JPH03199854A - Very low temperature refrigerator - Google Patents
Very low temperature refrigeratorInfo
- Publication number
- JPH03199854A JPH03199854A JP34122289A JP34122289A JPH03199854A JP H03199854 A JPH03199854 A JP H03199854A JP 34122289 A JP34122289 A JP 34122289A JP 34122289 A JP34122289 A JP 34122289A JP H03199854 A JPH03199854 A JP H03199854A
- Authority
- JP
- Japan
- Prior art keywords
- pulse tube
- temperature end
- low temperature
- end portion
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 13
- 230000008014 freezing Effects 0.000 claims 1
- 238000007710 freezing Methods 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 abstract description 16
- 238000007906 compression Methods 0.000 abstract description 7
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 abstract description 4
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1414—Pulse-tube cycles characterised by pulse tube details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1425—Pulse tubes with basic schematic including several pulse tubes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はパルスチューブを備えた極低温冷凍装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a cryogenic refrigeration device equipped with a pulse tube.
(ロ)従来の技術
本発明に先行する特開平1−114670号公報に記載
された従来の極低温冷凍装置では、コンプレッサーにパ
ルスチューブを連通し、このパルスチューブと前記コン
プレッサーとの間でガス状冷媒を往復移動し、このガス
状冷媒をその往復時に前記パルスチューブに流入して圧
縮しながら高音端部に到達させ、この高温端部から圧縮
熱を放熱することで、その放熱量だけ極低温冷凍装置が
冷却するように構成されている。(B) Prior Art In the conventional cryogenic refrigeration apparatus described in Japanese Patent Application Laid-Open No. 1-114670, which precedes the present invention, a pulse tube is connected to a compressor, and a gaseous The refrigerant is moved back and forth, and during the reciprocation, this gaseous refrigerant flows into the pulse tube and is compressed until it reaches the high-temperature end. By dissipating the heat of compression from this high-temperature end, the temperature is reduced to a cryogenic temperature by the amount of heat dissipated. A refrigeration device is configured to provide cooling.
しかしながらこの種従来の極低温冷凍装置では、パルス
チューブの内部全体が1個の大きな空洞となっているた
め、このパルスチューブ内のガス状冷媒が中心軸方向に
流通せず、中心軸と直交する方向に拡散し、その内部熱
拡散によってパルスチューブにおける入口近傍及び高温
端部間の熱勾配が小さくなり、その結果、高温端部の温
度上昇が妨げられ放熱量が減少して、冷凍効率の低下す
る欠点がある。However, in this type of conventional cryogenic refrigeration equipment, the entire inside of the pulse tube is one large cavity, so the gaseous refrigerant in this pulse tube does not flow in the direction of the central axis, but rather perpendicularly to the central axis. This internal heat diffusion reduces the thermal gradient between the vicinity of the inlet and the high-temperature end of the pulse tube, and as a result, the temperature rise at the high-temperature end is prevented, the amount of heat radiation decreases, and the refrigeration efficiency decreases. There are drawbacks to doing so.
(ハ)発明が解決しようとする課題
本発明は前述の欠点を解消し、パルスチー、−ブにおけ
る入口近傍及び高温端部間の熱勾配を大きくして高温端
部の放熱量をアップすることで極低温冷凍装置の冷凍効
率を高めるものである。(c) Problems to be Solved by the Invention The present invention solves the above-mentioned drawbacks by increasing the heat radiation amount at the high temperature end by increasing the thermal gradient near the inlet and between the high temperature end of the pulse tube. This increases the refrigeration efficiency of cryogenic refrigeration equipment.
(ニ) 課題を解決するための手段
本発明は、コンプレッサーを蓄冷器、低温端部及びパル
スチューブに順次連通し、このパルスチューブと前記コ
ンプレッサーとの間でガス状冷媒を往復移動させてなる
ものにおいて、前記パルスチューブの内部に、該パルス
チューブの中心軸と平行な通路部を、区画形成したもの
である。(d) Means for Solving the Problems The present invention is constructed by sequentially communicating a compressor with a regenerator, a low-temperature end, and a pulse tube, and reciprocating gaseous refrigerant between the pulse tube and the compressor. In the pulse tube, a passage section parallel to the central axis of the pulse tube is defined inside the pulse tube.
