JPH0320209B2 - - Google Patents
Info
- Publication number
- JPH0320209B2 JPH0320209B2 JP62119554A JP11955487A JPH0320209B2 JP H0320209 B2 JPH0320209 B2 JP H0320209B2 JP 62119554 A JP62119554 A JP 62119554A JP 11955487 A JP11955487 A JP 11955487A JP H0320209 B2 JPH0320209 B2 JP H0320209B2
- Authority
- JP
- Japan
- Prior art keywords
- abalone
- reef
- steel
- current
- breeding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010959 steel Substances 0.000 claims description 46
- 229910000831 Steel Inorganic materials 0.000 claims description 45
- 238000009395 breeding Methods 0.000 claims description 22
- 230000001488 breeding effect Effects 0.000 claims description 22
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- 239000013535 sea water Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 description 24
- 238000005260 corrosion Methods 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 15
- 241001474374 Blennius Species 0.000 description 10
- 239000010405 anode material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 241000237891 Haliotidae Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000009189 diving Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 241000196252 Ulva Species 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Artificial Fish Reefs (AREA)
- Farming Of Fish And Shellfish (AREA)
Description
【発明の詳細な説明】
(A) 産業上の利用分野
この発明は、鉄鋼とアルミニウム合金を組み合
わせることによつて、異種金属の電位差を利用し
海水中で異種金属間に微弱な電流を発生させ、そ
れを利用することによつて、アワビの蝟集効果と
着生率を高めるアワビ増殖用育成礁に関するもの
である。[Detailed description of the invention] (A) Industrial application field This invention generates a weak electric current between dissimilar metals in seawater by combining steel and aluminum alloy and utilizing the potential difference between dissimilar metals. This invention relates to a breeding reef for breeding abalone that increases the abalone collection effect and settlement rate by utilizing it.
(B) 従来の技術
従来、アワビ増殖用ブロツクは、アワビの餌料
となる海藻類の付着育成を図り、餌場の造成をす
ることによつてアワビを蝟集させることとあわせ
て、アワビが夜行性の生物であることから、その
性質を利用して、影の部分(陰影部分ともいつて
太陽光線が海中を透過した光のあたらない部分)
の表面積を多くするなどし、アワビの棲息する場
所を造成して、その着生を促進させること等によ
つて、アワビ資源の管理育成を図ることを主眼
に、それらに適する形状のアワビ増殖用コンクリ
ートブロツク等が考案され利用されて来た。(B) Conventional technology Conventionally, abalone propagation blocks have been designed to attract abalone by cultivating seaweed that serves as food for the abalone, and by creating a feeding area. Since it is a living organism, we take advantage of its properties to create a shadow area (also known as a shadow area, the area where the sun's rays pass through the ocean and are not exposed to it).
The main aim is to manage and cultivate abalone resources by increasing the surface area of the abalone, creating a habitat for abalone, and promoting their settlement. Concrete blocks etc. have been devised and used.
しかし、現在使用されているコンクリートブロ
ツク等は、コンクリート特有の強アルカリ成分の
溶出によつて、海洋生物である魚介類(特にも幼
稚仔)に良好な環境でないことが明白にされて来
ている。 However, it has become clear that the concrete blocks currently in use are not a good environment for marine life, such as fish and shellfish (especially young ones), due to the elution of strong alkaline components unique to concrete. .
このことのみが原因の総てではないにしても、
アワビにおいても例外ではなく、その蝟集・着生
率が低いという欠点がある。 Although this is not the only cause,
Abalone is no exception, and has the drawback of low aggregation and settlement rates.
このことが沿岸漁業振興策としての「獲る漁業
から、つくり育てて獲る漁業」いわゆる栽培漁業
推進の一環として行われている増殖用魚場造成や
アワビの人工放流事業を実施している割合には、
アワビ資源が増大していない大きな原因の一つに
なつている。 This is due to the fact that the proportion of fish farms for breeding and artificial abalone stocking projects that are being carried out as part of the so-called cultivation fishery promotion, ``from fisheries that catch fish to fisheries that are cultivated and fished,'' as part of coastal fishery promotion measures, has decreased. ,
This is one of the major reasons why abalone stocks are not increasing.
