JPH03200734A - Synthesis of methanol - Google Patents
Synthesis of methanolInfo
- Publication number
- JPH03200734A JPH03200734A JP33873589A JP33873589A JPH03200734A JP H03200734 A JPH03200734 A JP H03200734A JP 33873589 A JP33873589 A JP 33873589A JP 33873589 A JP33873589 A JP 33873589A JP H03200734 A JPH03200734 A JP H03200734A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- methanol
- water
- fossil fuel
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はメタノールの合成方法に関し、特に水又は水蒸
気電解によって製造される水素(H2)と二酸化炭素分
離回収によって得られる二酸化炭素(CD2)よりメタ
ノールを合成する方法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for synthesizing methanol, particularly from hydrogen (H2) produced by water or steam electrolysis and carbon dioxide (CD2) obtained by carbon dioxide separation and recovery. This invention relates to a method for synthesizing methanol.
H2ガスとCD又はCO2ガスよりメタノールを合成す
る方法は従来よりよく知られている方法であるが、その
原料ガスは石炭、ナフサ、天然ガスなどの化石燃料を原
料とするものであった。The method of synthesizing methanol from H2 gas and CD or CO2 gas is a well-known method, but the raw material gas used for this method is fossil fuels such as coal, naphtha, and natural gas.
メタノール合成の反応式は■から■式が主反応である
CD +282− CH30H+ 21.7 Kcal
/mol・■
CO2+ 3H2→CH30H+H20+11.8 K
cal/mol■
従って、Co: H2= 1 : 2又はCO2: H
,= l:3の混合比(体積比)となるように原料中の
混合ガスの比を調整した上でコンバータに供給する必要
がある。上記■式に示されるメタノール合成反応の種々
の温度及び圧力下におけるメタノール化率を第6図に示
す。平衡上は低温高圧程望ましいが、コンバータ内に内
蔵される合成触媒例えばCu系の活性及びガス昇圧に要
するエネルギーの点から実用プラントにおいては200
〜300℃及び40〜150kg/cdGという値が選
ばれている。The reaction formula for methanol synthesis is from ■ to ■ where the main reaction is CD +282- CH30H+ 21.7 Kcal
/mol・■ CO2+ 3H2→CH30H+H20+11.8 K
cal/mol■ Therefore, Co: H2= 1 : 2 or CO2: H
It is necessary to adjust the ratio of the mixed gas in the raw material so that the mixture ratio (volume ratio) is , = l:3 before supplying it to the converter. FIG. 6 shows the methanol conversion rate under various temperatures and pressures in the methanol synthesis reaction shown in equation (2) above. In terms of equilibrium, lower temperatures and higher pressures are preferable, but from the viewpoint of the activation of the synthesis catalyst, such as Cu-based synthesis catalyst, built in the converter and the energy required to boost the gas pressure, in practical plants it is recommended to
Values of ˜300° C. and 40-150 kg/cdG have been chosen.
なお、第7図はCO及びH2よりメタノールを合成する
従来のメタノール合成反応装置の概略図で003は天然
ガスをH,、CDのりッチガスに変えるリフオーマ、0
34は熱交換器、004はコンプレッサ、005はガス
再循環器、002はコンバータを示し、リフオーマ00
3、コンバータ002にはそれぞれ触媒が内蔵されいる
。Furthermore, Figure 7 is a schematic diagram of a conventional methanol synthesis reactor that synthesizes methanol from CO and H2, and 003 is a reformer that converts natural gas into H, CD rich gas;
34 is a heat exchanger, 004 is a compressor, 005 is a gas recirculator, 002 is a converter, and refoamer 00
3. Each converter 002 has a built-in catalyst.
上記装置によって、原料の天然ガスは水蒸気と混合され
てリフオーマ003の触媒の内蔵された改質管に導入さ
れ、外部から加熱すると、下記■式の反応によりH2リ
ッチガスとなる。With the above device, raw natural gas is mixed with steam and introduced into a reforming tube containing a catalyst of Reformer 003, and when heated from the outside, becomes H2-rich gas through the reaction of the following formula (1).
CH,+ LO→ CO+ 382・■
実際にはコーキング防止などのため、水蒸気を過剰に入
れるケースが多い。リフオーマ003からのl(、/C
D混合カスは熱交換器034で冷却された後、コンプレ
ッサ004で昇圧され、メタノール合成触媒の内蔵され
たコンバータ002へと導かれ、主に■式によりメタノ
ールが合成される。なお、未反応の原料ガスはガス再循
環器005により再度コンバータ002に導かれる。CH, + LO→ CO+ 382・■ In reality, excessive water vapor is often added to prevent caulking. l(,/C from Refoma 003
After the D mixed scum is cooled by a heat exchanger 034, the pressure is increased by a compressor 004, and the mixture is led to a converter 002 containing a methanol synthesis catalyst, where methanol is synthesized mainly by the formula (2). Note that the unreacted raw material gas is guided to the converter 002 again by the gas recirculator 005.
