[go: up one dir, main page]

JPH03199120A - Production of alumina-based porous gel - Google Patents

Production of alumina-based porous gel

Info

Publication number
JPH03199120A
JPH03199120A JP1338777A JP33877789A JPH03199120A JP H03199120 A JPH03199120 A JP H03199120A JP 1338777 A JP1338777 A JP 1338777A JP 33877789 A JP33877789 A JP 33877789A JP H03199120 A JPH03199120 A JP H03199120A
Authority
JP
Japan
Prior art keywords
gel
alumina
precursor
specific surface
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1338777A
Other languages
Japanese (ja)
Other versions
JPH0818824B2 (en
Inventor
Yasuyuki Mizushima
康之 水嶋
Makoto Hori
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOROIDO RES KK
Original Assignee
KOROIDO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOROIDO RES KK filed Critical KOROIDO RES KK
Priority to JP1338777A priority Critical patent/JPH0818824B2/en
Publication of JPH03199120A publication Critical patent/JPH03199120A/en
Publication of JPH0818824B2 publication Critical patent/JPH0818824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce the gel capable of maintaining a large specific surface even at a high temp. appropriate for a high-temp. catalyst carrier by mixing an aluminum alkoxide and a specified compd. to obtain an alumina-based precursor, hydrolyzing and gelling the precursor and supercritically drying the product. CONSTITUTION:An aluminum alkoxide expressed by (RO)3Al (R is alkyls) and 0.1-5mols, based on the alkoxide, of >=1 kind among alkanolamines (e.g. diethanolamine, etc.) and the esters of beta-ketonic acids (e.g. ethyl acetoacetate) and beta-diketonic compd. (e.g. acetylacetone, etc.) to form an alumina-based precursor. The precursor is hydrolyzed and gelled with 0.5-2mols of water, based on the reactive group in the precursor capable of being hydrolyzed, in the presence of a basic catalyst (e.g. pyridine, etc.), as required, and the obtained gel is dried via the supercritical state of the org. solvent constituting the greater part of the liq. in the gel or the mixed system contg. the solvent. Consequently, the gel capable of maintaining the large specific surface even at a high temp. appropriate for a high-temp. catalyst carrier is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温触媒担体に好適な高温下でも高い比表面
積を維持しうるアルミナ系多孔質ゲルの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an alumina-based porous gel that can maintain a high specific surface area even at high temperatures and is suitable for use as a high-temperature catalyst carrier.

〔従来の技術〕[Conventional technology]

従来、化学プロセスに使用されてきた触媒は、通常、6
00℃以下の温度に耐性であるなら通常の化学プロセス
に支障を生じることは特になかったためセラミックス触
媒が一般的に使用されても特にその耐熱性は問題になら
なかったが、近年、高温熱化学プロセスを伴う装置、特
に、触媒燃焼器は、ガスタービン、ボイラー、ジェット
エンジンなどの応用が期待され、NOx発生の低減化、
燃焼効率の向上等の要請から、1000℃以上の高温環
境に耐性のセラッミクスが使用されるようになってきて
いる。
Catalysts traditionally used in chemical processes are typically 6
Ceramic catalysts did not pose any problems in ordinary chemical processes if they could withstand temperatures below 00°C, so even when ceramic catalysts were commonly used, their heat resistance was not a problem.However, in recent years, high-temperature thermochemical Devices that involve processes, especially catalytic combustors, are expected to be applied to gas turbines, boilers, jet engines, etc., and are used to reduce NOx generation,
Due to the demand for improved combustion efficiency, ceramics that are resistant to high-temperature environments of 1000° C. or higher are being used.

このようなセラッミクスは、例えば、所望の組成、形状
を得るために、種々の金属酸化物等の粉末を適宜配合混
合、底形、そして焼成して製造される。しかし、この方
法では出発原料粉末自体の比表面積が低いため高温焼成
により一層比表面積が低下し、効率の高い触媒とは言え
なかった。
Such ceramics are manufactured, for example, by suitably mixing powders of various metal oxides, forming a bottom shape, and firing the powders in order to obtain a desired composition and shape. However, in this method, since the starting raw material powder itself has a low specific surface area, the specific surface area is further reduced by high-temperature calcination, and the catalyst cannot be said to be highly efficient.