(ホ)作用
本発明によれば、パルスチューブに流入したガス状圧縮
冷媒は、パルスチューブの中心軸と平行な各通路部に案
内されて円滑に高音端部に向かって圧送され圧送途中に
おける径方向外側への内部熱拡散が防止されるようにな
り、その結果、高温端部に向かっての熱勾配が大きくな
り、高温端部の温度が上昇して放熱量が増加し、従って
、極低温冷凍装置の冷凍効率が高まる。(E) Function According to the present invention, the gaseous compressed refrigerant that has flowed into the pulse tube is guided through each passage section parallel to the central axis of the pulse tube, and is smoothly pumped toward the high-pitched end. Internal heat diffusion in the outward direction is now prevented, resulting in a larger thermal gradient towards the hot end, increasing the temperature of the hot end and increasing the amount of heat dissipation, thus reducing the cryogenic temperature. The refrigeration efficiency of the refrigeration equipment increases.
(へ)実施例 次に本発明の一実施例について説明する。(f) Example Next, one embodiment of the present invention will be described.
第1図において、(11はコンプレッサーで、シリンダ
ー(2)にピストン(3)を収納している。In Fig. 1, (11 is a compressor), which houses a piston (3) in a cylinder (2).
(4)はコンプレッサー(1)に連通した予冷系熱交換
器で、冷却水により冷却される。(5)は予冷系熱交換
器(4)に連通した蓄冷器で、蓄冷材(6)を収納して
いる。(7)は蓄冷器(5)に連通した熱交換器態様の
低温端部、(8)は低温端部(7)に連通したステンレ
ス鋼製のパルスチューブで、圧縮過程においてガス状圧
縮冷媒を流入部(9)から高温端部(lO)に向けて圧
送する′。高温端部(10)は、パルスチューブ(8)
内で発生した圧縮熱により加熱され、その熱を高温端熱
交換器(11)の冷却水等に放熱する。(4) is a pre-cooling heat exchanger connected to the compressor (1), and is cooled by cooling water. (5) is a regenerator connected to the pre-cooling system heat exchanger (4), and stores a regenerator material (6). (7) is a low-temperature end of the heat exchanger type connected to the regenerator (5), and (8) is a stainless steel pulse tube connected to the low-temperature end (7), which carries gaseous compressed refrigerant during the compression process. It is pumped from the inlet (9) towards the hot end (lO). The hot end (10) is a pulse tube (8)
It is heated by the compression heat generated inside, and the heat is radiated to the cooling water etc. of the high temperature end heat exchanger (11).
而して前記パルスチューブ(8)は第2図に示すように
、該パルスチューブ(8)の中心軸と平行な通路部(1
2) (121・・・を、このパルスチューブ(8)の
内部に区画形成しである。各通路部(121(121・
・・は、パルスチューブ(8)の内部に多数の細管(1
3)(13)・・・を高密度状態で並設することで、各
細管(13) (13)・・・の内部に形成される。各
細管(13) !+31・・・については、それぞれの
端部をパルスチューブ(8)の端部から突出して延長し
前記低温端部(7)4
に連通するものも実施される。前記各通路部(12)(
12)・・・については、その断面形状が多角形もしく
はその変形のものも実施され、またパルスチューブ(8
)にハニカムを内設してなるものも実施される。As shown in FIG. 2, the pulse tube (8) has a passage section (1) parallel to the central axis of the pulse tube (8).
2) (121...) are formed into sections inside this pulse tube (8). Each passage section (121 (121...
... has a large number of thin tubes (1) inside the pulse tube (8).
3) (13)... are formed inside each thin tube (13) (13)... by arranging them in a high density state. Each tubule (13)! As for +31..., a configuration in which each end protrudes and extends from the end of the pulse tube (8) and communicates with the low temperature end (7) 4 is also implemented. Each passage section (12) (
12) For..., polygonal or modified cross-sectional shapes are also implemented, and pulse tubes (8
) with a honeycomb installed inside it.