又、一般的に02ガスを得る方法としては水電解法が確
立されていて、水電解装置としてはアルカリ水電解装置
が実用化されており、他にイオン交換膜水電解装置及び
水蒸気電解装置も開発中であり、一部実用化もされてい
る。In addition, the water electrolysis method is generally established as a method for obtaining 02 gas, and alkaline water electrolysis devices have been put into practical use as water electrolysis devices, and ion exchange membrane water electrolysis devices and steam electrolysis devices have also been developed. Among them, some of them have been put into practical use.
一般的な、アルカリ水電解装置の原理を説明すると、仕
切板及び隔膜で内部を区切りされたタンクの中にアルカ
リ水溶液を充たし、各区分された部屋には交互に陽極、
陰極が吊下げられ、このような装置において外部より電
極(陽極及び陰極)に直流電力を供給すると、アルカリ
水溶液は電気分解されて陽極から酸素、陰極から水素が
発生する。反応式を■〜■に示すが、水が消費されるの
で陰極側に純水を補給する必要がある。To explain the principle of a general alkaline water electrolysis device, an aqueous alkaline solution is filled in a tank whose interior is divided by partition plates and diaphragms, and an anode and an anode are alternately placed in each compartment.
When the cathode is suspended and direct current power is supplied to the electrodes (anode and cathode) from the outside in such a device, the alkaline aqueous solution is electrolyzed to generate oxygen from the anode and hydrogen from the cathode. The reaction formulas are shown in (1) to (2), but since water is consumed, it is necessary to supply pure water to the cathode side.
(陽極> 20H−→H20+ 2e−十’A 02
1 ■(陰極) 2H20+2B−−2DH−
+ h ↑ ■(全体として)
2H20→ H2↑+’A 02 T +)IJ ■
なお隔膜には石綿又は多孔質テフロンが、電極には鋼が
使用される。又アルカリ水溶液としては20%NaOH
又は30%KO)lなどが用いられる。(Anode> 20H-→H20+ 2e-10'A 02
1 ■ (Cathode) 2H20+2B--2DH-
+ h ↑ ■(Overall) 2H20→ H2↑+'A 02 T +)IJ ■
Note that asbestos or porous Teflon is used for the diaphragm, and steel is used for the electrodes. Also, as an alkaline aqueous solution, 20% NaOH
or 30% KO)l, etc. are used.
1、 従来のメタノール合成技術ではメタノールCH3
DH中の水素原子の出発原料は化石燃料(含、石炭の改
質反応で生ずるCO+H,)であり、メタノールの生産
増加に伴って大量の化石燃料が消費され、かつ大気中の
CO2s度上昇の一因となっていた。1. Conventional methanol synthesis technology produces methanol CH3
The starting material for the hydrogen atoms in DH is fossil fuels (including CO+H produced in the reforming reaction of coal), and as methanol production increases, large amounts of fossil fuels are consumed, and the increase in CO2s in the atmosphere increases. This was a contributing factor.
2、 従来の水電解装置では生成したH2を各種工業用
としてそのま\使っていたが販売コストに占める貯蔵及
び輸送コストがかなりの割合を占めること\なり経済的
理由で需要に限界があった。2. In conventional water electrolysis equipment, the H2 produced was used as is for various industrial purposes, but there was a limit to demand due to economic reasons, as storage and transportation costs accounted for a large proportion of sales costs. .
本発明は上記技術水準に鑑み、メタノール解によって得
られる水素とすると共に、炭素原子の出発原料を火力発
電所、製鉄所又は化学コンビナートなどでの化石燃料を
原燃料として各種製品(含電力〉を作る装置からの廃棄
ガスであるところの二酸化炭素CO3とし、プラント全
体としてより経済的にメタノールを製造する方法を提供
しようとするものである。In view of the above-mentioned state of the art, the present invention uses hydrogen obtained by methanol solution, and uses fossil fuels produced at thermal power plants, steel plants, chemical complexes, etc. as starting materials of carbon atoms to produce various products (including electric power). The aim is to provide a method for producing methanol more economically using the entire plant, using carbon dioxide CO3, which is the waste gas from the production equipment.
本発明は、
(1)水又は水蒸気電解装置から発生するH2とCO2
分離回収装置から得られるCO2を原料としてメタノー
ル合成装置においてメタノールを合成させることを特徴
とするメタノールの合成方法。The present invention provides: (1) H2 and CO2 generated from water or steam electrolysis equipment;
A method for synthesizing methanol, which comprises synthesizing methanol in a methanol synthesis device using CO2 obtained from a separation and recovery device as a raw material.