そこで、より比表面積の高いセラッミクスを製造するた
めに、出発原料を粉末に代えて金属アルコキシド、例え
ば、アルミニウムアルコキシドやバリウムアルコキシド
を混合加水分解して形成したゲルを焼成するゾル・ゲル
法が、INTERNATIONALSYMPO3IUM
 ON FINBCERAMIC3ARITA ’87
に「高温触媒燃焼における耐熱性触媒材料の開発」と題
した荒井弘道の文献に記載されている。
Therefore, in order to produce ceramics with a higher specific surface area, the sol-gel method, in which a gel formed by mixing and hydrolyzing a metal alkoxide, such as aluminum alkoxide or barium alkoxide, instead of a powder as a starting material, is fired is used.
ON FINBCERAMIC3ARITA '87
This is described in Hiromichi Arai's article titled ``Development of heat-resistant catalyst materials for high-temperature catalytic combustion.''

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記ゾル・ゲル法では、粉末として生成
するため一体化させるためには再形成が必要あること、
また、燃焼触媒として最も一般的な使用温度である12
00℃付近での比表面積が、せいぜい50〜60g/m
2と小さく、尚比表面積が十分に大きいとはいえなかっ
た。
However, in the above-mentioned sol-gel method, since it is produced as a powder, reformation is required to integrate it.
In addition, 12
The specific surface area at around 00℃ is at most 50 to 60 g/m
2, and could not be said to have a sufficiently large specific surface area.

本発明は、以上の問題点を解決し、ゾル・ゲル法により
高温下で高い比表面積を有し、かつ一体化したパルキイ
なアルミナ系多孔質セラッミクスの前駆体ゲル、即ち、
アルミナ多孔質ゲルの製造方法を提供することを解決課
題とするものである。
The present invention solves the above problems and provides a precursor gel for alumina-based porous ceramics that has a high specific surface area at high temperatures and is integrated using a sol-gel method, that is,
The object of the present invention is to provide a method for producing an alumina porous gel.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、アルミニウムアルコキシドに対し、アルカノ
ールアミン、βケト酸エステル、βジケトン化合物の1
種または2種以上を0.1〜5倍モルを混合してアルミ
ナ系前駆体混合物を形成する工程、必要に応じて塩基触
媒の存在下、該混合物中に存在する加水分解しうる反応
基の数に対し0.5〜2倍モルの水で該前駆体混合物を
加水分解、ゲル化せしめる工程、および該ゲル中の液分
の大半を占める有機溶媒または少なくとも当該有機溶媒
を含む混合系の超臨界状態を経てゲルの乾燥を行う工程
からなることを特徴とするアルミナ多孔質ゲルの製造方
法であり、これにより上記課題を解決することができる
The present invention provides aluminum alkoxide with alkanolamine, β-keto acid ester, and β-diketone compound.
A process of mixing 0.1 to 5 times the mole of the species or two or more species to form an alumina-based precursor mixture, optionally in the presence of a base catalyst, to remove the hydrolyzable reactive groups present in the mixture. a step of hydrolyzing and gelling the precursor mixture with water in an amount of 0.5 to 2 times the mole of This is a method for producing an alumina porous gel characterized by comprising a step of drying the gel through a critical state, and thereby the above-mentioned problems can be solved.

本発明において、アルミニウムアルコキシドとアルカノ
ールアミン、βケト酸エステル、βジケトン化合物(以
下、改質剤と言う場合がある)との混合は反応を伴うも
ので、両者を常温ないし加温下に混合することができ、
混和性、反応の均一性の面から有機溶媒存在下で行うの
が好ましい。
In the present invention, the mixing of aluminum alkoxide with alkanolamine, β-keto acid ester, and β-diketone compound (hereinafter sometimes referred to as a modifier) involves a reaction, and the two are mixed at room temperature or under heating. It is possible,
From the viewpoint of miscibility and uniformity of reaction, it is preferable to carry out the reaction in the presence of an organic solvent.

