28
US5146156A (en) 1992-09-08
EP0392439A1 (en) 1990-10-17
RU2108587C1 (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JPH03205566A (en) Current intensity transformer
US4278940A (en) Means for automatically compensating DC magnetization in a transformer
CA1096942A (en) Power monitor
US3323056A (en) D.c. measurement using conductor surrounding core with plural hall generators havingindividual feedback coils
US7876086B2 (en) Current measuring device for measuring the electrical current flowing in an electrical conductor electrically isolated from the current measuring device
US5565765A (en) Current sensor operating according to the compensation theorem
US7242157B1 (en) Switched-voltage control of the magnetization of current transforms and other magnetic bodies
Ripka et al. Measurement of DC currents in the power grid by current transformer
US5132608A (en) Current measuring method and apparatus therefor
US20170248636A1 (en) Compensation current sensor arrangement
JPH11142459A (en) Transformer error testing device with zero load function
US3007106A (en) Current meter and probe therefor
KR20020027491A (en) Ac current detection device
JP2816175B2 (en) DC current measuring device
JP3399522B2 (en) Broadband current sensor
RU2758812C1 (en) Device for registration of hysteresis loops of ferromagnetic materials
JP4035773B2 (en) Current sensor
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
Groenenboom et al. Accurate measurement of dc and ac by transformer
Zhang et al. A new approach for solving the false balance of a closed-loop fluxgate current transducer
Román et al. Low consumption flux-gate transducer for AC and DC high-current measurement
RU2328749C1 (en) Method of measurement of magnetising current of transformer that operates under load
JP3583699B2 (en) Sensor device
JP2617570B2 (en) Magnetic measuring device
GB2370363A (en) Measuring DC component of AC current