(2)化石燃料燃焼器又は化石燃料改質器からのCO2
リッチガスをC[12分離回収装置に供給する上記(1
)記載のメタノールの合成方法。(2) CO2 from fossil fuel combustors or fossil fuel reformers
The rich gas is supplied to the C[12 separation and recovery device (1)
) Method for synthesizing methanol as described.
(3)地熱蒸気タービンのような地中ガス処理装置から
のCO2 ’JプツチスをCO2分離回収装置に供給す
る上記(1)記載のメタノールの合成方法。(3) The methanol synthesis method according to (1) above, in which CO2'J putsch from an underground gas processing device such as a geothermal steam turbine is supplied to a CO2 separation and recovery device.
(4)水又は水蒸気電解装置からの副生酸素を化石燃料
燃焼器又は化石燃料改質器に供給する上記(2)記載の
メタノールの合成方法。(4) The methanol synthesis method according to (2) above, in which water or by-product oxygen from the steam electrolysis device is supplied to a fossil fuel combustor or a fossil fuel reformer.
(5)水又は水蒸気電解装置からのH2及びCO2分離
回収装置からのCO2のいずれか一方をメタノール合成
圧力に比して高圧状態で得、高圧状態の原料の圧力エネ
ルギーによって他方の原料を昇圧し、その後両原料を混
合して/タノール合成装置に供給する上記(1)〜(4
)いずれかに記載のメタノールの合成方法。(5) Either H2 from the water or steam electrolyzer or CO2 from the CO2 separation and recovery device is obtained at a high pressure compared to the methanol synthesis pressure, and the pressure of the other raw material is increased by the pressure energy of the high-pressure raw material. Then, both raw materials are mixed/supplied to the tanol synthesis equipment (1) to (4) above.
) The method for synthesizing methanol according to any one of the above.
(6) メタノール合成装置で合成されたメタノール
を化石燃料燃焼器又は化石燃料改質器の原料とする上記
(2)記載のメタノールの合成方法。(6) The method for synthesizing methanol according to (2) above, wherein methanol synthesized in a methanol synthesis device is used as a raw material for a fossil fuel combustor or a fossil fuel reformer.
水又は水蒸気電解装置とCO2分離回収装置とを組み合
わせ、かつ両者からの原料、即ち、前者からの02と、
後者からのCO2とを混合させた原料をメタノール合成
装置に導くことにより、全地球規模的に見た時に、経済
活動をそれ程損なうことなくCO2排出量の低減を可能
にする。A water or steam electrolysis device and a CO2 separation and recovery device are combined, and raw materials from both, i.e., 02 from the former,
By introducing the raw material mixed with CO2 from the latter to the methanol synthesis device, it is possible to reduce CO2 emissions without significantly impairing economic activity on a global scale.
代表的には、夜間の発電所からの余剰電力を使って水又
は水蒸気電解装置を作動させると共に、昼間の電力需要
過多時を中心に火力発電所などからの排出CO2を分離
回収しておき、夜間に前者からのH2と後者からのCO
2とを触媒の存在下で反応させメタノールを合成する。Typically, surplus electricity from power plants at night is used to operate water or steam electrolyzers, and CO2 emitted from thermal power plants is separated and recovered during the daytime when demand for electricity is high. H2 from the former and CO from the latter at night
2 in the presence of a catalyst to synthesize methanol.
同メタノールを繰り返し、火力発電所の原燃料とすれば
、火力発電所から地球大気に放出されるCD2の総量は
激減される。If methanol is repeatedly used as raw fuel for thermal power plants, the total amount of CD2 released into the earth's atmosphere from thermal power plants will be drastically reduced.
以下図面を参照して本発明の実施例について述べる。Embodiments of the present invention will be described below with reference to the drawings.
〔実施例1〕
第1図は本発明の第1実施例であり、燃焼器041又は
燃料改質器042に化石燃料が投入されると、その出口
からCO□を含んだガスが排出される。ついで該ガスは
CO2分離回収装置031にて主にCO2以外の成分と
主にCO2成分との2つに分離され、そのうち後者のガ
スがCO2ガスホルダ051に貯蔵される。[Embodiment 1] Fig. 1 shows the first embodiment of the present invention, in which when fossil fuel is input into the combustor 041 or the fuel reformer 042, gas containing CO□ is discharged from the outlet thereof. . The gas is then separated into two components, a component mainly other than CO2 and a component mainly CO2, in a CO2 separation and recovery device 031, of which the latter gas is stored in a CO2 gas holder 051.
