JPH03197357A - Zirconia/hafnia refractories - Google Patents
Zirconia/hafnia refractoriesInfo
- Publication number
- JPH03197357A JPH03197357A JP1339831A JP33983189A JPH03197357A JP H03197357 A JPH03197357 A JP H03197357A JP 1339831 A JP1339831 A JP 1339831A JP 33983189 A JP33983189 A JP 33983189A JP H03197357 A JPH03197357 A JP H03197357A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hafnia
- zirconia
- resistance
- hfo2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、あらゆる雰囲気系の苛酷な高温条件に対して
優れた耐火性、耐蝕性および耐スポーリング性を備える
ジルコニア/ハフニア系の複合耐火物に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a zirconia/hafnia-based composite refractory material that has excellent fire resistance, corrosion resistance, and spalling resistance against severe high-temperature conditions in all atmospheric systems. relating to things.
〔従来の技術]
1800℃を越える高温域で使用することができる耐火
物には、単相材料としてアルミナ(^IgOs)、マグ
ネシア(MgO) 、ジルコニア(ZrOi)等が、ま
た二成分系のものとしてマグネシア/アルミナ(MgO
/Alt03スピネル)、アルミナ/クロミア(Al□
0./C「よ0.)等が開発されているが、各種の工業
炉に実用される場合の耐火度、酸化/還元高温雰囲気下
での安定性、耐蝕性といった面で長短がある。[Prior art] Refractories that can be used in high-temperature ranges exceeding 1800°C include single-phase materials such as alumina (IgOs), magnesia (MgO), and zirconia (ZrOi), as well as two-component materials. As magnesia/alumina (MgO
/Alt03 spinel), alumina/chromia (Al□
0. /C "Y0." etc. have been developed, but they have advantages and disadvantages in terms of fire resistance, stability in oxidizing/reducing high temperature atmospheres, and corrosion resistance when used in various industrial furnaces.
これら材料のうちでは、ジルコニアが2700°Cとい
う非常に高い融点を持つうえ高温域での安定性(低蒸気
圧性、耐蝕性など)に優れているため超高温耐火物とし
て広い分野で活用されている。Among these materials, zirconia has a very high melting point of 2700°C and is excellent in stability at high temperatures (low vapor pressure, corrosion resistance, etc.), so it is used in a wide range of fields as an ultra-high temperature refractory. There is.
ところが、純粋なジルコニア(ZrOx)には温度段階
に応じて3種の異なる結晶構造が存在し、この結晶系が
可逆的に転移する際に大きな体積変化を伴うことから熱
的なスポーリング破壊を受は易い欠点がある。これを改
善する方策としてカルシウム、マグネシウム等のアルカ
リ土類金属、ランタン、セリウム等の稀土類元素または
イツトリウムを酸化物の形態で1種以上添加し、結晶構
造の一部もしくは全部を立方晶に安定化する方法が知ら
れており、従来から種々の提案がなされている。However, pure zirconia (ZrOx) has three different crystal structures depending on the temperature stage, and as this crystal system undergoes a large volume change when it undergoes a reversible transition, thermal spalling failure is difficult to achieve. It has the disadvantage of being easy to receive. As a measure to improve this, one or more oxides of alkaline earth metals such as calcium and magnesium, rare earth elements such as lanthanum and cerium, or yttrium are added in the form of oxides to stabilize part or all of the crystal structure into a cubic crystal structure. There are known methods to do this, and various proposals have been made in the past.
例えば、特公昭56−4507号公報には酸化カルシウ
ム(Cab)または酸化マグネシウム(MgO) 、特
開昭61−155257号公報にはイツトリア(ygo
i)、また特開昭59−152266号公報には酸化セ
リウム(CeOz)をそれぞれ添加して耐スポーリング
性を改善したジルコニア耐火物あるいはその製造方法が
示されている。For example, Japanese Patent Publication No. 56-4507 discloses calcium oxide (Cab) or magnesium oxide (MgO), and JP-A No. 61-155257 discloses yttrium (ygo).
i) and JP-A-59-152266 disclose a zirconia refractory whose spalling resistance is improved by adding cerium oxide (CeOz), and a method for producing the same.