もっとも、有機溶媒が存在しなくても混合は可能である
。ここで用いる有機溶媒としてはアルミニウムアルコキ
シドを溶解するものが好ましく、具体的にはメタノール
、エタノーノペn−プロパツール、1so−プロパツー
ル、5ec−ブタノール等に代表すれるアルコール類、
トルエン、ベンゼン、キシレン等に代表される芳香族系
炭化水素、テトラヒドロフラン、ジメチルホルムアミド
、四塩化炭素等が例示されるが、溶解度の観点からアル
コール類が好ましい。
However, mixing is possible even without the presence of an organic solvent. The organic solvent used here is preferably one that dissolves the aluminum alkoxide, specifically alcohols such as methanol, ethanolopen n-propanol, 1so-propanol, 5ec-butanol, etc.
Examples include aromatic hydrocarbons typified by toluene, benzene, xylene, etc., tetrahydrofuran, dimethylformamide, carbon tetrachloride, etc., but alcohols are preferred from the viewpoint of solubility.

本発明において、アルミナ系前駆体混合物の加水分解反
応によりアルミニウムアルコキシド等由来のアルコール
等の有機溶媒が生成するので、ゲル形成後のゲル中(ゲ
ル中以外も包含されることは明らかである。)には、生
成した有機溶媒、上記添加有機溶媒、該改質剤等からな
る有機溶媒が存在することになる。該有機溶媒は、超臨
界状態を経てなされるゲルの乾燥と共に除去されるが(
以下、超臨界乾燥と略す)、所望により当該有機溶媒と
それ以外の化学物質との混合系、例えば、当該有機溶媒
と二酸化炭素との混合系にてなされるゲルの乾燥を実施
してもよい。この場合の超臨界状態とは、当該有機溶媒
の1種又は混合物または当該有機溶媒とそれ以外の化学
物質との混合物に固有の臨界温度(Tc)及び臨界圧力
(Pc)を越えた状態を指し、それら有機溶媒または該
混合物が液体と気体の中間の性質を示す超臨界流体の状
態を意味する。
In the present invention, organic solvents such as alcohols derived from aluminum alkoxide etc. are generated by the hydrolysis reaction of the alumina-based precursor mixture, so it is clear that the organic solvents such as alcohols derived from aluminum alkoxide etc. are included in the gel after gel formation (it is clear that it also includes areas other than the gel). An organic solvent consisting of the produced organic solvent, the above-mentioned added organic solvent, the modifier, etc. is present. The organic solvent is removed as the gel dries through a supercritical state (
(hereinafter abbreviated as supercritical drying), if desired, the gel may be dried in a mixed system of the organic solvent and other chemical substances, for example, a mixed system of the organic solvent and carbon dioxide. . In this case, the supercritical state refers to a state in which the critical temperature (Tc) and critical pressure (Pc) specific to the organic solvent or mixture or the mixture of the organic solvent and other chemical substances are exceeded. , refers to a supercritical fluid state in which the organic solvent or the mixture exhibits properties intermediate between a liquid and a gas.

又、物質によって臨界点が違うので、それを合わせるこ
とは、超臨界流体の状態の制御が確実になるので好まし
く、従って、湿潤ゲル中の溶媒が超臨界乾燥に用いる所
望の溶媒と違う場合は、湿潤ゲル中の溶媒と超臨界乾燥
に用いる所望の溶媒とを交換する。具体的には、多量の
超臨界乾燥に用いる溶媒中に湿潤ゲルを浸漬して数時間
放置し、溶媒の拡散を利用して溶媒を交換する。
Also, since the critical point differs depending on the substance, it is preferable to match the critical point because it ensures control of the state of the supercritical fluid. Therefore, if the solvent in the wet gel is different from the desired solvent used for supercritical drying, , exchange the solvent in the wet gel with the desired solvent used for supercritical drying. Specifically, a wet gel is immersed in a large amount of the solvent used for supercritical drying, left for several hours, and the solvent is exchanged using diffusion of the solvent.

従って、超臨界乾燥における該ゲル中の液分の大半を占
める有機溶媒とは、溶媒置換を実施した場合は、置換に
用いた有機溶媒を、溶媒置換を実施しない場合は、ゲル
生成系に存在する該生成した有機溶媒、上記添加有機溶
媒、該改質剤等からなる有機溶媒を意味する。
Therefore, the organic solvent that occupies most of the liquid content in the gel in supercritical drying refers to the organic solvent used for replacement when solvent replacement is performed, and the organic solvent that is present in the gel production system when solvent replacement is not performed. It means an organic solvent consisting of the organic solvent produced, the organic solvent added above, the modifier, etc.