−力水電解装置021では系外から電力と水、又場合1
こよっては熱エネルギーとが供給され、その結果、系外
へH2ガスと0□ガスとが放出される。電解ガスはそれ
ぞれH2ガスホルダー061及び02ガスホルダー06
2に貯えられる。- In the power water electrolyzer 021, electricity and water are supplied from outside the system, or in case 1
As a result, thermal energy is supplied, and as a result, H2 gas and 0□ gas are released outside the system. Electrolytic gas is H2 gas holder 061 and 02 gas holder 06 respectively.
It can be stored in 2.
その後貯えられたCO2ガス及びH2ガスは、メタノー
ル合成装置001へ送られ、邊度に混合後Cu/ZnO
/A1zOs系などのメタノール合成触媒の下で前述の
■式の反応によりメタノールCH3DHが製造される。After that, the stored CO2 gas and H2 gas are sent to the methanol synthesis equipment 001, and after being mixed briefly, Cu/ZnO
Methanol CH3DH is produced by the reaction of the above-mentioned formula (2) under a methanol synthesis catalyst such as /A1zOs system.
合成されたメタノールはメタノールタンク006に貯蔵
され必要な時に出荷される。The synthesized methanol is stored in a methanol tank 006 and shipped when necessary.
CO2混合ガスからのCO2分離回収法としては吸収法
、吸着法及び膜分離法など数通りありCD□混合ガスの
性状及び操作圧力、温度等により最適なものが選出され
る。こ\では吸収法の1種であるMEA法につき述べる
。同法はモノエタノールアミン水溶液による二酸化炭素
の吸収と、その吸収液の加熱による二酸化炭素の放出に
よって行われる。例えば吸収塔の底へ供給された二酸化
炭素を含むガス(例えば燃焼器からの排ガス)は吸収塔
内を流下する冷エタノールアミン水溶液と接触すると下
記■式の反応が右に進み二酸化炭素が吸収される。二酸
化炭素を吸収した液は加熱されて放散塔の上部へ送られ
、下端部のリポイラで加熱されて二酸化炭素を放散塔の
上部より放出する。吸収塔は一般に10〜20kg/c
utの圧力下で操作されるが大気圧下でも操作可能であ
る。There are several methods for separating and recovering CO2 from CO2 mixed gas, such as absorption method, adsorption method, and membrane separation method, and the most suitable method is selected depending on the properties of CD□ mixed gas, operating pressure, temperature, etc. This article describes the MEA method, which is a type of absorption method. The method is carried out by absorbing carbon dioxide with an aqueous solution of monoethanolamine and releasing carbon dioxide by heating the absorption liquid. For example, when a gas containing carbon dioxide (e.g. exhaust gas from a combustor) supplied to the bottom of an absorption tower comes into contact with a cold ethanolamine aqueous solution flowing down inside the absorption tower, the reaction of the following formula (■) proceeds to the right and carbon dioxide is absorbed. Ru. The liquid that has absorbed carbon dioxide is heated and sent to the upper part of the stripping tower, heated by the repoiler at the lower end, and releases carbon dioxide from the upper part of the stripping tower. Absorption towers generally have a capacity of 10 to 20 kg/c.
It is operated under a pressure of 100 ft, but can also be operated under atmospheric pressure.
CO2+ H3O+ RNH2#RNH3・HCO3■
又吸収液として前述のモノエタノールアミンに代って熱
炭酸カリも用いられており下記■式の反応により二酸化
炭素が分離回収される。CO2+ H3O+ RNH2#RNH3・HCO3■
In addition, hot potassium carbonate is also used as the absorption liquid in place of the monoethanolamine mentioned above, and carbon dioxide is separated and recovered by the reaction of the following formula (1).
基本系統は前述のモノメタノールアミンと同等であるが
、吸収塔での操作圧力は15〜20kg/c[111操
作温度は120〜160℃である。The basic system is the same as that for monomethanolamine described above, but the operating pressure in the absorption tower is 15-20 kg/c [111] and the operating temperature is 120-160°C.
なお原料ガス中に硫黄酸化物(5Ox)が含まれる場合
は事前に、それを除去する必要がある。Note that if the raw material gas contains sulfur oxides (5Ox), it is necessary to remove them in advance.
以上はCO□の湿式法による分離回収法について説明し
たが、ゼオライトなどの吸着剤を使用し物理的にCO2
を分離回収してもよい。The above explained the separation and recovery method of CO□ using a wet method.
may be separated and recovered.