しかしながら、これらの耐火物は主成分であるジルコニ
アの高熱膨張性と低熱伝導性に支配される関係で耐スポ
ーリング性の面で十分な満足が得られない問題点がある
。そのうえ、ジルコニアは窒素(N2)や−酸化炭素(
CO)を多く含む雰囲気系において窒化・炭化反応を起
こし易いため、このような環境下では使用温度を160
0℃程度まで低下させなければならず、例えばカーボン
ブラック発生炉のような還元性雰囲気の高温炉には適用
できない欠点がある。However, these refractories have the problem of not being fully satisfactory in terms of spalling resistance due to the high thermal expansion and low thermal conductivity of zirconia, which is the main component. Moreover, zirconia can be used for nitrogen (N2) and -carbon oxide (
Since nitriding and carbonizing reactions are likely to occur in an atmosphere containing a large amount of
The temperature must be lowered to about 0° C., which has the disadvantage that it cannot be applied to a high-temperature furnace with a reducing atmosphere, such as a carbon black generating furnace.
この点、稀土類酸化物のハフニア()lfO□)はジル
フェアよりも高い融点を有し、中性または還元性雰囲気
下においても比較的安定な材質特性を有してしる。とこ
ろが、ハフニアは材料価格が極めて高価であるため単独
の耐火物として各種工業炉に汎用することはできない。In this regard, hafnia ()lfO□), which is a rare earth oxide, has a higher melting point than Zirphere, and has relatively stable material properties even in a neutral or reducing atmosphere. However, since hafnia is extremely expensive as a material, it cannot be used as a single refractory in various industrial furnaces.
(発明が解決しようとする課題)
発明者らは上記の実情に鑑み鋭意研究を重ねた結果、安
定化ジルコニアと安定化ハフエアの両材料を積層一体化
して二層構造に形成すると、酸化雰囲気下では当然のこ
とながら中性、還元雰囲気系において優れた耐火性能を
発揮することを確認した。(Problems to be Solved by the Invention) In view of the above-mentioned circumstances, the inventors have conducted intensive research and found that when both materials, stabilized zirconia and stabilized hafair, are laminated and integrated to form a two-layer structure, it is possible to solve the problem in an oxidizing atmosphere. As a matter of course, we confirmed that it exhibits excellent fire resistance performance in neutral and reducing atmosphere systems.
この種の複合化耐火物については、ジルコニア焼結体か
らなるるつぼ基材の収納部にイツトリアを溶射コーティ
ングする蒸発用るつぼ(特開昭63−166401号公
報)あるいは炭化珪素耐火材料と異種の耐火材料(例え
ば炭化珪素粘土質)とを鋸歯状境界を介して接合する炭
化珪素質複合レンガ(実公昭55−75687号公報)
などの提案があるが、いずれも高温下での眉間剥離は避
けられない難点がある。Regarding this type of composite refractory, there is an evaporation crucible in which the housing part of a crucible base material made of zirconia sintered body is thermally spray coated with ittria (Japanese Patent Application Laid-Open No. 166401/1983), or a silicon carbide refractory material and a different type of refractory material. A silicon carbide composite brick that is bonded to a material (for example, silicon carbide clay) through a serrated boundary (Japanese Utility Model Publication No. 55-75687)
There are several proposals, but all of them have the disadvantage that peeling between the eyebrows cannot be avoided under high temperatures.
本発明は、ジルコニアとハフニアとを組み合わせること
により、あらゆる雰囲気系において2000°C付近の
温度域に対し優れた耐火性、耐蝕性および耐スポーリン
グ性を備え、かつ眉間剥離を生じることのないジルコニ
ア/ハフニア系耐火物を安価に提供することを目的とし
ている。By combining zirconia and hafnia, the present invention provides zirconia that has excellent fire resistance, corrosion resistance, and spalling resistance in a temperature range of around 2000°C in any atmospheric system, and does not cause peeling between the eyebrows. /Aims to provide hafnia-based refractories at low cost.