一方、生成ゲルを通常の大気圧下で溶媒を徐々に蒸発さ
せて乾燥する常圧乾燥の場合、乾燥時に収縮が生じるた
め高密度で気孔量の少ないゲル(キセロゲル)が形成さ
れ、加熱と共に容易に緻密下し高い比表面積が維持でき
ない。これに対してゲル溶媒をその超臨界状態下で除く
ことにより収縮のない、嵩高いゲル(エアロゲル)が生
成する。
On the other hand, in the case of normal pressure drying, in which the resulting gel is dried by gradual evaporation of the solvent under normal atmospheric pressure, shrinkage occurs during drying, resulting in the formation of a gel (xerogel) with high density and low porosity, and it is easy to dry with heating. It is not possible to maintain a high specific surface area when it is densely deposited. On the other hand, by removing the gel solvent under its supercritical state, a bulky gel (aerogel) without shrinkage is produced.

このエアロゲルは細かい気孔を多量に含む越冬孔体であ
るため、高温加熱後も高い比表面積を維持することがで
きる。更にキセロゲルの場合は乾燥時に応力が発生し、
数片または粉々に割れることが多いが、エアロゲルの場
合は超臨界乾燥の性格上、応力が発生しないため一体性
に優れる。従って、一体化したエアロゲルから目的の形
状を有する多孔質セラッミクスを直接合成することが可
能である。
Since this airgel is a wintering pore body containing a large amount of fine pores, it can maintain a high specific surface area even after high temperature heating. Furthermore, in the case of xerogel, stress occurs during drying,
Although it often breaks into several pieces or pieces, airgel has excellent integrity because no stress is generated due to the nature of supercritical drying. Therefore, it is possible to directly synthesize porous ceramics having a desired shape from the integrated airgel.

本発明のアルミナ系前駆体混合物、ひいてはその加水分
解生成ゲルを形成するための出発原料としては、アルミ
ニウムアルコキシド単独の他、アルミニウムアルコキシ
ドと他のアルミニウム以外の他の金属アルコキシド(例
えば、NaOR,Mg(OR)2、Si(OR)4、P
O(OR)3、KDR、Ca(OR)2、Ti(OR)
、、5r(OR)2、Y(OR)3、Zr(ORL 、
Ba(OR)、などRはメチル、エチル等のアルキル基
〉、その金属塩等の無機化合物(例えば、NaC1、M
gBr2、TiCl4等のハロゲン化物、NaNO3、
K2So、 、Ca(NO3)2等の硝酸塩、硫酸塩、
硫酸塩等)、アルコキシド以外の有機金属化合物(例え
ば、CHsCOONa。
As starting materials for forming the alumina-based precursor mixture of the present invention, and by extension its hydrolyzed gel, aluminum alkoxide alone, as well as aluminum alkoxide and other metal alkoxides other than aluminum (e.g., NaOR, Mg( OR)2, Si(OR)4, P
O(OR)3, KDR, Ca(OR)2, Ti(OR)
,,5r(OR)2,Y(OR)3,Zr(ORL,
Ba(OR), etc. R is an alkyl group such as methyl, ethyl, etc., and inorganic compounds such as metal salts thereof (e.g., NaCl, M
halides such as gBr2, TiCl4, NaNO3,
K2So, , nitrates and sulfates such as Ca(NO3)2,
sulfates, etc.), organometallic compounds other than alkoxides (e.g., CHsCOONa).

(CH3COO) 2 Ca等の酢酸塩、(COONa
) 、、(COOK) 2等のシュウ酸塩、BDTA、
 NTA等のキレート化合物との錯体等〉、場合によっ
ては反応性のよい金属並びに酸化物微粉末(例えば、C
an 、Tie、、5102、P2O5、ZrO2等)
等を併用することができる。
(CH3COO) 2 Acetate such as Ca, (COONa
),, (COOK) 2nd grade oxalate, BDTA,
complexes with chelate compounds such as NTA>, and in some cases highly reactive metals and oxide fine powders (e.g. C
an, Tie, 5102, P2O5, ZrO2, etc.)
etc. can be used together.