〔実施例2〕
第2図には本発明の第2実施例を示す。第1実施例と異
なるのは二酸化炭素リッチガスの製造方法であり、こ\
では地中からの物質例えば地熱ガスを−たんエキスパン
ダーとして作用する蒸気タービン発電機043、さらに
コンデンサ044を通過させてCO2リッチガスとし、
それをCD3分離回収装置031に導くようにした点で
ある。[Embodiment 2] FIG. 2 shows a second embodiment of the present invention. The difference from the first embodiment is the method for producing carbon dioxide-rich gas.
Then, material from underground, such as geothermal gas, is passed through a steam turbine generator 043 that acts as a -tanium expander, and further through a condenser 044 to become CO2-rich gas.
The point is that it is guided to the CD3 separation and recovery device 031.
さらに、こ\では地中からの物質として地熱熱水が多量
にある例を示し、熱水を減圧させて水蒸気を発生させる
フラッシャ045を蒸気タービン発電機043の上流側
に設置した例を示した。Furthermore, this example shows an example in which there is a large amount of geothermal hot water as a substance from underground, and an example in which a flasher 045 that decompresses the hot water and generates steam is installed upstream of the steam turbine generator 043. .
なお、この例の地熱ガスに代え、このフローは天然ガス
田からのCH,とCO2との混合ガスをCO2分離回収
装置031に導く場合にも適用できる。Note that instead of the geothermal gas in this example, this flow can also be applied to the case where a mixed gas of CH and CO2 from a natural gas field is guided to the CO2 separation and recovery device 031.
〔実施例3〕
第3図には本発明の第3実施例を示す。第1実施例と次
の点で異なっている。[Embodiment 3] FIG. 3 shows a third embodiment of the present invention. This embodiment differs from the first embodiment in the following points.
燃焼器041又は燃料改質器042で必要とする酸化剤
ガスとして水電解装置021で副生された酸素を使える
ように酸素ガスホルダ062と燃焼器041又は燃料改
質器042との間に副生酸素ガス供給系統063を併せ
もたせた点であって、例えば燃焼器041ではLNG又
はメタノールを空気のかわりに酸素と一緒に燃焼させる
ことにより排出ガス中にN2ガスが生じないので未凝縮
分離式のCO□分離回収装置031で経済的にCO□が
分n濃縮される効果を奏し得る。By-produced oxygen is provided between the oxygen gas holder 062 and the combustor 041 or the fuel reformer 042 so that the oxygen produced by the water electrolysis device 021 can be used as the oxidant gas required by the combustor 041 or the fuel reformer 042. For example, in the combustor 041, LNG or methanol is combusted with oxygen instead of air, so no N2 gas is generated in the exhaust gas, so it is a non-condensing separation type. The CO□ separation and recovery device 031 can economically condense CO□ by n minutes.
〔実施例4〕
第4図には本発明の第4実施例を示す。第1実施例と次
の点で異なっている。[Embodiment 4] FIG. 4 shows a fourth embodiment of the present invention. This embodiment differs from the first embodiment in the following points.
燃焼器041又は燃料改質器042からCO□ガスホル
ダ051までのガス圧力が1kg/crIG以下の低圧
とし、−力水電解装置021の作動圧力が50kg/c
II!G以上の場合は、N2ガスホルダ061に貯えら
れた高圧のN2ガスをエキスパンダ043に導入すると
共に同紬のコンプレッサ004によって1kg/caf
G以下のCO2ガスを昇圧させメタノール台底に必要な
圧力まで高めるようにした点である。The gas pressure from the combustor 041 or fuel reformer 042 to the CO□ gas holder 051 is a low pressure of 1 kg/crIG or less, and the operating pressure of the hydroelectric electrolysis device 021 is 50 kg/c.
II! If the pressure exceeds G, the high pressure N2 gas stored in the N2 gas holder 061 is introduced into the expander 043, and the compressor 004 of the same Tsumugi produces 1kg/caf.
The point is that the pressure of CO2 gas below G is increased to the pressure required for the methanol platform.
〔実施例5〕
第5図には第5実施例を示す。この例は前記の第4実施
例とは次の点で異なっている。[Embodiment 5] FIG. 5 shows a fifth embodiment. This example differs from the fourth example described above in the following points.
メタノール台底に必要な圧力まで混合原料ガスの圧力を
高める手段としてCO2分離回収装置031で濃縮され
たCO2をCO2液化装置053に導くことによりCO
□を気体から液体へと相変化させ、それを液化CO2貯
槽052に貯えておく。ついでメタノール合成時にはC
ロスポンプ054にて50kg/cafG以上に加圧し
た後、液化CO2蒸発装置055にて高圧CLガスとし
、その圧力エネルギーで10kg/cafG以下のhガ
スをコンプレッサ044にて昇圧し、圧力の下がったC
O2と合流後、メタノール合成装置001に導入するよ
うにした点である。As a means of increasing the pressure of the mixed raw material gas to the pressure required for the methanol table bottom, CO2 concentrated in the CO2 separation and recovery device 031 is guided to the CO2 liquefaction device 053.