従つて、従来の増殖用ブロツクよりも、いかに
して蝟集効果と着生率の高い資源管理型漁業に適
した育成礁を開発するかが強く要求されている。 Therefore, there is a strong need to develop breeding reefs that are more suitable for resource management type fisheries and have a higher collection effect and settlement rate than conventional breeding blocks.
(C) 発明が解決しようとする問題点
本発明は、現在使用されているアワビ増殖用育
成礁が、アワビの蝟集と着生率が低いという欠点
を、つぎの様な考え方から解決しようとしたもの
である。(C) Problems to be Solved by the Invention The present invention attempts to solve the drawbacks of the currently used breeding reefs for breeding abalone, which have low abalone agglomeration and settlement rates, from the following point of view. It is something.
それは長い間、沿岸の海洋鋼構造物や海中の鋼
材に対する自然界におけるアワビの行動生態の観
察結果からであり、海中において微弱な電流を流
すことによつて、餌料となる海藻の着生や透過光
線にあまり影響されることなく、アワビが陰極部
に蝟集し逃げにくい(逃散しにくい)というアワ
ビの生態を利用して、鋼製育成礁に人工的に微弱
な電流を流すことにより、アワビの蝟集効果と着
生率を高めることの出来る資源管理型漁業に適し
た育成礁を発明したものである。 This has long been based on observations of the behavior and ecology of abalone in the natural world when they interact with coastal marine steel structures and steel materials in the sea. Taking advantage of the ecology of abalone, in which abalone collects in the cathode and is difficult to escape without being affected by This invention is a breeding reef suitable for resource management type fishing that can increase effectiveness and settlement rate.
(D) 問題点を解決するための手段
昔から、海中の鋼材にアワビがよく着生してい
る多くの事例が報告されていた。(D) Measures to solve the problem For a long time, many cases of abalone growing on steel materials under the sea have been reported.
それらの多くは、ほとんど海藻の着生がなく、
透過光線を受けながらも鋼材への着生が観察され
ている。 Many of them have almost no seaweed growth,
Adhesion to steel materials has been observed even when exposed to transmitted light.
自然界において、鋼材に対するこの様な蝟集現
象は、鋼材の一見均質に見える同一金属体であつ
ても、その物が海水という電解質に接することに
よつて、金属表面の無数の電位差の異なりから生
じる、いわゆる局部電池作用によつて微弱な電流
(この場合は腐食電流という)が生じている訳で、
この微弱電流に対して、アワビがどの様な行動生
態を持つているかを確認するために、次の様な水
槽実験を約6ケ月間実施した。 In the natural world, this phenomenon of condensation on steel materials occurs due to the countless potential differences on the metal surface when the steel material comes into contact with an electrolyte called seawater, even if the material is the same metal that appears to be homogeneous at first glance. A weak current (called a corrosion current in this case) is generated by the so-called local battery action.
In order to confirm the behavioral ecology of abalone in response to this weak electric current, we conducted the following aquarium experiment for about 6 months.
その概要を述べると、
実験例 1
まず、まつたく同形状のコンクリート板と腐食
電流が生じないように樹脂塗装した鋼材と腐食電
流が生じやすい裸鋼材の3種類に対するエゾアワ
ビの着生状況を調べた。 To give an overview, Experimental Example 1 First, we investigated the growth of abalone on three types of concrete plates: concrete plates with the same shape, steel plates coated with resin to prevent corrosion currents, and bare steel plates that are prone to corrosion currents. .
その結果はアワビ10個体当りに換算しての平均
値で、コンクリート板への着生数約2.3個体、樹
脂塗装した鋼材への着生数約3.0個体、裸鋼材へ
の着生数約4.7個体という結果である。 The results are average values calculated per 10 abalones, with approximately 2.3 individuals growing on concrete plates, approximately 3.0 individuals growing on resin-coated steel materials, and approximately 4.7 individuals growing on bare steel materials. This is the result.