上記の目的を達成するための本発明によるジルコニア/
ハフニア系耐火物は、カルシウム、マグネシウム、イツ
トリウムおよびセリウムの酸化物から選ばれた安定化剤
の1種または2種以上を含む部分安定化もしくは完全安
定化したジルコニア(ZrOr)’I層ならびにハフニ
ア(HfO2)質層が境界部において固溶結合した積層
二層構造からなることを構成上の特徴とするものである
。Zirconia/according to the present invention to achieve the above object
Hafnia-based refractories include a partially or completely stabilized zirconia (ZrOr)'I layer containing one or more stabilizers selected from oxides of calcium, magnesium, yttrium, and cerium, and hafnia ( The structure is characterized by a laminated two-layer structure in which HfO2) layers are solid-solution bonded at the boundary.
本発明の二層を構成するジルコニア(ZrO□)質層お
よびハフニア(f(fog>質層は、それぞれカルシア
(Cab) 、マグネシア(MgO) 、イツトリア(
Y!03)、セリア(CeO□)等から選ばれた1種ま
たは2種以上の安定化剤により少なくとも70%に安定
化された(前者は立方晶、後者は斜方晶)ものが用いら
れる。これらは低い活性度を有し、かつ可及的に最密充
填するように粒度調整される。この粒度調整をおこなう
理由は、活性度の低い安定化したジルコニアおよびハフ
ニア粒子を骨格とすることにより乾燥・焼成収縮を低減
化して製造工程中の割れを防止し、また緻密質の組織を
形成することで物理的、化学的な腐食に対する抵抗性を
高めるためである。The zirconia (ZrO
Y! 03), ceria (CeO□), etc., stabilized to at least 70% by one or more stabilizers selected from the group consisting of ceria (CeO□) and the like (the former is cubic, the latter is orthorhombic). These have low activity and are sized to be as close packed as possible. The reason for this particle size adjustment is that by using stabilized zirconia and hafnia particles with low activity as a skeleton, drying and firing shrinkage is reduced, preventing cracking during the manufacturing process, and forming a dense structure. This is to increase resistance to physical and chemical corrosion.
ジルコニア質層とハフニア質層との境界部は、ジルコニ
ア成分とハフニア成分とが相互に固溶体を形成して強固
に結合した二層構造を呈しており、接着、溶射等の場合
にみられる剥離現象を生じることはない。The boundary between the zirconia layer and the hafnia layer has a two-layer structure in which the zirconia component and the hafnia component form a solid solution with each other and are strongly bonded to each other. will not occur.
上記の構造を有する本発明のジルコニア/ハフニア系耐
大物は、ジルコニアおよびハフニアを部分安定化または
完全安定化させた電融塊の粉砕または微粉体の造粒化等
によって粒度調整した原料を仮焼し、これに成形バイン
ダーを添加してジルコニア質層とハフニア質層が二層を
形成するように一体積層成形したのち1500°C以上
の温度で焼結する方法によって製造することができる。The zirconia/hafnia-based large-sized material of the present invention having the above-mentioned structure is produced by calcining a raw material whose particle size has been adjusted by pulverizing a partially or completely stabilized zirconia and hafnia ingot or by granulating fine powder. However, it can be manufactured by adding a molding binder to this, laminating the zirconia layer and hafnia layer to form two layers, and then sintering at a temperature of 1500° C. or higher.
安定化剤の添加量は、使用する安定化剤の種類によって
異なるが、概ねカルシア(Cab) 6〜25モルχ、
マグネシア(HgO)5〜25モルχ、イツトリア(Y
zOs) 3〜15モルχ、セリア(CeO)10〜3
0モルχの範囲に設定することが好適で、前記の範囲を
下田る量では安定化度が低くて耐火性、耐蝕性および耐
スポーリング性の改善効果が発揮されず、また前記範囲
を越す添加はもはや効果の向上がみとめられない。The amount of stabilizer added varies depending on the type of stabilizer used, but it is generally calcia (Cab) 6 to 25 mol χ,
Magnesia (HgO) 5-25 mol χ, Ittria (Y
zOs) 3-15 mol χ, ceria (CeO) 10-3
It is preferable to set the amount in the range of 0 mol χ, and if the amount is below the above range, the degree of stabilization will be low and the effect of improving fire resistance, corrosion resistance and spalling resistance will not be exhibited, and if the amount exceeds the above range Addition no longer shows any improvement in effectiveness.