本発明で用いられるアルミニウムアルコキシドは、一般
式(RO) sへA(R:アルキル基)で表わされるも
のであり、具体的にはRはメチル、エチル、n−プロピ
ル、1so−プロピル、n−ブチル、1so−ブチル、
5ec−ブチル、tert−ブチル等がある。
The aluminum alkoxide used in the present invention is represented by the general formula (RO) s to A (R: alkyl group), and specifically R is methyl, ethyl, n-propyl, 1so-propyl, n- Butyl, 1so-butyl,
Examples include 5ec-butyl and tert-butyl.

本発明で用いられるアルミニウムアルコキシド等と混合
、反応されるアルカノールアミンとしては、モノエタノ
ールアミン、モノn−プルパノールアミン、モノ1SO
−プロパツールアミン、ジェタノールアミン、ジ1so
−プロパツールアミン、トリエタノールアミン、トリ1
so−プロパツールアミンなどが挙げられ、同じくβケ
ト酸エステルとしては、アセト酢酸エチル、アセト酢酸
メチル、マロン酸エチル、マロン酸ジエチルなどが挙げ
られ、βジケトン化合物としては、アセチルアセトン等
が挙げられる。
The alkanolamines mixed and reacted with aluminum alkoxide etc. used in the present invention include monoethanolamine, mono-n-purpanolamine, mono-1SO
-propertoolamine, jetanolamine, di-1so
-Propertoolamine, triethanolamine, tri-1
Examples of the β-keto acid ester include ethyl acetoacetate, methyl acetoacetate, ethyl malonate, diethyl malonate, and the like. Examples of the β diketone compound include acetylacetone.

上記アルカノールアミン、βケト酸エステル、βジケト
ン化合物は、その1種または2種以上の411がアルミ
ニウムアルコキシドに対し0.1倍モル〜5倍モルとな
るように該アルミニウムアルコキシドと混合・反応させ
られ、アルミナ系前駆体混合物が形成される。この場合
、0.1倍モル以下であると次工程の加水分解速度制御
の効果が小さく均質なゲルが得られない。又、5倍モル
以上だと安定化され過ぎてゲル化が困難であるので好ま
しくない。
The alkanolamine, β-keto acid ester, and β-diketone compound are mixed and reacted with the aluminum alkoxide such that one or more of the 411s is 0.1 to 5 times the mole of the aluminum alkoxide. , an alumina-based precursor mixture is formed. In this case, if the amount is 0.1 times the mole or less, the effect of controlling the hydrolysis rate in the next step is small and a homogeneous gel cannot be obtained. Moreover, if it is 5 times the mole or more, it is not preferable because it is too stabilized and gelation becomes difficult.

該アルミナ系前駆体混合物は、必要に応じて、塩基触媒
、例えば、アンモニア、ピリジン、ピペリジン、ピペレ
ジンの存在下、該混合物中に存在する加水分解しろる反
応基の数〈例えば、該(RO) 、3Afの未反応のR
O基、および上記アルカノールアミン、βケト酸エステ
ル、βジケトン化合物と該RO基との反応生成基の数、
即ち、出発原料のアルミニウムアルコキシドのRO基の
数、更に、アルミニウムアルコキシド以外の添加金属ア
ルコキシド或いは金属単体から生成した金属アルコキシ
ドのアルコキシド基の数等が挙げられる。)に対して0
.5〜2倍モルの水で加水分解される。
The alumina-based precursor mixture is optionally prepared in the presence of a basic catalyst such as ammonia, pyridine, piperidine, piperesine, etc. to reduce the number of hydrolyzable reactive groups present in the mixture (for example, the (RO) , unreacted R of 3Af
O group, and the number of groups formed by the reaction between the alkanolamine, β-keto acid ester, β-diketone compound and the RO group,
That is, the number of RO groups in the starting material aluminum alkoxide, and the number of alkoxide groups in the metal alkoxide produced from an added metal alkoxide other than aluminum alkoxide or a metal simple substance, etc. ) for 0
.. It is hydrolyzed with 5 to 2 times the mole of water.