実験例 2
次に、裸鋼材の様な局部電池作用によつて生じ
る腐食電流と、鋼材とアルミニウム合金陽極材の
電位差を利用して人工的に微弱電流を生じさせた
場合の2種類について、実験例1と同じアワビと
同期間でその着生状況を比較してみた。Experimental Example 2 Next, we conducted experiments on two types of corrosion currents: corrosion currents generated by local battery action such as in bare steel materials, and weak currents artificially generated using the potential difference between steel materials and aluminum alloy anode materials. I compared the settlement status of the same abalone as in Example 1 and during the same period.
この場合、鋼材表面積が使用アルミニウム合金
陽極材の表面積に比べて小さいと、鋼材の電位が
使用陽極材の電位まで陰分極し、異種金属間の電
位差が小さくなり、電流がほとんど流れなくなる
ために、実験例1と同形の物を使用することが出
来なく、使用鋼材を大きくし形状を変えて実験し
た。 In this case, if the surface area of the steel material is smaller than the surface area of the aluminum alloy anode material used, the potential of the steel material will be cathodically polarized to the potential of the anode material used, the potential difference between different metals will become small, and almost no current will flow. Since it was not possible to use the same shape as in Experimental Example 1, the experiment was conducted using larger steel materials and changing the shape.
その結果はアワビ10個体当たりに換算して最
小・最多の平均値で、裸鋼材への着生数約3.2〜
4.0個体、陽極材使用鋼材への着生数6.0〜6.8個体
と人工的に微弱な電流を生じさせた方が約2倍の
着生状況であつた。 The results are the minimum and maximum average values per 10 abalone individuals, and the number of settlements on bare steel is approximately 3.2 ~
4.0 individuals and 6.0 to 6.8 individuals settled on the steel material used as the anode material, which was about twice as many when a weak electric current was generated artificially.
この場合の発生電流密度は0.1A/m2であつた
が、電流密度(A/m2)を小さくすると鋼材が腐
食し、腐食の著しい箇所へはまつたくアワビが着
生しないということも判明した。 The current density generated in this case was 0.1 A/m 2 , but it was also found that if the current density (A/m 2 ) was lowered, the steel material would corrode, and abalone would not grow in areas with severe corrosion. did.
また、人工的に微弱電流を生じさせた場合は、
アワビは陰極部(鋼材)にしか蝟集・着生しない
ことや、着生するとなかなか逃げない生態がある
こと、着生箇所は太陽光線の比較的少ない箇所へ
の着生が目立ち、アワビ特有の夜行性生物である
ことが観察された。 Also, if a weak current is artificially generated,
Abalone only collects and settles on the cathode (steel material), and once it has settled, it is difficult to escape, and the settlement is conspicuous in places where there is relatively little sunlight. It was observed to be a sexual creature.
この様な実験結果を踏まえて、従来から使用さ
れているコンクリートブロツク等の欠点を解決す
るために、本発明の育成礁の構成の一例と、必要
電流密度(A/m2)及びその発生電流の求め方を
説明すると、
(イ) 鋼製育成礁1にアルミニウム合金陽極2を取
り付ける(図面を参照)
(ロ) 必要電流密度(A/m2)は、鋼製育成礁の沈
設海域の条件によりその値を0.15A/m2〜
0.08A/m2の範囲とする。 Based on such experimental results, in order to solve the drawbacks of conventionally used concrete blocks, etc., we have developed an example of the structure of the growing reef of the present invention, the required current density (A/m 2 ), and the generated current. To explain how to calculate: (a) Attach the aluminum alloy anode 2 to the steel growth reef 1 (see the drawing) (b) The required current density (A/m 2 ) is determined by the conditions of the sea area where the steel growth reef is deposited. The value is 0.15A/m 2 ~
The range shall be 0.08A/ m2 .
その理由は、鋼製育成礁が腐食を起こすと、
アワビの着生面積が減少し、着生率を低下させ
ることになるので、その腐食を防止することが
必要である。 The reason is that when steel reefs corrode,
It is necessary to prevent the corrosion of abalone because it reduces the area where abalone is attached and the rate of settlement.
これら海中における鋼材の防食技術は、既に
確立され公知されている技術であり、これを応
用することによつて腐食を防止することが出来
る。 These underwater corrosion prevention techniques for steel materials are already established and known techniques, and by applying these techniques, corrosion can be prevented.