積層成形は、例えば金型のような非吸着性成形型にいず
れか一方の成分粉粒を入れ、振動またはタンピングした
のち上層部に他の成分粉粒を充填して一軸プレスもしく
は冷間静水圧プレス(CIP)で成形する方法、あるい
は石膏のような吸水性成形型に一方の成分粉粒をスラリ
ー状態で流入し、半乾燥後に別の成分粉粒をを流し込ん
で完全に乾燥する方法によっておこなうことができる。In laminated molding, powder particles of one of the components are placed in a non-adsorption forming mold such as a metal mold, and after being vibrated or tamped, the upper layer is filled with powder particles of the other component, and then uniaxial pressing or cold isostatic pressure is applied. This is done by molding with a press (CIP), or by pouring one component powder in a slurry state into a water-absorbing mold such as plaster, and after semi-drying, pouring another component powder and drying completely. be able to.
この際、用いる型の形状および各組成物の充填量を変え
ることにより所定の層厚、形状に成形される。At this time, by changing the shape of the mold used and the filling amount of each composition, it is molded into a predetermined layer thickness and shape.
成形体の焼結は、酸化雰囲気中で1500℃以上、望ま
しくは1600〜1800℃の温度域でおこなわれる。The molded body is sintered in an oxidizing atmosphere at a temperature of 1500°C or higher, preferably in the range of 1600 to 1800°C.
本発明によるジルコニア/ハフニア系耐火物は、耐火性
、耐蝕性に優れる部分安定化もしくは完全安定化された
ジルコニア質層とハフニア質層とが積層一体化した二層
構造として構成されているが、両層を構成するジルコニ
ア(ZrO2)とハフニア(HfO2)の各融点、熱膨
張率および熱伝導率を比較すると下表のようになる。The zirconia/hafnia-based refractory according to the present invention has a two-layer structure in which a partially stabilized or fully stabilized zirconia layer and a hafnia layer, which are excellent in fire resistance and corrosion resistance, are laminated and integrated. A comparison of the melting points, thermal expansion coefficients, and thermal conductivities of zirconia (ZrO2) and hafnia (HfO2) constituting both layers is as shown in the table below.
したがって、高温炉を築炉する際に、熱膨張率の低いハ
フニア質層を苛酷な条件に晒される炉内面に位置するよ
うに配することにより内外温度差に起因する熱膨張の変
動を巧みに緩和し、酸性、中性、還元性などあらゆる炉
内雰囲気であっても耐スポーリング性の向上、耐用寿命
の長期化が図られる。Therefore, when constructing a high-temperature furnace, by arranging a hafnia layer with a low coefficient of thermal expansion on the inner surface of the furnace, which is exposed to harsh conditions, fluctuations in thermal expansion caused by temperature differences between the inside and outside can be effectively suppressed. This improves spalling resistance and extends the service life even in all kinds of furnace atmospheres, such as acidic, neutral, and reducing.
また、各層の主成分であるジルコニウムとハフニウムは
イオン半径が極めて近似(Zr:0.80、Hf:0゜
78)シているため相互拡散し易い特性を有している。Furthermore, since the ionic radii of zirconium and hafnium, which are the main components of each layer, are very close to each other (Zr: 0.80, Hf: 0°78), they have the property of being easy to interdiffuse.
この近似特性は、積層焼結の際に境界部で互いに固溶体
を形成して結合の強化をもたらす機能を果たす。This approximation property serves to strengthen the bond by forming a solid solution with each other at the boundary during laminated sintering.
このような作用が相乗して、苛酷な使用条件に対して優
れた耐火性、耐蝕性および耐スポーリング性を発揮する
高耐火性能が付与される。そのうえ、高価なハフニア質
層の構成部分が少ないため比較的低廉に製品供給が可能
となる。These effects work together to provide high fire resistance that exhibits excellent fire resistance, corrosion resistance, and spalling resistance under severe usage conditions. Moreover, since there are few constituent parts of the expensive hafnia layer, the product can be supplied at a relatively low cost.