Change the phase of □ from gas to liquid and store it in the liquefied CO2 storage tank 052. Then, during methanol synthesis, C
After pressurizing to 50 kg/cafG or more with the loss pump 054, it is made into high-pressure CL gas in the liquefied CO2 evaporator 055, and with the pressure energy, the pressure of h gas of 10 kg/cafG or less is boosted in the compressor 044, and the reduced pressure is converted into CL gas.
The point is that it is introduced into the methanol synthesis apparatus 001 after being combined with O2.
なお第4及び第5の実施例ではエキスパンダ043及び
コンプレッサ004を図示したか同部分を図示省略した
C口、ガス駆動エゼクタ方式%式%
なお、図示省略しであるが、水電解装置としてはSPE
法及び固体酸化物電解質法もアルカリ法と同様に利用で
きる。In addition, in the fourth and fifth embodiments, the expander 043 and the compressor 004 are shown or the same parts are omitted. SPE
The solid oxide electrolyte method can also be used as well as the alkaline method.
(1) エネルギー総発生をそれ程削減することなく
、C口、の排出量を抑えることが可能となる。(1) It becomes possible to suppress the amount of emissions from C port without significantly reducing the total energy generation.
(2)不要に捨てられていたCO,の回収固定化が可能
となる。(2) It becomes possible to recover and fix CO, which was unnecessarily thrown away.
(3) メタノール合成の動力原単位の大半を占める
昇圧エネルギーを低減させることができるので、経済的
価値が高まり実用化が可能となる。(3) Since the pressurization energy, which accounts for most of the power unit for methanol synthesis, can be reduced, the economic value increases and practical application becomes possible.
第1図〜第5図は、本発明の第1〜第5実施例を説明す
るための概略図、第6図はメタノール合成反応の転化率
を示す特性図、第7図は従来のメタノール合成の一態様
を説明するための概略図である。Figures 1 to 5 are schematic diagrams for explaining the first to fifth embodiments of the present invention, Figure 6 is a characteristic diagram showing the conversion rate of methanol synthesis reaction, and Figure 7 is a conventional methanol synthesis reaction. FIG. 2 is a schematic diagram for explaining one aspect of the invention.
Claims (6)
_2分離回収装置から得られるCO_2を原料としてメ
タノール合成装置においてメタノールを合成させること
を特徴とするメタノールの合成方法。(1) H_2 and CO generated from water or steam electrolysis equipment
_2 A method for synthesizing methanol, which comprises synthesizing methanol in a methanol synthesis device using CO_2 obtained from a separation and recovery device as a raw material.
2リッチガスをCO_2分離回収装置に供給することを
特徴とする請求項(1)記載のメタノールの合成方法。(2) CO_ from fossil fuel combustors or fossil fuel reformers
2. The method for synthesizing methanol according to claim 1, characterized in that the 2-rich gas is supplied to a CO_2 separation and recovery device.
のCO_2リッチガスをCO_2分離回収装置に供給す
ることを特徴とする請求項(1)記載のメタノールの合
成方法。(3) The methanol synthesis method according to claim (1), characterized in that CO_2-rich gas from an underground gas processing device such as a geothermal steam turbine is supplied to a CO_2 separation and recovery device.
燃焼器又は化石燃料改質器に供給することを特徴とする
請求項(2)記載のメタノールの合成方法。(4) The method for synthesizing methanol according to claim (2), characterized in that water or by-product oxygen from the steam electrolysis device is supplied to a fossil fuel combustor or a fossil fuel reformer.