この場合、水の量が、0.5倍モル以下だとゲル化が困
難であり、2倍モル以上だと粒子が生成する傾向にあり
、目的とする均質なゲルが作製できない。 本発明の超
臨界乾燥後に得られたアルミナ系多孔質ゲルを焼成して
得られるセラッミクスとしては、Al2O3、A120
3−Ban系(BaO−6A1203)、A1203−
3i02系、A1203−TiO□系、A1203−2
r02系、Al2O3S+02−MgO系(コーディエ
ライト)等が挙げられる。
In this case, if the amount of water is less than 0.5 times the molar amount, gelation will be difficult, and if the amount of water is more than 2 times the molar amount, particles will tend to be generated, making it impossible to produce the desired homogeneous gel. Ceramics obtained by firing the alumina-based porous gel obtained after supercritical drying of the present invention include Al2O3, A120
3-Ban type (BaO-6A1203), A1203-
3i02 series, A1203-TiO□ series, A1203-2
Examples include r02 series, Al2O3S+02-MgO series (cordierite), and the like.

〔作用〕[Effect]

本発明の特徴は、ゾル・ゲル法によりアルミナ系多孔質
ゲルを合成するにあたリアルカノールアミン、βケト酸
エステル、βジケトン化合物をアルミニウムアルコキシ
ドの改質剤としてを用いて、適量の水で加水分解するこ
とにより粉末ではなく一体化した均質なアルミナ系ゲル
を形成し、これを超臨界乾燥により収縮、割れのない一
体化した均質なアルミナ系多孔質ゲルを形成する点であ
る。
The feature of the present invention is that when synthesizing an alumina-based porous gel by the sol-gel method, realkanolamine, β-keto acid ester, and β-diketone compound are used as modifiers for aluminum alkoxide, and an appropriate amount of water is used to synthesize the alumina-based porous gel. By hydrolysis, an integrated homogeneous alumina-based gel is formed instead of a powder, and by supercritical drying, an integrated homogeneous alumina-based porous gel without shrinkage or cracking is formed.

これにより得られたゲル(エアロゲル)は高温下にさら
されても高い比表面積を維持することができ、高温触媒
担体の前駆体として好適である。
The gel (aerogel) obtained thereby can maintain a high specific surface area even when exposed to high temperatures, and is suitable as a precursor for a high-temperature catalyst carrier.

高温触媒担体は、該前駆体を800℃〜1200℃の範
囲で焼成することにより製造される。また高温触媒は、
触媒金属を含む溶液に高温触媒担体を浸せきさせて触媒
金属をコートする。そして、これを熱処理して高温触媒
とする。
The high-temperature catalyst carrier is manufactured by firing the precursor at a temperature in the range of 800°C to 1200°C. In addition, high-temperature catalysts
A high-temperature catalyst carrier is immersed in a solution containing the catalytic metal to coat it with the catalytic metal. This is then heat-treated to form a high-temperature catalyst.

〔実施例〕〔Example〕

以下、本発明の具体的実施例を説明するが、本発明はこ
れに限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.

(実施例1) アルミニウムトリ5ec−ブトキシド〔(sec−Bu
n) 5All lOgと7ml の2−ブタノールを
混合し、これにアセト酢酸エチル5.28gを添加する
。これに8.02、16gと2−ブタノール21.17
m1混合液を徐々に添加し、その後、60℃に72 h
保ちゲル化させた。得られた湿潤ゲルをエタノールで溶
媒置換した後、CD、超臨界抽出装置を用いて、初期に
80℃、160kg/cm’、末期に120℃、200
kg/cm’の条件下でCO2をフローしエタノールを
抽出除去して一体化した乾燥ゲル体を得た。この乾燥ゲ
ルの比表面積は550m’/gであった。これを100
0℃、5時間焼成して、比表面積130m2/gの多孔
質アルミナセラッミクスを得た。
(Example 1) Aluminum tri-5ec-butoxide [(sec-Bu
n) Mix 5All 1Og and 7ml of 2-butanol and add 5.28g of ethyl acetoacetate. To this, 8.02, 16g and 2-butanol 21.17
ml mixture was gradually added and then heated to 60°C for 72 h.
It was kept and allowed to gel. After replacing the solvent of the obtained wet gel with ethanol, using a CD or supercritical extraction device, the initial stage was 80°C and 160 kg/cm', and the final stage was 120°C and 200 kg/cm'.
CO2 was flowed under the condition of kg/cm', and ethanol was extracted and removed to obtain an integrated dry gel body. The specific surface area of this dry gel was 550 m'/g. This is 100
After firing at 0° C. for 5 hours, porous alumina ceramics with a specific surface area of 130 m 2 /g was obtained.