以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.
実施例1
市販のハフニア(HfOg)粉末に安定化剤としてイツ
トリア(YzOs)を12モル%添加して湿式混合し、
乾燥した。乾燥した混合物を粉砕する工程で粗粒(粒度
1〜2g+鋤)、中粒(粒度250μm−1m5)、微
粒(粒度250μ−以下)に分級した。ついで分級した
粒子を、空気中で1700℃の温度で仮焼すると同時に
安定化(安定化率95%)させ、粗粒、中粒、微粒を重
量比としてsex :4の割合で配合し、ポリビニル
アルコール5%水溶液40d17kg ラバインダーと
して加えて十分に混練した。Example 1 12 mol% of ittria (YzOs) was added as a stabilizer to commercially available hafnia (HfOg) powder and wet-mixed.
Dry. In the process of pulverizing the dried mixture, it was classified into coarse particles (particle size 1-2 g+plow), medium particles (particle size 250 μm-1 m5), and fine particles (particle size 250 μm or less). Then, the classified particles were calcined in air at a temperature of 1700°C and simultaneously stabilized (stabilization rate 95%), coarse particles, medium particles, and fine particles were blended in a weight ratio of sex: 4, and polyvinyl 40 d17 kg of 5% alcohol aqueous solution was added as a la binder and thoroughly kneaded.
他方、市販のジルコニア(ZrOi)粉末に安定化剤と
してイツトリアを8モル%添加し、1700°Cで仮焼
・安定化(安定化率100%)したのち、上記と同様に
して粒度分級、配合およびバインダー混線をおこなった
。On the other hand, 8 mol% of ittria was added as a stabilizer to commercially available zirconia (ZrOi) powder, and after calcination and stabilization at 1700°C (stabilization rate 100%), particle size classification and compounding were performed in the same manner as above. And the binder was mixed.
混練したハフニアとジルコニア粉粒物を所定の層厚にな
るように順次に金型中に充填して200kgf/cm”
の圧力で一軸ブレス成形し、60℃の温度で48時間乾
燥処理した。ついで、得られた成形体を電気炉に移し、
大気中1800℃の温度で1時間焼結した。Kneaded hafnia and zirconia powder were sequentially filled into a mold to a predetermined layer thickness of 200 kgf/cm.
It was uniaxially press-molded at a pressure of 200° C. and dried at a temperature of 60° C. for 48 hours. Then, the obtained molded body was transferred to an electric furnace,
Sintering was carried out in the air at a temperature of 1800° C. for 1 hour.
このようにして、縦230mm、横114mm、厚さ6
0■−でハフニア質層が20−一、ジルコニア賞層が4
0−の形状を有する一体二層構造の鼓形レンガを製造し
た。In this way, the length is 230 mm, the width is 114 mm, and the thickness is 6.
0■-, hafnia layer is 20-1, zirconia layer is 4
An hour-shaped brick with an integral two-layer structure having a 0- shape was manufactured.
得られたレンガの特性は、気孔率20%、3点曲げ強度
220kg/cm”で、層の境界部は完全に固溶結合し
ていた。The characteristics of the obtained brick were a porosity of 20%, a three-point bending strength of 220 kg/cm'', and the layer boundaries were completely bonded by solid solution.
上記の鼓形レンガを、液化プロパンガス(LPG)と酸
素を燃料源とした小型高温ガス炉内にハフニア質層が炉
内高温度側にくるようにセットし、大気雰囲気中で22
00°Cに24時間保持したところ、組織に溶損、亀裂
等の欠陥は全く認められなかった。The above-mentioned drum-shaped brick was placed in a small high-temperature gas furnace using liquefied propane gas (LPG) and oxygen as fuel sources, with the hafnia layer facing toward the high temperature side of the furnace.
When kept at 00°C for 24 hours, no defects such as melting damage or cracks were observed in the structure.
