[go: up one dir, main page]

JPH03196148A - Formation of sic film for x-ray lithography - Google Patents

Formation of sic film for x-ray lithography

Info

Publication number
JPH03196148A
JPH03196148A JP1339093A JP33909389A JPH03196148A JP H03196148 A JPH03196148 A JP H03196148A JP 1339093 A JP1339093 A JP 1339093A JP 33909389 A JP33909389 A JP 33909389A JP H03196148 A JPH03196148 A JP H03196148A
Authority
JP
Japan
Prior art keywords
film
sic
stress
sic film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339093A
Other languages
Japanese (ja)
Other versions
JPH0712016B2 (en
Inventor
Shu Kashida
周 樫田
Yoshihiro Kubota
芳宏 久保田
Akihiko Nagata
永田 愛彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP33909389A priority Critical patent/JPH0712016B2/en
Publication of JPH03196148A publication Critical patent/JPH03196148A/en
Publication of JPH0712016B2 publication Critical patent/JPH0712016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain the SiC film having excellent high energy beam resistance by forming the SiC film in the state of compressive stress on a substrate, then annealing the film into the state of tensile stress. CONSTITUTION:The SiC film is formed in the state of the compressive stress on the substrate by using a target consisting of SiC and by a sputtering method. This film is then annealed to the state of the tensile stress. Namely, the SiC film is required to contain crystalline SiC. The film is formed by previously imparting crystallinity to the film at the time of a sputtering treatment for the above-mentioned purpose, by which the fluctuation in the stress and the generation of strains are lessened even if the film is irradiated with a high- energy beam at the time of use of the film as a mask. The SiC film which has the tensile stress of a specified range and has the crystallinity regulated by the waveform of X-ray diffraction is obtd. in this way. The excellent SiC film which has the high energy beam resistance, is extremely little in the change in the stress and is free from pinholes and nodules is stably mass-produced without fluctuations.

Description

【発明の詳細な説明】 (産業上の利用分野) 高エネルギー電子線やシンクロトロン放射光の様な高エ
ネルギービームを照射しても応力の変化が少ないX線リ
ソグラフィー用SiC膜の成膜方法に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention relates to a method for forming a SiC film for X-ray lithography that exhibits little change in stress even when irradiated with high-energy beams such as high-energy electron beams and synchrotron radiation. .

(従来の技術) 半導体デバイスにおけるパターン形式の微細化に伴ない
、将来のリソグラフィー技術としてX線リソグラフィー
技術が最も有望視されている。X線リソグラフィーに行
いられるマスクのX線透過膜(別の表現をすればX線吸
収体の支持膜ともいうが、以下メンブレンまたは膜と称
する。)に要求される重要な性能としては、 1)表面が平滑で傷やピンホールが無く、実用的な強度
を有すること。
(Prior Art) With the miniaturization of pattern formats in semiconductor devices, X-ray lithography technology is considered the most promising as a future lithography technology. The important performances required of the X-ray transparent membrane (in other words, it is also called the support membrane of the X-ray absorber, but hereafter referred to as membrane or membrane) of the mask used in X-ray lithography are as follows: 1) The surface must be smooth, free of scratches and pinholes, and have practical strength.

2)高精度なアライメント(位置合せ)に必要な可視光
透過率を有すること。
2) Must have visible light transmittance necessary for highly accurate alignment.

3)良好な耐薬品性や耐湿性を有し、エツチング工程や
洗浄工程で損傷されにくいこと。
3) It has good chemical resistance and moisture resistance, and is not easily damaged by etching and cleaning processes.

4)高エネルギー電子線やシンクロトロン放射光の様な
高エネルギービームの照射に耐えること。
4) To withstand irradiation with high-energy beams such as high-energy electron beams and synchrotron radiation.

等が挙げられる。etc.

従来、X線リソグラフィー用マスクメンブレンの材料と
してBN、ボロンドープSi、 5isN4. SiC
等が提案されているが、中でも、SiCは高いヤング率
を有するために、耐高エネルギービーム性が最も優れた
材料と考えられている。
Conventionally, materials for mask membranes for X-ray lithography include BN, boron-doped Si, 5isN4. SiC
Among them, SiC is considered to be the material with the best high energy beam resistance because it has a high Young's modulus.