(実施例2) (sec−Bu[l) 3A19.688gと金属バリ
ウム0.450gを10m1の2−ブタノールに入れ還
流する。金属バリウムが完全に溶けたのち、改質剤とし
てジェタノールアミンを8.96g加え、これに水2.
24gと2−ブタノール20m1の混合液を徐々に加え
、この溶液を更に2時間還流した後、IN−NH3aq
を2ml添加して均質なアルミナ−バリウム系湿潤ゲル
を得た。
(Example 2) (sec-Bu[l) 19.688 g of 3A and 0.450 g of metallic barium are placed in 10 ml of 2-butanol and refluxed. After the metallic barium is completely dissolved, 8.96g of jetanolamine is added as a modifier, and 2.0g of water is added to this.
A mixture of 24 g and 20 ml of 2-butanol was gradually added, and the solution was refluxed for an additional 2 hours.
2 ml of was added to obtain a homogeneous alumina-barium wet gel.

この湿潤ゲルを60℃で7日熟成し、次にエタノール溶
媒中に入れて、昼夜置き溶媒置換を行った。
This wet gel was aged at 60° C. for 7 days, then placed in an ethanol solvent, and the solvent was replaced day and night.

このゲルをCD□超臨界抽出装置で80℃、160kg
/cm2で約6時間、次に120℃、200kg/cm
2で約12時間CO□をフローしエタノールを抽出する
ことにより一体化アルミナーバリウム系多孔質体を得た
。この乾燥ゲルの比表面積は580m2/gであった。
This gel was extracted using a CD□ supercritical extraction device at 80℃ and 160 kg.
/cm2 for about 6 hours, then 120℃, 200kg/cm
An integrated alumina-barium porous material was obtained by flowing CO□ for about 12 hours at No. 2 and extracting ethanol. The specific surface area of this dry gel was 580 m2/g.

これを1000℃、5時間焼成して、比表面積110m
2/gのBaO・6Al2O3組成の多孔質セラッミク
スを得た。
This was baked at 1000℃ for 5 hours, and the specific surface area was 110m.
Porous ceramics having a composition of 2/g BaO.6Al2O3 was obtained.

(実施例3) (sec−Bun)3A19.688gと金属バリウム
0.450gをlQmlの2−ブタノールに入れ還流す
る。金属バリウムが完全に溶けたのち、改質剤としてア
セト酢酸エチル5.28gを添加する。次に8202.
16gを2−ブタノール20m1 と混合し、徐々に(
sec−Bun) 3Al溶液に加える。その後、60
℃で7日間保ちゲル化及び熟成させた。このゲルをエタ
ノールで溶媒置換シオートクレープ装置テ230kg/
cm2.270 ℃のエタノールの超臨界状態でエタノ
ールを除き、乾燥ゲルを得た。この乾燥ゲルの比表面積
は420m2/gであった。これを1200℃、5時間
で焼成して、比表面積95m2/gの多孔質セラッミク
スを得た。
(Example 3) (Sec-Bun) 19.688 g of 3A and 0.450 g of metallic barium are placed in 1Qml of 2-butanol and refluxed. After the metallic barium is completely dissolved, 5.28 g of ethyl acetoacetate is added as a modifier. Next 8202.
Mix 16 g with 20 ml of 2-butanol and gradually (
sec-Bun) Add to 3Al solution. After that, 60
The mixture was kept at ℃ for 7 days to gel and ripen. This gel was replaced with ethanol using a cyautocrape apparatus (230 kg/230 kg).
cm2. Ethanol was removed in a supercritical state of ethanol at 270°C to obtain a dry gel. The specific surface area of this dry gel was 420 m2/g. This was fired at 1200° C. for 5 hours to obtain porous ceramics with a specific surface area of 95 m 2 /g.