次に炉内に窒素ガスを送入しながら2000℃の温度に
24時間保持して耐火度試験をおこなった結果、レンガ
表面(ハフニア面)に僅かに窒化ハフニウム(HfN)
が生成したが亀裂等の組織損傷ななく、十分な耐火性能
が認められた。Next, we carried out a fire resistance test by keeping the temperature at 2000°C for 24 hours while supplying nitrogen gas into the furnace. As a result, a slight amount of hafnium nitride (HfN) was found on the brick surface (hafnia surface).
However, there was no structural damage such as cracks, and sufficient fire resistance performance was observed.
なお、本実施例によるジルコニア/ハフニア系耐火レン
ガの原料費は、全体がハフニア質の同形レンガ(比較例
1)に比べて約176であった。Note that the raw material cost of the zirconia/hafnia-based refractory brick according to this example was about 176 yen compared to the same-shaped brick made entirely of hafnia (Comparative Example 1).
比較例1
実施例と同一条件でイツトリアにより部分安定化した全
体がハフニア質の同形並形レンガを作製した。このレン
ガの特性は、気孔率22%、3点曲げ強度200kg/
cm”であった。Comparative Example 1 Under the same conditions as in Example, a homogeneous regular brick made entirely of hafnia and partially stabilized with ittria was produced. The characteristics of this brick include a porosity of 22% and a three-point bending strength of 200 kg/
cm”.
得られたレンガにつき、実施例と同一条件で大気中およ
び窒素ガス雰囲気下による耐火度試験を実施した。その
結果、大気雰囲気系では暴露表面に溶損した様子は見ら
れなかったが、この材料が持つ低熱伝導率に基づく耐ス
ポーリング性の不足による細かな亀裂が認められた。ま
た、窒素雰囲気系では、表面に若干の窒化ハフニウムの
生成と多数の微小亀裂が確認された。The obtained bricks were subjected to a fire resistance test in the air and in a nitrogen gas atmosphere under the same conditions as in the examples. As a result, no signs of melting were observed on the exposed surface in the atmospheric environment, but small cracks were observed due to lack of spalling resistance due to the low thermal conductivity of this material. In addition, in the nitrogen atmosphere system, a small amount of hafnium nitride was formed on the surface and many microcracks were observed.
比較例2
実施例と同一条件でイツトリアにより完全安定化した全
体がジルコニア質の同形並形レンガを作製した。このレ
ンガの特性は、気孔率21%、3点曲げ強度220kg
/cm″であった。Comparative Example 2 Under the same conditions as in Example, a homogeneous and regular brick made entirely of zirconia and completely stabilized with ittria was produced. This brick has a porosity of 21% and a 3-point bending strength of 220kg.
/cm''.
得られたレンガにつき、実施例と同一条件で大気および
窒素ガス雰囲気下による耐火度試験をおこなった。その
結果、大気雰囲気系では組織に溶損現象もなく材質の強
度劣化も認められなかったが、窒素雰囲気系では表面に
窒化ジルコニウム(ZrN)の層が生成し材質破損が認
められた。The obtained bricks were subjected to a fire resistance test in the air and in a nitrogen gas atmosphere under the same conditions as in the examples. As a result, in the atmospheric environment, there was no erosion phenomenon in the structure and no deterioration in the strength of the material, but in the nitrogen atmosphere, a layer of zirconium nitride (ZrN) was formed on the surface and material damage was observed.
以上のとおり、本発明によれば安定化ジルコニア質層と
安定化ハフニア質層とを積層一体化して2層構造に形成
することによって、あらゆる雰囲気系による苛酷な高温
条件に対して十分な耐火性、耐蝕性および耐スポーリン
グ性を備えるジルコニア/ハフニア系の複合耐火物を比
較的低価格で供給することができる。As described above, according to the present invention, the stabilized zirconia layer and the stabilized hafnia layer are laminated and integrated to form a two-layer structure, which provides sufficient fire resistance against severe high temperature conditions in all atmospheric systems. , a zirconia/hafnia-based composite refractory having corrosion resistance and spalling resistance can be supplied at a relatively low price.