前記極低温冷凍装置では、圧縮過程においては、コンプ
レッサー(1)のピストン(3)で圧縮されたガス状冷
媒は、予冷系熱交換器(4)、蓄冷器(5)及び低温端
部(7)を通る間に冷却してパルスチューブ(8)に流
入しこのパルスチューブ(8)の残留冷媒を圧縮してそ
の圧縮熱を高温端部(lO)で放熱し、その後、膨張過
程においては、ピストン(3)が引き上げられ、ガス状
冷媒は、復帰移動してパルスチューブ(8)内で断熱膨
張し更に低温化して低温端部(7)及び蓄冷器(5)を
冷却しコンプレッサー(1)に戻るようになり、斯る往
復移動サイクルを繰り返すことにより、低温端部(7)
に100に以下の極低温が得られる。In the cryogenic refrigeration system, during the compression process, the gaseous refrigerant compressed by the piston (3) of the compressor (1) is transferred to the precooling system heat exchanger (4), the regenerator (5), and the low temperature end (7). ) and flows into the pulse tube (8), the residual refrigerant in this pulse tube (8) is compressed and the heat of compression is dissipated at the high temperature end (lO), and then in the expansion process, The piston (3) is pulled up, and the gaseous refrigerant moves back and expands adiabatically within the pulse tube (8), further reducing the temperature and cooling the low temperature end (7) and regenerator (5), and returns to the compressor (1). By repeating this reciprocating cycle, the low temperature end (7)
Cryogenic temperatures below 100°C can be obtained.
また前記極低温冷凍装置では、その圧縮過程においてパ
ルスチューブ(8)に流入したガス状圧縮冷媒は、パル
スチューブ(8)の中心軸と平行な各通路部(121(
12)・・・に案内されて円滑に高温端部(lO)に向
かって圧送され圧送途中における径方向外側への内部熱
拡散が防止されるようになり、その結果、第3図に示す
ように、流入部(9)から高温端部(10)に向かって
の熱勾配が大きくなり、第4図に示す従来例の熱勾配の
小さいものに比較して、本実施例の高温端部(lO)の
温度が上昇して放熱量が増加し、従って、極低温冷凍装
置の冷凍効率の高まることが実験い確認されている。尚
、第3図及び第4図は、それぞれ、横軸に中心軸方向の
距離、縦軸に温度をとって、本実施例熱勾配特性線(S
l)及び従来例熱勾配特性線(S2)を示しているや
(ト)発明の効果
本発明は以上のように構成したから、パルスチューブに
流入したガス状圧縮冷媒は、パルスチューブの中心軸と
平行な各通路に案内されて円滑に高温端部に向かって圧
送され圧送途中における径方向外側への内部熱拡散が防
止されるようになり、その結果、高温端部に向かっての
熱勾配が大きくなり、高温端部の温度が上昇して放熱量
をアップでき、従って、極低温冷凍装置の冷凍効率を高
め得る。Further, in the cryogenic refrigeration apparatus, the gaseous compressed refrigerant that has flowed into the pulse tube (8) during the compression process is transferred to each passage section (121 () parallel to the central axis of the pulse tube (8).
12) Guided by ..., the material is smoothly pumped toward the high temperature end (lO), and internal heat diffusion to the outside in the radial direction during pumping is prevented. As a result, as shown in Fig. 3, In addition, the thermal gradient from the inflow part (9) toward the high temperature end (10) becomes large, and compared to the conventional example shown in FIG. 4 where the thermal gradient is small, the high temperature end ( It has been experimentally confirmed that the temperature of lO increases, the amount of heat dissipated increases, and therefore the refrigeration efficiency of the cryogenic refrigeration system increases. 3 and 4, the horizontal axis represents the distance in the central axis direction, and the vertical axis represents the temperature, and the thermal gradient characteristic line (S
l) and the conventional example thermal gradient characteristic line (S2) are shown. It is guided through each passage parallel to the high temperature end and is smoothly pumped toward the high temperature end, preventing internal heat diffusion to the outside in the radial direction during pumping, and as a result, the thermal gradient toward the high temperature end is becomes larger, the temperature at the high-temperature end increases, and the amount of heat dissipated can be increased, thereby increasing the refrigeration efficiency of the cryogenic refrigeration system.
