JPH03198381A - Manufacture of non-volatile semiconductor memory - Google Patents
Manufacture of non-volatile semiconductor memoryInfo
- Publication number
- JPH03198381A JPH03198381A JP1339647A JP33964789A JPH03198381A JP H03198381 A JPH03198381 A JP H03198381A JP 1339647 A JP1339647 A JP 1339647A JP 33964789 A JP33964789 A JP 33964789A JP H03198381 A JPH03198381 A JP H03198381A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polycrystalline silicon
- silicon film
- insulating film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000002955 isolation Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005530 etching Methods 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 56
- 230000001590 oxidative effect Effects 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 9
- 238000000059 patterning Methods 0.000 abstract description 7
- 239000011229 interlayer Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052710 silicon Inorganic materials 0.000 abstract 4
- 239000010703 silicon Substances 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 238000010030 laminating Methods 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Landscapes
- Element Separation (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は不揮発性半導体記憶装置の製造方法に関し、特
に2層ゲート電極トランジスタを有する不揮発性半導体
記憶装置の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a nonvolatile semiconductor memory device, and particularly to a method of manufacturing a nonvolatile semiconductor memory device having a two-layer gate electrode transistor.
不揮発性半導体記憶装置のうち最も一般的な構造は、浮
遊ゲート電極を持つ2層ゲート電極トランジスタをメモ
リトランジスタとした構造であリ、その中で代表的なも
のはEPROMである。The most common structure among nonvolatile semiconductor memory devices is a structure in which a two-layer gate electrode transistor having a floating gate electrode is used as a memory transistor, and the representative one is an EPROM.
このような記憶装置を高集積化するための製造方法とし
ては、ダイジェスト・オブ・テクノロジー・ペーパー、
1986V L S Iシンポジウム(Digest
o−f Tecnology Paper、1986
VLSI SYMPO3IUM) 、第87頁に記載さ
れている。この方法は半導体基板の所定領域をエツチン
グして形成した溝内に絶縁膜を埋め込んで素子分離領域
を形成するというものである。Digest of Technology Paper, Digest of Technology Paper,
1986 VLSI Symposium (Digest
o-f Technology Paper, 1986
VLSI SYMPO3IUM), page 87. In this method, an insulating film is buried in a groove formed by etching a predetermined region of a semiconductor substrate to form an element isolation region.
この製造方法を更に改良した従来の方法が第3図に示し
である。以下この製造方法につ・いて第3図(a)〜(
g)を参照して説明する。A conventional method which is a further improvement of this manufacturing method is shown in FIG. This manufacturing method will be explained below in Figures 3(a)-(
This will be explained with reference to g).
例えば、Siからなる半導体基板1上の所定領域上に例
えば酸化シリコン(以下Si○2と称す〉等からなる第
1のゲート絶縁膜2を形成する。更に、第1の多結晶シ
リコン膜3、例えば5i02等からなる第2のゲート絶
縁膜2を形成する。更に、第1の多結晶シリコン膜3、
例えばS i 02等からなる第2のゲート絶縁M4、
第2の多結晶シリコン膜5、窒化シリコン膜6を順次積
層する。その後、素子間分離領域となる部分だけを露出
されるような、例えば、レジスト等のパターンニングマ
スク7を形成する(第1図(a))。For example, a first gate insulating film 2 made of, for example, silicon oxide (hereinafter referred to as Si○2) is formed on a predetermined region of a semiconductor substrate 1 made of Si.Furthermore, a first polycrystalline silicon film 3, A second gate insulating film 2 made of, for example, 5i02 is formed.Furthermore, a first polycrystalline silicon film 3,
a second gate insulator M4 made of e.g. S i 02;
A second polycrystalline silicon film 5 and a silicon nitride film 6 are sequentially laminated. Thereafter, a patterning mask 7 made of, for example, resist is formed so that only the portion that will become the element isolation region is exposed (FIG. 1(a)).