通常、このSiC膜の成膜方法としてはCVD法が最も
多く用いられている。しかしながら、CVD法は、原料
ガスの反応及び分解を伴いながら成膜するため、膜の成
分以外の元素が膜中に取り込まれ易く、その結果、これ
らの元素が膜中の不純物として働くために、 1)高エネルギービームの照射により、膜中の不純物が
容易に離脱する。そのため、膜の歪の発生、膜の応力の
変動、膜の機械的強度の低下、膜の光学的な透明性の低
下等の欠陥を生じる。
Usually, the CVD method is most often used as a method for forming this SiC film. However, since the CVD method forms a film while involving reaction and decomposition of the raw material gas, elements other than the film components are likely to be incorporated into the film, and as a result, these elements act as impurities in the film. 1) Impurities in the film are easily removed by high-energy beam irradiation. As a result, defects such as distortion of the film, fluctuation of stress in the film, reduction in mechanical strength of the film, and reduction in optical transparency of the film occur.

2)膜の表面に、ピンホールやノジュールが発生し易く
良好なメンブレンが得られにくい。
2) Pinholes and nodules are likely to occur on the surface of the membrane, making it difficult to obtain a good membrane.

等の問題がある。There are other problems.

(発明が解決しようとする課題) このSiC膜を成膜する他の方法として特願昭63−3
15768に記載されているスパッター法がある。
(Problems to be Solved by the Invention) Another method for forming this SiC film is the patent application No. 63-3.
There is a sputtering method described in 15768.

この方法では、膜中に不純物が少ない、ピンホールやノ
ジュールが少ない等の利点があるが、成膜したSiC膜
はアモルファス状態であり過度の高エネルギービームを
照射すると応力の変動を起こし易(、その結果歪が発生
し易いという問題がある。
This method has advantages such as fewer impurities and fewer pinholes and nodules in the film, but the SiC film formed is in an amorphous state and is prone to stress fluctuations when irradiated with an excessively high energy beam ( As a result, there is a problem in that distortion is likely to occur.

従って、本発明が解決しようとする課題は、優れた耐高
エネルギービーム性を有するX線リソグラフィー用Si
C膜を得ることにある。
Therefore, the problem to be solved by the present invention is to create a Si material for X-ray lithography that has excellent high-energy beam resistance.
The objective is to obtain a C film.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するためにSiC膜の
結晶学的解析を進めた結果、特定の物性を有する膜が耐
高エネルギービーム性を有することを確認し、この膜の
最適成膜方法を探索した結果、スパッター法により S
iC膜を圧縮応力の状態で成膜後、アニールを行ない、
圧縮応力の状態な引張応力の状態に変えることにより、
高エネルギービームを照射しても応力の変動の少ないメ
ンブレンを得ることができ、本発明を完成するに至った
(Means for Solving the Problems) In order to solve the problems, the present inventors conducted crystallographic analysis of SiC films, and as a result, they found that films with specific physical properties have high energy beam resistance. After confirming this and searching for the optimal method for forming this film, we found that S
After forming the iC film under compressive stress, annealing is performed,
By changing the compressive stress state to the tensile stress state,
It was possible to obtain a membrane with little stress fluctuation even when irradiated with a high-energy beam, and the present invention was completed.

本発明の要旨は、 SiCよりなるターゲットを用い、スパッター法にて基
板上に圧縮応力の状態でSiC膜を形成し、次いでこれ
をアニールして引張応力の状態とすることを特徴とする
X線リソグラフィー用SiC膜の成膜方法にある。
The gist of the present invention is to form an SiC film in a compressive stress state on a substrate by sputtering using a target made of SiC, and then to anneal it to a tensile stress state. A method for forming a SiC film for lithography.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

先ず、良好なSiC膜を得るためにはSiC膜の引張り
応力が0.1〜8.OX 10’ dyne/crrf
であることが必要である。0.1 x 10@dyne
/cm”未満では引張り応力が小さ過ぎるため膜が形成
しにく(、仮に形成したとしてもしわが発生し易い。逆
に、8.Ox 10’ dyne/crrrを越えても
引張り応力が大き過ぎるため膜が形成しにくく、仮に形
成したとしても破裂し易くなる。好ましい範囲は0.3
〜4.0×10’ dyne/crrrである。
First, in order to obtain a good SiC film, the tensile stress of the SiC film should be 0.1 to 8. OX 10' dyne/crrf
It is necessary that 0.1 x 10@dyne
If it is less than 8.Ox 10' dyne/crrr, it is difficult to form a film because the tensile stress is too small (and even if it is formed, wrinkles are likely to occur.On the other hand, even if it exceeds 8.Ox 10' dyne/crrr, the tensile stress is too large) It is difficult to form a film, and even if it is formed, it is likely to rupture.The preferable range is 0.3.
~4.0×10′ dyne/crrr.