第1図は本発明の一実施例の概略的構成図、第2図は同
実施例の要部の斜視図、第3図は同実施例に備えたパル
スチューブの熱勾配特性図、第4図は従来例に備えたパ
ルスチューブの熱勾配特性図である。
(1)・・・コンプレッサー、(5)・・・蓄冷器、(
7)・・低温端部、(8)・・・パルスチューブ、(1
2)・・通路部。
第1図FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is a perspective view of essential parts of the embodiment, FIG. 3 is a thermal gradient characteristic diagram of a pulse tube provided in the embodiment, and FIG. The figure is a thermal gradient characteristic diagram of a conventional pulse tube. (1)...Compressor, (5)...Regenerator, (
7)...Low temperature end, (8)...Pulse tube, (1
2)...Aisle section. Figure 1
Claims (1)
ューブに、順次連通し、このパルスチューブと前記コン
プレッサーとの間でガス状冷媒を往復移動させてなるも
のにおいて、 前記パルスチューブの内部に、該パルスチューブの中心
軸と平行な通路部を、区画形成したことを特徴とする極
低温冷凍装置。[Scope of Claims] 1) A compressor is sequentially connected to a regenerator, a low temperature end, and a pulse tube, and a gaseous refrigerant is reciprocated between the pulse tube and the compressor, wherein the pulse A cryogenic freezing device characterized in that a passage section parallel to the central axis of the pulse tube is defined inside the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34122289A JPH03199854A (en) | 1989-12-27 | 1989-12-27 | Very low temperature refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34122289A JPH03199854A (en) | 1989-12-27 | 1989-12-27 | Very low temperature refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03199854A true JPH03199854A (en) | 1991-08-30 |
Family
ID=18344326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34122289A Pending JPH03199854A (en) | 1989-12-27 | 1989-12-27 | Very low temperature refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03199854A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773392A1 (en) * | 1998-01-06 | 1999-07-09 | Cryotechnologies | Cooling device using pulsed gas pressure in tubes to remove heat from equipment in closed space, e.g. aircraft, or from semiconductors |
JP2008286507A (en) * | 2007-05-21 | 2008-11-27 | Sumitomo Heavy Ind Ltd | Pulse tube refrigerator |
CN112867898A (en) * | 2018-09-20 | 2021-05-28 | 住友重机械工业株式会社 | Pulse tube refrigerator and method for manufacturing pulse tube refrigerator |
-
1989
- 1989-12-27 JP JP34122289A patent/JPH03199854A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773392A1 (en) * | 1998-01-06 | 1999-07-09 | Cryotechnologies | Cooling device using pulsed gas pressure in tubes to remove heat from equipment in closed space, e.g. aircraft, or from semiconductors |
JP2008286507A (en) * | 2007-05-21 | 2008-11-27 | Sumitomo Heavy Ind Ltd | Pulse tube refrigerator |
CN112867898A (en) * | 2018-09-20 | 2021-05-28 | 住友重机械工业株式会社 | Pulse tube refrigerator and method for manufacturing pulse tube refrigerator |
CN112867898B (en) * | 2018-09-20 | 2023-01-13 | 住友重机械工业株式会社 | Pulse tube refrigerator and method for manufacturing pulse tube refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100348619B1 (en) | Aftercooler and its manufacturing mathod for pulse tube refrigerator | |
KR100348618B1 (en) | Aftercooler and its manufacturing mathod for pulse tube refrigerator | |
KR100557229B1 (en) | Pulse tube cryocooler | |
JPH03199854A (en) | Very low temperature refrigerator | |
US6983609B2 (en) | Heat driven acoustic orifice type pulse tube cryocooler | |
JPS63302259A (en) | Cryogenic generator | |
US20150168026A1 (en) | Regenerative refrigerator | |
JPH04225755A (en) | Cryogenic refrigerating device | |
RU2273808C2 (en) | Refrigeration machine with pulsating pipe | |
JP2600714B2 (en) | Double tube refrigerator | |
JP2834897B2 (en) | Refrigeration equipment | |
US20240191913A1 (en) | Pulse tube cryocooler and method for cooling down pulse tube cryocooler | |
KR100348615B1 (en) | Structure for fixing radiator of pulse tube refrigerator | |
JPH09178279A (en) | Pulse tube type refrigerator | |
KR100283156B1 (en) | Precooler structure for lubricationless pulse tube refrigerator | |
JP3363697B2 (en) | Refrigeration equipment | |
Yuan et al. | A blind test on the pulse tube refrigerator model (PTRM) | |
JPH0428968A (en) | Cryogenic freezer device | |
JPH11223398A (en) | Heat exchanger for heat engine | |
JPH074762A (en) | Stirling engine heat loss reduction structure | |
JPH04110568A (en) | Cryogenic freezer | |
JP2001289522A (en) | U-shaped pulse tube refrigerator | |
SU1492081A2 (en) | Piston gas blower | |
TW202248580A (en) | Stirling freezer | |
JPH04121556A (en) | Refrigeration arrangement for extremely low temperature |