つまり、海中における鋼材の防食電位は、飽
和カロメル電極を基準として−0.77Vであるか
ら、鋼材の電位を−0.8Vまで陰分極させるこ
とによつて腐食を防止出来る訳で、それに必要
な電流密度にすればよい。 In other words, since the anti-corrosion potential of steel in the sea is -0.77V with respect to the saturated calomel electrode, corrosion can be prevented by cathodically polarizing the steel to -0.8V, and the current density required for this purpose is Just do it.
この場合の必要電流密度は、鋼製育成礁の沈
設する海域の、海水をはじめとする海象の諸条
件により異なるが、一般的にはその値を
0.15A/m2〜0.08A/m2の範囲において、沈設
海域の諸条件に適した値を選定すればよい。 The required current density in this case varies depending on the sea conditions such as seawater in the sea area where the steel reef is to be deposited, but in general, the value is
A value suitable for the various conditions of the sinking area may be selected within the range of 0.15A/m 2 to 0.08A/m 2 .
(ハ) 陽極から発生する電流は次の順に計算して求
める。(c) Calculate the current generated from the anode in the following order.
育成礁に使用する鋼材の総表面積(As)
を求める。(cm2)
育成礁に取付ける陽極材の総表面積(Aa)
を求める。(cm2)
鋼材の接水抵抗(Rs)を次式より求める。 Total surface area (As) of steel materials used for growing reefs
seek. (cm 2 ) Total surface area (Aa) of the anode material installed on the growing reef
seek. (cm 2 ) Find the water contact resistance (Rs) of the steel material using the following formula.
Rs=0.266×ρ/√
ρ:海水抵抗率(通常25〜30Ω−cm)
陽極材の接水抵抗(Rs)を次式より求め
る。 Rs=0.266×ρ/√ ρ: Seawater resistivity (usually 25 to 30Ω-cm) Calculate the water contact resistance (Rs) of the anode material using the following formula.
Ra=0.266×ρ/√ ρ:と同じ 回路中の総抵抗(R)を次式より求める。 Ra=0.266×ρ/√ ρ: Same as Find the total resistance (R) in the circuit using the following formula.
R=Rs+Ra+Rw
Rw:回路中に導線等を使用した時のその抵
抗(一般的には0Ω)
式中で、鋼材表面積が大きければ大きい
程、Rs≒0Ωに近づきR≒Raとなる。 R=Rs+Ra+Rw Rw: Resistance when a conductor, etc. is used in the circuit (generally 0Ω) In the formula, the larger the steel surface area, the closer Rs≒0Ω, and R≒Ra.
鋼材と陽極間の有効電位差(ΔE)を次式
より求める。 Find the effective potential difference (ΔE) between the steel material and the anode using the following formula.
ΔE=鋼材の電位−陽極の電位 Γ鋼材(裸)の電位(不通電電位) 約−0.6V(飽和カロメル電極基準) Γアルミニウム合金陽極の電位 約−1.05V(飽和カロメル電極基準) 陽極から流れる電流は次式より求める。 ΔE = Potential of steel − Potential of anode Potential of Γ steel material (bare) (non-current potential) Approximately -0.6V (based on saturated calomel electrode) Potential of Γ aluminum alloy anode Approximately -1.05V (based on saturated calomel electrode) The current flowing from the anode is calculated from the following formula.
I=ΔE/R (A)
陽極から流れる電流は、最初はΔEが大き
ので発生電流も大きいが、電流の供給量に応
じて鋼材の電位は、マイナス方向に分極する
ので発生電流も小さくなり安定する。 I=ΔE/R (A) The current flowing from the anode initially has a large ΔE, so the generated current is large, but the potential of the steel material is polarized in the negative direction depending on the amount of current supplied, so the generated current becomes small and stable. do.
したがつて、この場合には鋼製育成礁の電
位を−0.8V付近まで陰分極させ腐食を防止
する必要もあるためΔE=0.25Vとして計算
してさしつかえない。 Therefore, in this case, it is necessary to cathodically polarize the potential of the steel reef to around -0.8V to prevent corrosion, so it is okay to calculate ΔE=0.25V.
発生電流密度は次式より求める。 The generated current density is determined by the following formula.