次に、SiC膜が結晶質SiCを含有することが必要で
ある。通常のスパッター法で生成するアモルファス状態
のSiC膜が高エネルギービームを照射されて内部応力
が変動する主な原因は、照射により SiC膜が加熱さ
れて温度が上昇し、その結果SiCの結晶構造が結晶性
を増加する方向に変化する為、内部応力も変化するもと
の思われる。従って、本発明では予めスパッター処理時
に結晶性を付与し成膜することにより、マスクとして使
用する時に高エネルギービーム照射を受けても応力の変
動、歪の発生が極めて少なくなった。
Next, it is necessary that the SiC film contains crystalline SiC. The main reason why internal stress fluctuates when an amorphous SiC film produced by normal sputtering is irradiated with a high-energy beam is that the irradiation heats the SiC film and increases its temperature, which changes the crystal structure of the SiC. Since the crystallinity changes in the direction of increasing, it is thought that the internal stress also changes. Therefore, in the present invention, by imparting crystallinity to the film beforehand during sputtering, even when irradiated with a high-energy beam when used as a mask, stress fluctuations and distortions are extremely reduced.

更に、この結晶性の条件として、SiC膜のX線回折ピ
ークの2θ:35.5°におけるSiCの(ill)結
晶面のピーク波形のシャープさが挙げられる。
Further, as a condition for this crystallinity, there is a sharpness of the peak waveform of the SiC (ill) crystal plane at 2θ:35.5° of the X-ray diffraction peak of the SiC film.

高エネルギービーム照射により SiCの応力の変動を
実用レベルにまで少なくするには、X線回折ピークにお
いて2θ=30°と2θ=40°の波形を結ぶ線を基線
として2θ= 35.5°における基線からのピーク高
さLlと2θ=33°における基線からのピーク高さL
2の比り、/L、が1.5以上であることが必要であり
、更に好ましくは3.0以上である。1.5未満では応
力の変動が大きく使用に耐えない。
In order to reduce stress fluctuations in SiC due to high-energy beam irradiation to a practical level, the baseline at 2θ = 35.5° is set at the X-ray diffraction peak using a line connecting the waveforms at 2θ = 30° and 2θ = 40°. The peak height Ll from the base line and the peak height L from the base line at 2θ=33°
The ratio /L of 2 is required to be 1.5 or more, more preferably 3.0 or more. If it is less than 1.5, the stress will fluctuate greatly and cannot be used.

次に、上記諸特性を与える成膜方法について述べる。Next, a film forming method that provides the above characteristics will be described.

本発明で採用したスパッター法としては、一般に使用さ
れているコンベンショナルスパッター法で行なうが、好
ましくは量産性の観点より成膜速度の早いマグネトロン
スパッター法を用いるのが良い。スパッターに使用され
るガスとしては、アルゴン、セキノンなどの不活性ガス
を用いるが、他にヘリウム、窒素等のガスを混入しても
よい。
The sputtering method employed in the present invention is a commonly used conventional sputtering method, but from the viewpoint of mass productivity, it is preferable to use a magnetron sputtering method, which has a high film formation rate. As the gas used for sputtering, an inert gas such as argon or sequinone is used, but other gases such as helium or nitrogen may be mixed.

基板は通常はシリコンを用いる。ターゲットは、SiC
粉体を所定の形状に焼結したものでよいが、純度は成膜
後の膜中に不純物ができるだけ少ないことが望ましいの
で、99%以上、好ましくは99.9%以上である。タ
ーゲットに印加する電力は5W/crtr以上が望まし
い。印加電力が高い程、成膜速度は増加するので有利で
ある。
The substrate is usually made of silicon. The target is SiC
The powder may be sintered into a predetermined shape, but the purity is 99% or more, preferably 99.9% or more, since it is desirable that the formed film contains as few impurities as possible. The power applied to the target is preferably 5 W/crtr or more. The higher the applied power, the higher the deposition rate, which is advantageous.