したがって、各種の高温加熱炉、溶解炉の内張り材など
として汎用性が期待されるほか、特に酸化、還元雰囲気
系での耐久性が要求されるカーボンブラック発生炉の内
張り材として極めて有用である。Therefore, it is expected to be versatile as a lining material for various high-temperature heating furnaces and melting furnaces, and is also extremely useful as a lining material for carbon black generating furnaces, which requires durability in oxidizing and reducing atmosphere systems.
Claims (1)
リウムの酸化物から選ばれた安定化剤の1種または2種
以上を含む部分安定化もしくは完全安定化したジルコニ
ア(ZrO_2)質層ならびにハフニア(HfO_2)
質層が境界部において固溶結合した積層二層構造のジル
コニア/ハフニア系耐火物。1. A partially stabilized or fully stabilized zirconia (ZrO_2) layer and hafnia (HfO_2) containing one or more stabilizers selected from oxides of calcium, magnesium, yttrium and cerium.
A zirconia/hafnia-based refractory with a laminated two-layer structure in which the layers are solid-solution bonded at the boundary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339831A JPH03197357A (en) | 1989-12-26 | 1989-12-26 | Zirconia/hafnia refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339831A JPH03197357A (en) | 1989-12-26 | 1989-12-26 | Zirconia/hafnia refractories |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03197357A true JPH03197357A (en) | 1991-08-28 |
Family
ID=18331225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1339831A Pending JPH03197357A (en) | 1989-12-26 | 1989-12-26 | Zirconia/hafnia refractories |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03197357A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0706980A1 (en) * | 1994-10-05 | 1996-04-17 | Santoku Metal Industry Co., Ltd. | Composite oxide having oxygen absorbing and desorbing capability and method for preparing same |
JP2022173249A (en) * | 2020-12-25 | 2022-11-18 | クラレノリタケデンタル株式会社 | Zirconia calcined body, zirconia sintered body and laminate |
-
1989
- 1989-12-26 JP JP1339831A patent/JPH03197357A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0706980A1 (en) * | 1994-10-05 | 1996-04-17 | Santoku Metal Industry Co., Ltd. | Composite oxide having oxygen absorbing and desorbing capability and method for preparing same |
JP2022173249A (en) * | 2020-12-25 | 2022-11-18 | クラレノリタケデンタル株式会社 | Zirconia calcined body, zirconia sintered body and laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bannister et al. | Science and technology of zirconia V | |
Rice | Ceramic fabrication technology | |
RU2218447C2 (en) | A gas turbine member (versions) and method to manufacture its heat-insulating coating | |
JPH0829975B2 (en) | Alumina-based ceramics sintered body | |
JPH0558722A (en) | Aluminum titanate ceramics and its production | |
JPH04357165A (en) | Zirconia porcelain and electrochemical element using the same | |
Park et al. | Preparation of zirconia–mullite composites by an infiltration route | |
JP4091275B2 (en) | Metal ceramic laminated structure member and method for manufacturing the same | |
Dhas et al. | Combustion synthesis and properties of zirconia alumina powders | |
JP2844100B2 (en) | Zirconia refractory and method for producing the same | |
JPS6126562A (en) | Zirconia sintered body | |
JPH03197357A (en) | Zirconia/hafnia refractories | |
JPS63156063A (en) | High temperature strength and hot water stability zirconia base ceramics | |
DePoorter et al. | Structural ceramics | |
JPH0772102B2 (en) | Method for manufacturing zirconia sintered body | |
JP2515604B2 (en) | Zirconia / hafnia composite material | |
US20020027315A1 (en) | Low-firing temperature method for producing Al2O3 bodies having enhanced chemical resistance | |
JPS62207761A (en) | Low temperature deterioration-resistant zirconia ceramic | |
Kyaw et al. | Microstructures and mechanical properties of mullite-(yttria, magnesia-and ceria-stabilized) zirconia composites | |
JPH08109065A (en) | High-strength zirconia sintered compact and its production and grinding part material | |
JPH0710746B2 (en) | High toughness zirconia sintered body | |
JPH03197354A (en) | Alumina/yttria refractories | |
JPH0694390B2 (en) | Silicon nitride sintered body | |
JPS61242956A (en) | High tenacity ceramic alloy | |
JPH1087366A (en) | Automotive oxygen sensor |