このマスクにより、窒化シリコン膜6、第2の多結晶シ
リコン膜5、第2のゲート絶縁膜4、第1の多結晶シリ
コン膜3、第1のゲート絶縁膜2を順次選択的にエツチ
ングし、基板表面を露出させ、更に基板を溝状にエツチ
ングする。これらのエツチング技術としては寸法偏差を
小さくするために例えばR,1,E等の異方性エツチン
グを使用するのが、−数的である。その後、例えば減圧
CVDによる酸化シリコン膜等の形状性の良い層間絶縁
膜8を溝の壁面をおおうように堆積させ(第1図(b)
)、次に溝内を埋め込むように、第3の多結晶シリコン
膜10を成長させる(第1図(C))。Using this mask, the silicon nitride film 6, the second polycrystalline silicon film 5, the second gate insulating film 4, the first polycrystalline silicon film 3, and the first gate insulating film 2 are selectively etched in order, The surface of the substrate is exposed, and the substrate is further etched into grooves. As for these etching techniques, it is numerically preferable to use anisotropic etching such as R, 1, E, etc. in order to reduce the dimensional deviation. Thereafter, an interlayer insulating film 8 with good shape, such as a silicon oxide film, is deposited by low-pressure CVD to cover the wall surface of the trench (see FIG. 1(b)).
), then a third polycrystalline silicon film 10 is grown so as to fill the trench (FIG. 1(C)).
その後、この第3の多結晶シリコン膜10をエッチバッ
クし、露出した形状性の良い眉間絶縁膜8をエツチング
し、窒化シリコン膜6の表面を露出させる0次に、溝内
に残った第3の多結晶シリコン膜10の表面を酸化させ
ると耐酸化性のある窒化シリコン膜6は酸化されずに素
子分離領域のみにシリコン酸化膜11が形成される。Thereafter, this third polycrystalline silicon film 10 is etched back, and the exposed eyebrow insulating film 8 with good shape is etched to expose the surface of the silicon nitride film 6. When the surface of the polycrystalline silicon film 10 is oxidized, the oxidation-resistant silicon nitride film 6 is not oxidized, and a silicon oxide film 11 is formed only in the element isolation region.
次に、窒化シリコンM6のみをエツチングし、第2の多
結晶シリコン膜5の表面を露出する(第3図(e))、
次に第4の多結晶シリコン膜12を堆積し、パターンニ
ングマスク13を形成する(第3図(f))。Next, only the silicon nitride M6 is etched to expose the surface of the second polycrystalline silicon film 5 (FIG. 3(e)).
Next, a fourth polycrystalline silicon film 12 is deposited to form a patterning mask 13 (FIG. 3(f)).
この後は周知の技術を使用し、各ゲート電極のパターン
ニング、不純物導入によるソース・ドレイン領域14の
形成、眉間絶縁膜15の形成、コンタクト孔17の開孔
、金属配線16の形成を行い、第3図(g)に示すよう
な不揮発性半導体記憶装置を得る。After this, using well-known techniques, patterning of each gate electrode, formation of source/drain regions 14 by introducing impurities, formation of glabellar insulating film 15, opening of contact holes 17, and formation of metal wiring 16 are performed. A nonvolatile semiconductor memory device as shown in FIG. 3(g) is obtained.
上述した従来の不揮発性半導体装置の製造方法によると
、素子分離領域の溝内に埋込形成された多結晶シリコン
膜が直接基板と接触しておらず、電気的にフローティン
グになっている素子分離構造が得られるので、メモリセ
ルのプログラム時にソース・ドレイン間に高電圧がかか
り、素子分離領域内の多結晶シリコン膜に正孔が注入さ
れても、素子分離領域内の多結晶シリコン膜は直接基板
には接触していないために、素子分離領域の電位が上が
り、寄生MoSトランジスタのしきい電圧は下がる。こ
のため、隣接する拡散層どうしが導通状態になるという
欠点をもつ。According to the conventional manufacturing method of nonvolatile semiconductor devices described above, the polycrystalline silicon film embedded in the groove of the element isolation region is not in direct contact with the substrate and is electrically floating. structure, even if a high voltage is applied between the source and drain during memory cell programming and holes are injected into the polycrystalline silicon film in the element isolation region, the polycrystalline silicon film in the element isolation region will be directly injected. Since it is not in contact with the substrate, the potential of the element isolation region increases and the threshold voltage of the parasitic MoS transistor decreases. This has the disadvantage that adjacent diffusion layers become electrically conductive.