電流密度(A/m2)
=発生電流/育成礁の総表面積
以上のことから解る様に、鋼製育成礁の接水総
表面積と使用陽極材の接水総表面積により、そこ
に発生する電流がどの位流れるかが決まるわけ
で、その発生電流を鋼材の総表面積で除したもの
が、0.15A/m2〜0.08A/m2の範囲内にあり、か
つ沈設海域の諸条件を基に設定した値と等しくな
るようにすればよい。Current density (A/m 2 ) = Generated current / Total surface area of the growing reef As can be seen from the above, the current generated there depends on the total surface area in contact with water of the steel growing reef and the total surface area in contact with water of the anode material used. This determines how much current will flow, and the generated current divided by the total surface area of the steel is within the range of 0.15A/m 2 to 0.08A/m 2 and based on the conditions of the sea area where it will be deposited. Just make it equal to the set value.
(E) 作用
この様な構成と手段を用いて作つた育成礁を海
水中に沈設すると、海水を電解質として陽極(ア
ルミニウム合金)から陰極(鋼製育成礁)へと電
流が流れる。(E) Effect When a growing reef made using this configuration and method is submerged in seawater, an electric current flows from the anode (aluminum alloy) to the cathode (steel growing reef) using seawater as an electrolyte.
前述した通り、通電直後は発生電流も大きいが
陰分極の進行により電流も微弱となり安定し、か
つ育成礁の防食も可能となる。 As mentioned above, the generated current is large immediately after energization, but as the cathode polarization progresses, the current becomes weak and stable, and it is also possible to prevent corrosion of the growing reef.
(F) 実施例
本発明の育成礁を実海域に沈設し、その効果を
確認するに当たつて、特に次のことに留意した。(F) Example When the cultivated reef of the present invention was deposited in an actual sea area and its effects were confirmed, the following points were particularly taken into consideration.
まず第1に、沈設海域には海藻の繁茂とアワビ
の着生がほとんど皆無であることと、第2には、
実験礁として極力陰影部が少なく透過光線を多く
受ける構造(図面参照)であることの2点を条件
とした。 Firstly, there is almost no growth of seaweed or abalone growth in the submerged area, and secondly,
Two conditions were set for the experimental reef: it had a structure (see drawing) with as few shadow areas as possible and received as much transmitted light as possible.
さらに、実験礁2基の内、1基は腐食が進行す
るよう(裸鋼材のまま)にし、他の1基は人工的
に微弱な電流(電流密度0.08A/m2)が生じる様
に陽極を取り付けて沈設することとした。 Furthermore, of the two experimental reefs, one was made to undergo corrosion (leaving bare steel), and the other was anodized so that an artificially weak current (current density 0.08A/m 2 ) was generated. It was decided to install and sink it.
これらのことによつて、アワビの蝟集と着生条
件が極力劣悪な環境下において、本育成礁の効果
を確認することと、微弱電流を流すことによるそ
の有意性を確認するためである。 The purpose of this study was to confirm the effectiveness of this reef in an environment where abalone abalone aggregation and settlement conditions are extremely poor, and to confirm the effectiveness of applying a weak electric current.
そこで、実施海域は過去に海底が砂地であつた
所に、増殖用コンクリートブロツクと天然石を組
み合わせて増殖場造成をし効果もあつた所だが、
ここ数年何故か磯焼け状態で、海藻の繁茂やアワ
ビの着生が、潜水調査を実施し確認出来ない程皆
無な海域を選定し、さらに本育成礁を既設のコン
クリートブロツクの上に乗せる格好で、約50mの
距離をおいて水深約5mの所に2基沈設した。 Therefore, in the area where the seabed was previously sandy, we created a breeding ground by combining concrete blocks and natural stones for breeding, which was effective.
For the past few years, we have selected an area where the sea has been deserted, and there is no growth of seaweed or abalone growth, so much so that we cannot confirm it through diving surveys, and we have decided to place the reef on top of the existing concrete blocks. , two units were sunk at a depth of approximately 5 m, separated by a distance of approximately 50 m.
沈設後の調査結果については、腐食電流が発生
する裸鋼材のまま育成礁をNo.1とし、人工的に微
弱な電流を流した育成礁をNo.2として、その実施
結果の概要を述べると、沈設後約1ケ月経過した
アワビの着生結果は、No.1の育成礁に7個体、No.