スパッター時の基板温度は、後のアニール化が効果的に
行なわれるように、500℃未満とする。
The substrate temperature during sputtering is kept below 500° C. so that subsequent annealing can be performed effectively.

基板温度が500℃以上になると成膜したSiC膜は、
次工程であるアニール処理を行なっても結晶性の増加が
不充分であり、その結果、高エネルギービームの照射に
より応力が変動し易くなる。また逆に、基板温度が50
℃以下になると基板とSiC膜の密着性が低下するため
好、ましくなく、好ましい基板温度は150〜300℃
である。
The SiC film formed when the substrate temperature is 500°C or higher,
Even if the next step, annealing treatment, is performed, the increase in crystallinity is insufficient, and as a result, stress tends to fluctuate due to high-energy beam irradiation. Conversely, if the substrate temperature is 50
If the temperature is below ℃, the adhesion between the substrate and the SiC film will decrease, which is not desirable, and the preferred substrate temperature is 150 to 300℃.
It is.

スパッター圧力は、膜の内部応力を所望の圧縮応力に仕
上げるために非常に重要である。先ず、スパッター温度
及び、後で行なうアニール処理の温度や時間の条件を勘
案してアニール処理後の内部応力がSiC膜を作製する
上で最も好ましい範囲である0、1〜g、OX  10
’dyne/Cm”の引張応力になるようにスパッター
圧力を決定する。通常、アニール処理を行なうと、応力
は引張応力側へ変動しその変動量はアニール温度が高い
程大きい。従って予め数水準のスパッター温度下におけ
るスパッター圧力と内部応力の関係を求め、更にアニル
処理条件と応力の変動量の関係を求めておくことが必要
である。以上の要件を満足するスパッター圧力は0.2
〜50X 10””Torrである。
Sputtering pressure is very important to achieve the desired compressive stress within the film. First, considering the sputtering temperature and the temperature and time conditions of the annealing treatment to be performed later, the internal stress after the annealing treatment is in the most preferable range for producing a SiC film, 0, 1 to 0 g, OX 10.
The sputtering pressure is determined so that the tensile stress is 'dyne/Cm'.Normally, when annealing is performed, the stress changes toward the tensile stress side, and the amount of variation becomes larger as the annealing temperature increases.Therefore, several levels of It is necessary to determine the relationship between the sputter pressure and internal stress under the sputter temperature, and also determine the relationship between the annealing treatment conditions and the amount of stress variation.The sputter pressure that satisfies the above requirements is 0.2
˜50×10” Torr.

アニール処理条件は、アモルファスな状態で仕上げたS
iC膜に結晶性を付与する為に、アニール温度が500
℃以上であることが必要であり、好ましくは700℃以
上である。又、アニール時間は充分にアニール処理する
ために2時間以上必要であり、好ましくは4〜8時間で
ある。アニール処理後の、SiCの結晶性の増加の目安
としては、前述したX線回折ピークの波形から評価する
The annealing treatment conditions were S, which was finished in an amorphous state.
In order to impart crystallinity to the iC film, the annealing temperature is 500℃.
It is necessary that the temperature is at least 700°C, preferably at least 700°C. Further, the annealing time is required to be 2 hours or more for sufficient annealing treatment, and preferably 4 to 8 hours. As a measure of the increase in crystallinity of SiC after the annealing treatment, evaluation is made from the waveform of the above-mentioned X-ray diffraction peak.

以下、実施例と比較例によって本発明の具体的実施態様
を説明するが、本発明はこれらによって限定されるもの
ではない。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

尚、得られたSiC膜の物性測定、評価方法は次の通り
である。
The physical properties of the obtained SiC film were measured and evaluated as follows.

■X線回折の測定 薄膜用X線回折測定装置(リガク製TFD)を用いて測
定した。入射角(θ)=2°固定、ターゲットはCu、
パワーは40kVx 40mAである。
(2) Measurement of X-ray diffraction Measurement was carried out using an X-ray diffraction measuring device for thin films (TFD manufactured by Rigaku). Incident angle (θ) = 2° fixed, target is Cu,
Power is 40kV x 40mA.