本発明は、−導電型の半導体基板上に、第1のゲート絶
縁膜、第1の多結晶シリコン膜、第2のゲート絶縁膜、
第2の多結晶シリコン膜、窒化シリコン膜を順次積層し
て形成する工程と、所定領域の前記窒化シリコン膜、第
2の多結晶シリコン膜、第2のゲート絶縁膜、第1の多
結晶シリコン膜、第1のゲート絶縁膜を選択的に除去し
、且つ前記所定領域の基板をエツチングし素子分離用の
溝を形成する工程と、溝内部が埋まるように一導電型不
純物をドーピングした第3の多結晶シリコン膜を成長さ
せたのち、前記第3の多結晶シリコン膜を窒化シリコン
膜表面が露出するまでエツチングする工程と、残った第
3の多結晶シリコン膜の表面部を酸化して素子分離構造
を形成する工程と、前記第2の多結晶シリコン膜表面が
露出するまで、前記窒化シリコン膜をエツチング除去す
る工程と、前記第2の多結晶シリコン膜とオーミックな
接続をとる第4の多結晶シリコン膜を形成する工程と、
所定の領域の前記第4の多結晶シリコン膜、゛前記第2
の多結晶シリコン膜、前記第2のゲート絶縁膜、前記第
1の多結晶シリコン膜及び前記第1のゲート絶縁膜を順
次選択的に除去し、スタックド・ゲート構造を形成する
工程とを含む不揮発性半導体記憶装置の製造方法である
。The present invention provides a first gate insulating film, a first polycrystalline silicon film, a second gate insulating film,
a step of sequentially stacking a second polycrystalline silicon film and a silicon nitride film, and forming the silicon nitride film, second polycrystalline silicon film, second gate insulation film, and first polycrystalline silicon film in a predetermined region; a step of selectively removing the first gate insulating film and etching the substrate in the predetermined region to form a trench for element isolation; and a third step of doping with impurities of one conductivity type so as to fill the trench. After growing a polycrystalline silicon film, the third polycrystalline silicon film is etched until the surface of the silicon nitride film is exposed, and the surface of the remaining third polycrystalline silicon film is oxidized to form a device. a step of forming an isolation structure; a step of etching away the silicon nitride film until the surface of the second polycrystalline silicon film is exposed; and a fourth step of making an ohmic connection with the second polycrystalline silicon film. a step of forming a polycrystalline silicon film;
the fourth polycrystalline silicon film in a predetermined region;
a step of sequentially selectively removing the polycrystalline silicon film, the second gate insulating film, the first polycrystalline silicon film, and the first gate insulating film to form a stacked gate structure. 1 is a method for manufacturing a semiconductor memory device.
次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図(a)〜(g)は本発明の第1の実施例を説明す
るための工程順に示す半導体チップの断面図である。第
1図(a)、(b)は従来例を示した第3図(a)、(
b)と同一である。FIGS. 1(a) to 1(g) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention. Figures 1 (a) and (b) show conventional examples; Figures 3 (a) and (
Same as b).
ここで1は、例えばP型Siからなる半導体基板、2は
例えば厚さ20nmの5i02からなる第1ゲート絶縁
膜、3は例えばN型不純物をドーピングされた厚さ20
0nmの第1の多結晶シリコン膜、4は第1の多結晶シ
リコン膜3を例えば少なくとも1150℃の高温で酸化
して形成した厚さ20nmの5i02等の第2ゲート絶
縁膜、5は例えばN型不純物をドーピングされた厚さ2
00nmの第2の多結晶シリコン膜、6は例えばCVD
によって成長された厚さ150nmの窒化シリコン膜、
7は例えばレジスト等のパターンニングマスク、8は例
えば減圧CVDによって成長されたS i 02等の形
状性の良い眉間絶縁膜、9は例えばR,1,Eにより異
方性エツチングされた深さ0.8μmの素子分離用の溝
である。第1図(b)までの製造方法は従来と同一であ
る。第1図(b)以降は、例えば、R,1,E等の異方
性エツチングで形状性の良い眉間絶縁膜8をエッチバッ
クし、溝底部と窒化シリコン1116の表面が露出する
ようにする。この後、例えばP型不純物をドーピングさ
れた第3の多結晶シリコン膜10を厚さ1μm成長させ
る(第1図(C))。次に第3の多結晶シリコン膜10
を窒化シリコン膜6の表面が露出するまでエッチバック
し、溝に第3の多結晶シリコン膜を埋め込む(第1図(
d))。次に素子分離領域上のみに選択的に厚い5i0
2膜11を例えば600nm形成する(第1図(e))
。その後、窒化シリコン膜6をエツチング除去し、第2
の多結晶シリコン膜5とオーミックな接触が可能な第4
の多結晶シリコン膜14を例えば厚さ200nm成長さ
せる(第1図(f))。以下は従来例と同じく周知の技
術を用いて、第1図(g)に示したものを得る。従来例
によると、素子分離用のトレンチ溝に埋め込まれた多結
晶シリコン膜が基板に直接接触していない素子分離構造
が得られないのに対し、本実施例によると基板と同一導
電型不純物をドーピングされ更に基板に直接接触してい
る多結晶シリコン膜で素子分離用の溝を埋め込むことが
できる。Here, 1 is a semiconductor substrate made of, for example, P-type Si, 2 is a first gate insulating film made of 5i02 with a thickness of, for example, 20 nm, and 3 is a semiconductor substrate doped with, for example, N-type impurities.