2に12個体の着生であつた。この時、No.1は赤さ
び状態であり、No.2は黒色を示し腐食は確認され
ていない。 Regarding the results of the investigation after the installation, we will give an overview of the results, with No. 1 being a reef grown using bare steel that generates corrosive current, and No. 2 being a reef grown with a weak electric current artificially passed through it. The result of abalone settlement after about one month after being deposited was 7 individuals on the No. 1 nursery reef.
There were 12 epiphytes on the second day. At this time, No. 1 was in a red rust state, and No. 2 was black and no corrosion was confirmed.
沈設後約3ケ月経過の結果は、No.1に12個体、
No.2に25個体の着生の他、育成礁直下の既設ブロ
ツクに蝟集し着生しているアワビの個体数は、No.
1の所に5個体、No.2の所に13個体確認してい
る。 Approximately 3 months after depositing, the results showed 12 individuals in No. 1,
In addition to the 25 abalones that settled on No. 2, the number of abalone that congregated and settled on the existing block directly below the breeding reef was No.
Five individuals were confirmed at No. 1 and 13 individuals at No. 2.
この時、No.1の育成礁の腐食が進行し、赤さび
が浮き上がつて来ている箇所が多くなつて来たの
で、アルミニウム合金陽極を取り付けた。No.2は
腐食は確認されていない。No.1への陽極取り付け
後約20日経つてNo.1の防食効果を確認した。 At this time, the corrosion of No. 1's growing reef was progressing and red rust was starting to appear in many places, so aluminum alloy anodes were installed. No corrosion was confirmed in No. 2. Approximately 20 days after the anode was attached to No. 1, the anticorrosion effect of No. 1 was confirmed.
沈設後約6ケ月経過した結果は、No.1に27個
体、No.2に31個体の着生を確認、育成礁直下の既
設ブロツクの蝟集・着生個体数は、No.1の所に21
個体、No.2の所に28個体であつた。 Approximately 6 months after sinking, 27 individuals were confirmed to have settled on No.1 and 31 individuals on No.2. twenty one
There were 28 individuals at No. 2.
本育成礁周辺以外の既設ブロツクについては、
ブロツクの吊り具に若干の着生が観察されただけ
で以前とほぼ同様であつた。 Regarding existing blocks other than those around the main breeding reef,
The situation was almost the same as before, with only some epiphytes observed on the block hangers.
アワビ以外の蝟集や着生状況については、約6
ケ月経過した時点での報告にとどめるが、ウニが
No.1に16個体、No.2に11個体確認された。 Regarding the collection and settlement status of plants other than abalone, approximately 6
I will only report after several months have passed, but the sea urchins
16 individuals were confirmed in No. 1 and 11 individuals in No. 2.
また、海藻類では微弱電流を流した方が、有用
海藻であるアオサ類・コンブ類の着生が既設ブロ
ツクに比べ良好であることが観察された。 In addition, it was observed that when a weak electric current was applied to seaweeds, the settlement of useful seaweeds such as Ulva and Kelp was better than on the existing blocks.
しかしまた、無用海藻(雑藻)の着生も観察さ
れた。 However, the growth of useless seaweed (miscellaneous algae) was also observed.
(G) 発明の効果
実施例に述べたこのような結果は、アワビに対
して劣悪な環境下においても、微弱な電流の流す
ことによつて、陰極部である鋼製育成礁への蝟集
効果と着生率が向上し、逃散しにくいという(そ
の理由は、いまだ生理学的に究明されていない)、
本発明の有意性が示されており、本育成礁は従来
の増殖用コンクリートブロツク等よりも、資源管
理型のアワビ増殖用育成礁に適している。(G) Effects of the invention The results described in the examples show that even in a poor environment for abalone, by passing a weak electric current, it is possible to increase the abalone concentration effect on the steel reef that is the cathode part. It is said that the settlement rate is improved and it is difficult to escape (the reason for this has not yet been determined physiologically).
The significance of the present invention has been demonstrated, and the present breeding reef is more suitable as a resource management type breeding reef for breeding abalone than conventional concrete blocks for breeding.