(比較例3〉 実施例1で作成した湿潤ゲルを常圧で徐々に溶媒を蒸発
させて得た乾燥ゲルは55に+2/gであったが、これ
を1200℃焼成を行うと比表面積は3m2/g迄低下
した。
(Comparative Example 3) The dry gel obtained by gradually evaporating the solvent from the wet gel prepared in Example 1 at normal pressure had a dry gel of 55 +2/g, but when this was calcined at 1200°C, the specific surface area was It decreased to 3m2/g.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムアルコキシドに対し、アルカノール
アミン、βケト酸エステル、βジケトン化合物の1種ま
たは2種以上を0.1〜5倍モルを混合してアルミナ系
前駆体混合物を形成する工程、必要に応じて塩基触媒の
存在下、該混合物中に存在する加水分解しうる反応基の
数に対し0.5〜2倍モルの水で該前駆体混合物を加水
分解、ゲル化せしめる工程、および該ゲル中の液分の大
半を占める有機溶媒または少なくとも当該有機溶媒を含
む混合系の超臨界状態を経てゲルの乾燥を行う工程から
なることを特徴とするアルミナ多孔質ゲルの製造方法。
(1) A step of mixing 0.1 to 5 times the mole of one or more of alkanolamine, β-keto acid ester, and β-diketone compound to aluminum alkoxide to form an alumina-based precursor mixture, as necessary. a step of hydrolyzing and gelling the precursor mixture with 0.5 to 2 times the mole of water based on the number of hydrolyzable reactive groups present in the mixture in the presence of a base catalyst according to the method; A method for producing an alumina porous gel, comprising the step of drying the gel through a supercritical state of an organic solvent that accounts for most of the liquid content, or a mixed system containing at least the organic solvent.
JP1338777A 1989-12-28 1989-12-28 Method for producing alumina-based porous gel Expired - Lifetime JPH0818824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338777A JPH0818824B2 (en) 1989-12-28 1989-12-28 Method for producing alumina-based porous gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338777A JPH0818824B2 (en) 1989-12-28 1989-12-28 Method for producing alumina-based porous gel

Publications (2)

Publication Number Publication Date
JPH03199120A true JPH03199120A (en) 1991-08-30
JPH0818824B2 JPH0818824B2 (en) 1996-02-28

Family

ID=18321369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338777A Expired - Lifetime JPH0818824B2 (en) 1989-12-28 1989-12-28 Method for producing alumina-based porous gel

Country Status (1)

Country Link
JP (1) JPH0818824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650944C1 (en) * 2016-12-06 2018-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный гуманитарно-педагогический университет" Method of hydrolysis of aluminum isopropoxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213602A (en) * 1983-05-13 1984-12-03 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia
JPH01164723A (en) * 1987-12-22 1989-06-28 Koroido Res:Kk Production of gel as precursor of alumina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213602A (en) * 1983-05-13 1984-12-03 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia
JPH01164723A (en) * 1987-12-22 1989-06-28 Koroido Res:Kk Production of gel as precursor of alumina

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650944C1 (en) * 2016-12-06 2018-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Уральский государственный гуманитарно-педагогический университет" Method of hydrolysis of aluminum isopropoxide

Also Published As

Publication number Publication date
JPH0818824B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPH07267633A (en) Preparation method of boehmite sol and preparation method of alumina porous body using it
CN102264669A (en) Method for producing aluminum titanate-based fired body
JPH03199120A (en) Production of alumina-based porous gel
JP3038047B2 (en) Production method of high purity mullite
JPH0742174B2 (en) Method for producing alumina-based porous body
JPH03150262A (en) Production of codierite
JPH046180A (en) Production of porous ceramics of alumina system
JPH03252312A (en) Production of porous alumina gel
JPS63242917A (en) Production of heat resistant alumina complex oxide
JP3186398B2 (en) Method for producing inorganic porous body
JPH0737323B2 (en) Method for drying ceramic precursor gel
JPH02102112A (en) Production of silica alumina precursor sol
JPH07122165B2 (en) Method for producing silica-alumina porous fiber
JPH085729B2 (en) Method for manufacturing ceramic precursor compact
JPH10324580A (en) Method for making metal oxide ropous
JPH0747129B2 (en) Method for producing porous gel supporting catalytic metal compound
JPS63175642A (en) Manufacturing method of heat-resistant carrier
JPH06343862A (en) Production of solid base catalyst
JPH0733297B2 (en) Method for manufacturing porous ceramics
JPH0881282A (en) Method for producing porous body using metal oxide sol
CN119461457A (en) Solvent thermal synthesis porous CeO2Is a method of (2)
JPH076091B2 (en) Method for producing silica-alumina fiber
JPH01278414A (en) Production of alumina precursor sol
JPH04254414A (en) Method for production of aluminum titanate
JPH10287419A (en) Production of barium hexaaluminate