0 nm first polycrystalline silicon film, 4 is a second gate insulating film such as 5i02 with a thickness of 20 nm formed by oxidizing the first polycrystalline silicon film 3 at a high temperature of, for example, at least 1150° C., and 5 is, for example, N. Type impurity doped thickness 2
00 nm second polycrystalline silicon film 6, for example CVD
A 150 nm thick silicon nitride film grown by
7 is a patterning mask such as a resist, 8 is a glabella insulating film with good shape such as S i 02 grown by low pressure CVD, and 9 is anisotropically etched with R, 1, and E to a depth of 0. .8 μm groove for element isolation. The manufacturing method up to FIG. 1(b) is the same as the conventional method. From FIG. 1(b) onward, the glabella insulating film 8 with good shape is etched back by anisotropic etching such as R, 1, E, etc., so that the groove bottom and the surface of the silicon nitride 1116 are exposed. . Thereafter, a third polycrystalline silicon film 10 doped with, for example, a P-type impurity is grown to a thickness of 1 μm (FIG. 1(C)). Next, the third polycrystalline silicon film 10
is etched back until the surface of the silicon nitride film 6 is exposed, and a third polycrystalline silicon film is buried in the groove (see Fig. 1).
d)). Next, selectively thick 5i0 is applied only on the element isolation region.
2 film 11 is formed to have a thickness of, for example, 600 nm (FIG. 1(e)).
. Thereafter, the silicon nitride film 6 is removed by etching, and the second
A fourth film capable of making ohmic contact with the polycrystalline silicon film 5 of
A polycrystalline silicon film 14 is grown to a thickness of, for example, 200 nm (FIG. 1(f)). In the following, the same well-known technique as in the conventional example is used to obtain what is shown in FIG. 1(g). According to the conventional example, it is not possible to obtain an element isolation structure in which the polycrystalline silicon film embedded in the trench groove for element isolation is not in direct contact with the substrate, whereas in this example, an impurity of the same conductivity type as the substrate is The trench for element isolation can be filled with a doped polycrystalline silicon film that is in direct contact with the substrate.
第2図(a)〜(C)は本発明の第2の実施例を説明す
るための工程順に示す半導体チップの断面図である。FIGS. 2A to 2C are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.
第1の実施例の第1図(a)〜(e)を参照して説明し
たのと同様な工程の後に、シリコン酸化膜11を第2の
多結晶シリコン膜の表面が露出するまでエッチバックす
る(第2図(a))、その後、例えば厚さ150nmの
WSi等からなるシリサイド層18を形成する(第2図
(b))。後は周知の技術を用いて第1の実施例と同様
に製造し、第2図(C)に示したものを得る。After a process similar to that described with reference to FIGS. 1(a) to (e) of the first embodiment, the silicon oxide film 11 is etched back until the surface of the second polycrystalline silicon film is exposed. (FIG. 2(a)), and then a silicide layer 18 made of WSi or the like having a thickness of 150 nm, for example, is formed (FIG. 2(b)). The rest is manufactured in the same manner as in the first embodiment using well-known techniques to obtain what is shown in FIG. 2(C).
この実施例は、電気抵抗がポリSiよりも低いシリサイ
ド層を積層するので、制御ゲート電極の層抵抗を下げる
ことができる利点がある。This embodiment has the advantage that the layer resistance of the control gate electrode can be lowered because a silicide layer having an electrical resistance lower than that of poly-Si is laminated.