また、本育成礁は鋼製であるために、種々の条
件に適した形状や構造を自由に変えることが出来
る。 Furthermore, since this reef is made of steel, its shape and structure can be freely changed to suit various conditions.
例えば
(イ) アワビの夜行性である性質を利用して着生率
の向上を図るために、陰影部分を多くすること
や、アワビの採捕方法(潜水採捕やカギ採り
等)に適した形状や構造にすることが自由に出
来る。 For example, (a) In order to improve the settlement rate by taking advantage of the nocturnal nature of abalone, it is possible to increase the number of shaded areas, and to improve the abalone collection method (diving, hook fishing, etc.). You can freely change the shape and structure.
(ロ) アワビの有用海藻の繁茂と兼ね合わせること
も容易に出来、必要に応じて天然石や種々のコ
ンクリートブロツク等との組み合わせが自由に
出来る。(b) Abalone can be easily combined with the growth of useful seaweed, and can be freely combined with natural stone or various concrete blocks as needed.
(ハ) 沈設する海象・海底の状況に適した形状や構
造が自由に出来る。(c) Shapes and structures suitable for the ocean conditions and seabed conditions to be submerged can be freely created.
この様に従来のコンクリートブロツク等より多
くの利点がある。 In this way, it has many advantages over conventional concrete blocks, etc.
さらに、陽極材の個数は、育成礁の鋼材総表面
積と使用陽極材によつて決まるが、数箇所に取り
付けても、その効果にはほとんど関係なく目的を
達することが出来ると共に、消耗した陽極材の交
換も容易に出来る。 Furthermore, the number of anode materials is determined by the total surface area of the steel material of the growing reef and the anode material used, but even if it is installed in several locations, the purpose can be achieved with almost no effect, and the consumed anode material can be easily replaced.
そしてまた、本発明の実施に当たつては、次の
如き方法により、従来よりもアワビ資源の管理・
育成が容易に出来る。 Furthermore, in carrying out the present invention, the following method will be used to manage and manage abalone resources better than before.
Easy to grow.
アワビを出来るだけ大きく成長させて、生産量
を向上されるためには、餌料の確保が大切である
だけに、その棲息個数に相関する餌料の確保が必
要であることは言うまでもない。 In order to grow abalone as large as possible and increase production, it is important to secure feed, and it goes without saying that it is necessary to secure feed that is correlated with the number of abalone inhabited.
したがつて、餌料用藻場が既に確保されている
海域への本育成礁の沈設は、蝟集・着生効果が高
いだけに従来よりもその資源管理が容易である。 Therefore, it is easier to manage the resources by depositing the main breeding reef in sea areas where seaweed beds for food have already been secured, since the effect of attracting and epiphyting the reef is higher than in the past.
さらに、本育成礁と餌料用定着林施設や海中林
施設との組み合わせにより、大規模な管理型増殖
場の開発もでき、かつ従来よりも計画的な資源の
管理・育成が容易となる。 Furthermore, by combining this breeding reef with established forest facilities for food and marine forest facilities, it is possible to develop large-scale managed breeding grounds, and it is easier to systematically manage and grow resources than in the past.
また、アワビに対する無用海藻の着生やフジツ
ボ等の着生は、アワビの着生率低下や逃散の原因
になるだけに、これらの着生が観察された場合
は、出来る限り早朝に金具(スクレーパ等)等に
よつて育成礁から剥離する等、無用物を除去し維
持管理することによつて、本育成礁の効果を取り
戻すことが出来るので、従来よりも資源管理が容
易である。 In addition, the growth of useless seaweed and barnacles on abalone can cause a decline in the survival rate of abalone and cause them to escape, so if such growth is observed, remove the metal fittings (scraper) as early as possible early in the morning. The effects of the cultivated reef can be regained by removing unnecessary materials such as peeling them off from the cultivated reef and maintaining and managing them, making resource management easier than in the past.
図面は本発明の一例を示す斜視図である。 1は鋼製育成礁、2はアルミニウム合金陽極。 The drawing is a perspective view showing an example of the present invention. 1 is a steel growing reef, 2 is an aluminum alloy anode.