分離回収装置からのCO_2のいずれか一方をメタノー
ル合成圧力に比して高圧状態で得、高圧状態の原料の圧
力エネルギーによって他方の原料を昇圧し、その後両原
料を混合してメタノール合成装置に供給することを特徴
とする請求項(1)〜(4)いずれかに記載のメタノー
ルの合成方法。(5) H_2 and CO_2 from water or steam electrolysis equipment
One of the CO_2 from the separation and recovery equipment is obtained at a high pressure compared to the methanol synthesis pressure, the pressure energy of the high-pressure raw material is used to boost the pressure of the other raw material, and then both raw materials are mixed and supplied to the methanol synthesis equipment. The method for synthesizing methanol according to any one of claims (1) to (4), characterized in that:
石燃料燃焼器又は化石燃料改質器の原料とすることを特
徴とする請求項(2)記載のメタノールの合成方法。(6) The methanol synthesis method according to claim (2), wherein the methanol synthesized in the methanol synthesis device is used as a raw material for a fossil fuel combustor or a fossil fuel reformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33873589A JPH03200734A (en) | 1989-12-28 | 1989-12-28 | Synthesis of methanol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33873589A JPH03200734A (en) | 1989-12-28 | 1989-12-28 | Synthesis of methanol |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03200734A true JPH03200734A (en) | 1991-09-02 |
Family
ID=18320970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33873589A Pending JPH03200734A (en) | 1989-12-28 | 1989-12-28 | Synthesis of methanol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03200734A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083364A3 (en) * | 2000-05-03 | 2002-03-21 | Quadrise Ltd | Fuel system |
FR2824493A1 (en) * | 2001-05-09 | 2002-11-15 | Yvan Alfred Schwob | Method for recycling carbon dioxide produced in large quantities from industrial sites by an oxido-reductive retroconversion to methanol, useful in reducing the greenhouse effect |
WO2003040071A1 (en) * | 2001-11-06 | 2003-05-15 | Masayoshi Matsui | Method for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
WO2007108014A1 (en) * | 2006-03-20 | 2007-09-27 | Cri Ehf | Process for producing liquid fuel from carbon dioxide and water |
GB2461723A (en) * | 2008-07-10 | 2010-01-13 | Christopher Denham Wall | Conversion of waste carbon dioxide gas to bulk liquid fuels suitable for automobiles |
WO2010049393A2 (en) * | 2008-10-27 | 2010-05-06 | Siemens Aktiengesellschaft | Method for producing a synthetic material, in particular a synthetic fuel or raw material, an associated device and applications for said method |
JP2011529052A (en) * | 2008-07-24 | 2011-12-01 | ユニバーシティ オブ サザン カリフォルニア | Producing methanol and its products solely from geothermal sources and their energy |
JP2012523420A (en) * | 2009-04-10 | 2012-10-04 | ユニバーシティ オブ サザン カリフォルニア | Making coal an environmentally carbon-neutral fuel and renewable carbon source |
JP2012523422A (en) * | 2009-04-10 | 2012-10-04 | ユニバーシティ オブ サザン カリフォルニア | Making natural gas an environmentally carbon-neutral fuel and a renewable carbon source |
JP2012236847A (en) * | 2005-04-15 | 2012-12-06 | Univ Of Southern California | Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products |
JP2014181163A (en) * | 2013-03-21 | 2014-09-29 | Tokyo Electric Power Co Inc:The | Carbon dioxide reduction system |
US9249064B2 (en) | 2009-11-20 | 2016-02-02 | Cri, Ehf | Storage of intermittent renewable energy as fuel using carbon containing feedstock |
JP2019173700A (en) * | 2018-03-29 | 2019-10-10 | 旭化成株式会社 | Manufacturing system, system, control device,program and process of manufacture of compound |
JP2021504504A (en) * | 2017-12-01 | 2021-02-15 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Conversion of carbon dioxide from vehicle exhaust to liquid fuels and fuel additives |
KR20210147606A (en) * | 2020-05-29 | 2021-12-07 | 광주과학기술원 | A system for upgrading by-product gases in steel mills by using hydrogen produced via electrolysis and the method thereof |
US11738317B2 (en) | 2021-01-15 | 2023-08-29 | CRI, hf | Reactor for synthesizing methanol or other products |
-
1989
- 1989-12-28 JP JP33873589A patent/JPH03200734A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083364A3 (en) * | 2000-05-03 | 2002-03-21 | Quadrise Ltd | Fuel system |
FR2824493A1 (en) * | 2001-05-09 | 2002-11-15 | Yvan Alfred Schwob | Method for recycling carbon dioxide produced in large quantities from industrial sites by an oxido-reductive retroconversion to methanol, useful in reducing the greenhouse effect |
WO2003040071A1 (en) * | 2001-11-06 | 2003-05-15 | Masayoshi Matsui | Method for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
US7064150B2 (en) | 2001-11-06 | 2006-06-20 | Masayoshi Matsui | Method for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
US7488404B2 (en) | 2001-11-06 | 2009-02-10 | Masayoshi Matsui | Process for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