以上説明したように本発明は、素子分離用の溝の側壁部
のみに絶縁膜を形成後、基板と同一導電型不純物をドー
ピングした多結晶シリコン膜で前述の溝を埋め込むこと
により、従来例のように電気的にフローティング状態の
多結晶シリコン膜を内蔵した素子分離構造を避けること
ができるので、メモリセルのプログラム時にソース・ド
レイ層間に高電圧がかかり、素子分離領域内の多結晶シ
リコン膜に正孔が注入されても、素子分離領域内の多結
晶シリコン膜は基板に直接接触しており、基板と同一導
電型になっているので、注入された正孔は基板に逃げる
ことができ、素子分離領域が基板の電位に固定されると
いう効果を持つ。As explained above, the present invention improves the conventional method by forming an insulating film only on the sidewalls of the trench for element isolation, and then filling the trench with a polycrystalline silicon film doped with impurities of the same conductivity type as the substrate. As a result, it is possible to avoid an element isolation structure that includes an electrically floating polycrystalline silicon film, so when programming a memory cell, a high voltage is applied between the source and drain layers, causing damage to the polycrystalline silicon film in the element isolation region. Even when holes are injected, the polycrystalline silicon film in the element isolation region is in direct contact with the substrate and has the same conductivity type as the substrate, so the injected holes can escape to the substrate. This has the effect of fixing the element isolation region to the potential of the substrate.
又、この結果、素子分離領域の寄生MOSトランジスタ
のしきい電圧が変化せず、隣接する拡散層どうしが導通
状態にならない。従って不揮発性半導体記憶装置の素子
間分離が確実に行えるという効果がある。Further, as a result, the threshold voltage of the parasitic MOS transistor in the element isolation region does not change, and adjacent diffusion layers do not become conductive. Therefore, there is an effect that isolation between elements of a nonvolatile semiconductor memory device can be ensured.
・・・第1の多結晶シリコン膜、4・・・第2のゲート
絶縁膜、5・・・第2の多結晶シリコン膜、6・・・窒
化シリコン膜、7・・・パターンニングマスク、8・・
・形状性の良い眉間絶縁膜、9・・・エツチング溝、1
o・・・第3の多結晶シリコン膜、11・・・シリコン
酸化膜、12・・・第4の多結晶シリコン膜、13・・
・パターンニングマスク、14・・・不純物拡散層、1
5・・・層間絶縁膜、16・・・金属配線、17・・・
コンタクト孔、18・・・シリサイド層。... first polycrystalline silicon film, 4 ... second gate insulating film, 5 ... second polycrystalline silicon film, 6 ... silicon nitride film, 7 ... patterning mask, 8...
・Glabella insulating film with good shape, 9...Etching groove, 1
o...Third polycrystalline silicon film, 11...Silicon oxide film, 12...Fourth polycrystalline silicon film, 13...
- Patterning mask, 14... impurity diffusion layer, 1
5... Interlayer insulating film, 16... Metal wiring, 17...
Contact hole, 18...silicide layer.
Claims (1)
の多結晶シリコン膜、第2のゲート絶縁膜、第2の多結
晶シリコン膜、窒化シリコン膜を順次積層して形成する
工程と、所定領域の前記窒化シリコン膜、第2の多結晶
シリコン膜、第2のゲート絶縁膜、第1の多結晶シリコ
ン膜、第1のゲート絶縁膜を選択的に除去し、且つ前記
所定領域の基板をエッチングし素子分離用の溝を形成す
る工程と、溝内部が埋まるように一導電型不純物をドー
ピングした第3の多結晶シリコン膜を成長させたのち、
前記第3の多結晶シリコン膜を窒化シリコン膜表面が露
出するまでエッチングする工程と、残った第3の多結晶
シリコン膜の表面部を酸化して素子分離構造を形成する
工程と、前記第2の多結晶シリコン膜表面が露出するま
で、前記窒化シリコン膜をエッチング除去する工程と、
前記第2の多結晶シリコン膜とオーミックな接続をとる
第4の多結晶シリコン膜を形成する工程と、所定の領域
の前記第4の多結晶シリコン膜、前記第2の多結晶シリ
コン膜、前記第2のゲート絶縁膜、前記第1の多結晶シ
リコン膜及び前記第1のゲート絶縁膜を順次選択的に除
去し、スタックド・ゲート構造を形成する工程とを含む
ことを特徴とする不揮発性半導体記憶装置の製造方法。A first gate insulating film, a first gate insulating film, and a first gate insulating film are formed on a semiconductor substrate of one conductivity type.