Claims (1)
し、これにアルミニウム合金を陽極(anode)と
して取り付け、海水中で微弱な電流を流すアワビ
増殖用の鋼製育成礁。1 A steel breeding reef for breeding abalone that uses a steel breeding reef as a cathode and an aluminum alloy as an anode to which a weak electric current is passed in seawater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119554A JPS63283529A (en) | 1987-05-15 | 1987-05-15 | Rearing reef for growing abalone applied by week electric current and made of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119554A JPS63283529A (en) | 1987-05-15 | 1987-05-15 | Rearing reef for growing abalone applied by week electric current and made of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63283529A JPS63283529A (en) | 1988-11-21 |
JPH0320209B2 true JPH0320209B2 (en) | 1991-03-18 |
Family
ID=14764186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62119554A Granted JPS63283529A (en) | 1987-05-15 | 1987-05-15 | Rearing reef for growing abalone applied by week electric current and made of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63283529A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006504417A (en) * | 2002-11-01 | 2006-02-09 | 中国科学院海洋研究所 | Ezo abalone production method characterized by its orange shell color |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05137475A (en) * | 1991-11-14 | 1993-06-01 | Kaiyo Kagaku Gijutsu Center | Method and apparatus for collecting shellfish larvae |
JPH077421U (en) * | 1993-07-20 | 1995-02-03 | 和正 山本 | Fishing gear |
JP5878716B2 (en) * | 2011-09-22 | 2016-03-08 | 独立行政法人国立高等専門学校機構 | Gastropod collection device |
KR101951250B1 (en) * | 2018-01-31 | 2019-02-22 | 한국수산자원관리공단 | Method of Sea Urchin- Luring Using Electronic stimulating |
-
1987
- 1987-05-15 JP JP62119554A patent/JPS63283529A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006504417A (en) * | 2002-11-01 | 2006-02-09 | 中国科学院海洋研究所 | Ezo abalone production method characterized by its orange shell color |
Also Published As
Publication number | Publication date |
---|---|
JPS63283529A (en) | 1988-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5543034A (en) | Method of enhancing the growth of aquatic organisms, and structures created thereby | |
McMahon et al. | Mollusca: bivalvia | |
Bassett | Use and evaluation of fish habitat structures in lakes of the eastern United States by the USDA Forest Service | |
Eshenroder et al. | Comparison of lake trout-egg survival at inshore and offshore and shallow-water and deepwater sites in Lake Superior | |
Prema | Site selection and water quality in mariculture | |
JP2021515536A (en) | Sea cucumber aquaculture method using artificial sea cucumber leaf | |
JP2006000022A (en) | Various kinds water weeds-culturing type fish reef | |
JPH0320209B2 (en) | ||
Hunsucker et al. | Cathodically protected steel as an alternative to plastic for oyster restoration mats | |
Mann | Case history: the River Thames | |
CN107396878A (en) | A kind of method of beach pig and pig farm | |
Kuriakose | Open sea raft culture of green mussel at Calicut | |
RU2174749C1 (en) | Trepang reproduction method | |
Nayar et al. | Ecology of pearl oyster beds | |
Goss-Custard et al. | Inshore birds of the soft coasts and sea-level rise | |
CN115067248B (en) | Method for restoring yellow river mouth intertidal zone shoal fishery habitat | |
CN218527276U (en) | Huang Hekou intertidal zone shoal fishery habitat restoration device | |
JP3087925B2 (en) | Seedling method and seedling vessel for seaweeds using ultra-rigid concrete | |
Bert et al. | Stone crabbing in Belize: profile of a developing fishery and comparison with the Florida stone crab fishery | |
JP4601075B2 (en) | Shellfish movement restriction method and shellfish or algae growth method using this | |
McLachlan | The aquatic environment: I. Chemical and physical characteristics of Lake Chilwa | |
Nair et al. | On the large-scale colonisation of the spat of mussel, Mytilus viridis, in Cochin region | |
Eshenroder | COMPARISON OF LAKE TROUT-EGG SURVIVAL, AT INSHORE AND OFFSHORE AND SHALLOW-WATER AND DEEPWATER SITES IN LAKE SUPERIOR | |
Moore | The effect of silting on the productivity of waters | |
Common | B. Scientific Name: 0ncorhynchus I I. RANGE |