JP2012236847A (en) * | 2005-04-15 | 2012-12-06 | Univ Of Southern California | Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products |
US8198338B2 (en) | 2006-03-20 | 2012-06-12 | Cri Ehf | Process for producing liquid fuel from carbon dioxide and water |
US20120201717A1 (en) * | 2006-03-20 | 2012-08-09 | Cri, Ehf. | Process and System For Producing Liquid Fuel From Carbon Dioxide And Water |
US8506910B2 (en) | 2006-03-20 | 2013-08-13 | Cri Ehf | Process and system for producing liquid fuel from carbon dioxide and water |
WO2007108014A1 (en) * | 2006-03-20 | 2007-09-27 | Cri Ehf | Process for producing liquid fuel from carbon dioxide and water |
GB2461723B (en) * | 2008-07-10 | 2013-03-27 | Christopher Denham Wall | The economic conversion of waste carbon dioxide gas such as that produced by fossil fuel burning power stations, to bulk liquid fuels suitable for automobiles |
GB2461723A (en) * | 2008-07-10 | 2010-01-13 | Christopher Denham Wall | Conversion of waste carbon dioxide gas to bulk liquid fuels suitable for automobiles |
JP2011529052A (en) * | 2008-07-24 | 2011-12-01 | ユニバーシティ オブ サザン カリフォルニア | Producing methanol and its products solely from geothermal sources and their energy |
WO2010049393A2 (en) * | 2008-10-27 | 2010-05-06 | Siemens Aktiengesellschaft | Method for producing a synthetic material, in particular a synthetic fuel or raw material, an associated device and applications for said method |
WO2010049393A3 (en) * | 2008-10-27 | 2010-06-24 | Siemens Aktiengesellschaft | Method for producing a synthetic material, in particular a synthetic fuel or raw material, an associated device and applications for said method |
JP2012523420A (en) * | 2009-04-10 | 2012-10-04 | ユニバーシティ オブ サザン カリフォルニア | Making coal an environmentally carbon-neutral fuel and renewable carbon source |
JP2012523422A (en) * | 2009-04-10 | 2012-10-04 | ユニバーシティ オブ サザン カリフォルニア | Making natural gas an environmentally carbon-neutral fuel and a renewable carbon source |
US9249064B2 (en) | 2009-11-20 | 2016-02-02 | Cri, Ehf | Storage of intermittent renewable energy as fuel using carbon containing feedstock |
JP2014181163A (en) * | 2013-03-21 | 2014-09-29 | Tokyo Electric Power Co Inc:The | Carbon dioxide reduction system |
JP2021504504A (en) * | 2017-12-01 | 2021-02-15 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Conversion of carbon dioxide from vehicle exhaust to liquid fuels and fuel additives |
JP2019173700A (en) * | 2018-03-29 | 2019-10-10 | 旭化成株式会社 | Manufacturing system, system, control device,program and process of manufacture of compound |
KR20210147606A (en) * | 2020-05-29 | 2021-12-07 | 광주과학기술원 | A system for upgrading by-product gases in steel mills by using hydrogen produced via electrolysis and the method thereof |
US11738317B2 (en) | 2021-01-15 | 2023-08-29 | CRI, hf | Reactor for synthesizing methanol or other products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soltanieh et al. | Development of a zero emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO2 capture | |
Baykara | Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency | |
RU2213051C2 (en) | Method of generation of electric energy, water steam and carbon dioxide from hydrocarbon raw material | |
JPH03200734A (en) | Synthesis of methanol | |
US5380600A (en) | Fuel cell system | |
GB1595413A (en) | Engergy recovery from chemical process off-gas | |
JPH1146460A (en) | Power storage system | |
Ortiz et al. | Optimization of power and hydrogen production from glycerol by supercritical water reforming | |
JPH0434861A (en) | Molten carbonate fuel cell power generation device with CO↓2 separation device using LNG cold energy | |
EA039064B1 (en) | Method for generating synthesis gas for ammonia production | |
US4080791A (en) | Fuel cell power generating stations | |
US20230046387A1 (en) | Method and plant for producing hydrogen | |
BR112019018673A2 (en) | co-production of methanol, ammonia and urea | |
JP2022022978A (en) | Coproduction method of methanol and methane, and coproduction facility of methanol and methane | |
JP2012140382A (en) | Method of synthesizing methane from carbon dioxane and hydrogen | |
Banu et al. | Integration of methane cracking and direct carbon fuel cell with CO2 capture for hydrogen carrier production | |
JP6603607B2 (en) | Methanol synthesis system | |
BR112021000479A2 (en) | EXPANDER FOR SOEC APPLICATIONS | |
US12215432B2 (en) | Method for generating synthesis gas for use in hydroformylation reactions | |
JP4728837B2 (en) | Hydrogen supply system | |
JP2018165388A (en) | Water utilization method and water electrolysis system | |
AU778771B2 (en) | Cogeneration of methanol and electrical power | |
JP3964657B2 (en) | Hydrogen production system | |
JP2001097906A (en) | Method for producing methanol | |
JPH11111320A (en) | Recovery and fixing method for carbon dioxide, nitrogen gas, and argon gas in fuel cell power generation using internal combustion type reformer |