a step of sequentially stacking a polycrystalline silicon film, a second gate insulating film, a second polycrystalline silicon film, and a silicon nitride film; selectively removing the second gate insulating film, the first polycrystalline silicon film, and the first gate insulating film, and etching the substrate in the predetermined region to form a trench for element isolation; After growing a third polycrystalline silicon film doped with one conductivity type impurity so as to fill the
etching the third polycrystalline silicon film until the surface of the silicon nitride film is exposed; oxidizing the remaining surface portion of the third polycrystalline silicon film to form an element isolation structure; etching away the silicon nitride film until the surface of the polycrystalline silicon film is exposed;
forming a fourth polycrystalline silicon film having an ohmic connection with the second polycrystalline silicon film; a step of sequentially selectively removing a second gate insulating film, the first polycrystalline silicon film, and the first gate insulating film to form a stacked gate structure. A method for manufacturing a storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339647A JP2876670B2 (en) | 1989-12-26 | 1989-12-26 | Manufacturing method of nonvolatile semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339647A JP2876670B2 (en) | 1989-12-26 | 1989-12-26 | Manufacturing method of nonvolatile semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03198381A true JPH03198381A (en) | 1991-08-29 |
JP2876670B2 JP2876670B2 (en) | 1999-03-31 |
Family
ID=18329481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1339647A Expired - Lifetime JP2876670B2 (en) | 1989-12-26 | 1989-12-26 | Manufacturing method of nonvolatile semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2876670B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5616720B2 (en) | 2010-08-30 | 2014-10-29 | セイコーインスツル株式会社 | Semiconductor device and manufacturing method thereof |
-
1989
- 1989-12-26 JP JP1339647A patent/JP2876670B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2876670B2 (en) | 1999-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5770484A (en) | Method of making silicon on insulator buried plate trench capacitor | |
JPH10321813A (en) | Semiconductor memory device and method of manufacturing the same | |
US20020190305A1 (en) | Nonvolatile memories with floating gate spacers, and methods of fabrication | |
JP2001102467A (en) | Semiconductor memory array of floating gate memory cells, self-aligned method of forming the array, semiconductor device having an array of non-volatile memory cells, and method of forming a plurality of row and column lines connected to a plurality of semiconductor elements | |
JP3132435B2 (en) | Method for manufacturing semiconductor device | |
JP3146316B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0414880A (en) | Manufacture of non-volatile semiconductor memory device | |
US6373119B1 (en) | Semiconductor device and method of manufacturing the same | |
KR0146401B1 (en) | Method for manufacturing a semiconductor integrated circuit device having a stack gate structure | |
CN1120523C (en) | Reliable polysilicon-silicide grid laminate with reduced sheet resistance | |
JP3195785B2 (en) | Semiconductor storage device and method of manufacturing the same | |
US6723615B2 (en) | Semiconductor device and method of fabricating the same | |
JPH0888332A (en) | Manufacture of semiconductor memory device | |
JPH03220778A (en) | Manufacture of mos-type nonvolatile semiconductor memory device | |
KR960005249B1 (en) | Dram manufacture method | |
US6734078B2 (en) | Process for manufacturing semiconductors with a trench capacitor | |
US5008722A (en) | Non-volatile memory | |
JPH01130542A (en) | Semiconductor device having interelement isolation region and manufacture thereof | |
JPH02143456A (en) | Manufacture of lamination type memory cell | |
JPH1012750A (en) | Manufacturing method of nonvolatile semiconductor memory device | |
JPH03198381A (en) | Manufacture of non-volatile semiconductor memory | |
JP2833030B2 (en) | Manufacturing method of nonvolatile semiconductor device | |
TW406354B (en) | A semiconductor device and a manufacturing process therefor | |
JPH06209088A (en) | Semiconductor storage device and its manufacture | |
US7038304B2 (en) | Semiconductor memory device and manufacturing method thereof |