■内部応力の測定 基板の成膜前と成膜後及びアニール前とアニル後のそり
の変化量より応力値を算出した。
■Measurement of internal stress The stress value was calculated from the amount of change in warpage of the substrate before and after film formation, and between before and after annealing.

■耐高エネルギービーム性 高エネルギーとして15eVの高エネルギー電子線を1
.OKJ/cm”照射し、照射による膜の応力の変化量
を測定し、耐高エネルギービーム性の目安とした。
■High energy beam resistance 15 eV high energy electron beam is used as high energy.
.. OKJ/cm'' was irradiated, and the amount of change in stress in the film due to irradiation was measured, which was used as a measure of high energy beam resistance.

■メンブレン化適性 試料の基板の裏面にプラズマCVD法でアモルファスB
N膜(以下、a−BN膜とする)を1.0μm成膜し、
この膜をKOHエツチング液の保護膜とした。
■ Amorphous B is applied to the back side of the substrate of the sample suitable for membrane formation using plasma CVD method.
A 1.0 μm thick N film (hereinafter referred to as a-BN film) was formed,
This film was used as a protective film for KOH etching solution.

a−BN膜の上にステンレス製ドーナツ状マスク板をセ
ットし、 CF4ガスにてドライエツチングして露出し
ているa−BN膜を除去後、30%KOHにて露出した
シリコン面をウェットエツチングで溶出し、メンブレン
化した。メンブレン化適性として、仕上げたメンブレン
が、傷やピンホールが無く平滑と認められる場合を良好
、その他を不良と判定した。
A donut-shaped stainless steel mask plate was set on the a-BN film, and the exposed a-BN film was removed by dry etching with CF4 gas, and then the exposed silicon surface was wet etched with 30% KOH. It was eluted and membraned. As for suitability for membrane formation, the finished membrane was judged to be good if it was found to be smooth without scratches or pinholes, and bad otherwise.

■可視光透過率の測定 メンブレンをマルチフォトスペクトルメーターMPS−
5000(島津製作所製商品名)で波長633nm位置
の透過率(%)を測定した。
■Visible light transmittance measurement membrane is multi-photospectrometer MPS-
Transmittance (%) at a wavelength of 633 nm was measured using 5000 (trade name, manufactured by Shimadzu Corporation).

(実施例1〜6、比較例1〜3) 高周波マグネトロンスパッター装置5PF−332H型
(日型アネルバ社製商品名)を用いて、カソード側に直
径3インチで厚さが5mmの円盤状SiCターゲット(
純度99.9%)をセットした。基板として、直径3イ
ンチで厚みが600μmの両面研磨シリコンウェハを用
いて250℃に加熱した状態でアルゴンガスを7 cc
/分の流量で流した。排気系に通じるバルブでチャンバ
ー内を所定の圧力に調整した後、パワー密度をION/
cm”として15分間スパッターを行ない、膜厚1.0
μmのSiC膜を作製した。
(Examples 1 to 6, Comparative Examples 1 to 3) A disk-shaped SiC target with a diameter of 3 inches and a thickness of 5 mm was placed on the cathode side using a high-frequency magnetron sputtering device 5PF-332H model (trade name manufactured by Nikkei Anelva Co., Ltd.). (
Purity: 99.9%) was set. A double-sided polished silicon wafer with a diameter of 3 inches and a thickness of 600 μm was used as the substrate, and 7 cc of argon gas was heated to 250°C.
It was flowed at a flow rate of /min. After adjusting the pressure in the chamber to the specified level with the valve leading to the exhaust system, the power density is adjusted to ION/
Sputtering was carried out for 15 minutes with a film thickness of 1.0 cm.
A μm SiC film was fabricated.

次に得られたSiC膜を設けたシリコン基板を以下の方
法でアニール処理をした。先ず、合成石英製のウェハー
治具にセットし、高温用炉内に静置した。炉内の圧力を
20mmTorrとし、10”C/分の速度で昇温し、
所定の温度に到達後、その温度下に一定時間保持し、次
いでlO”c /分の速度で冷却した。アニール後の内
部応力を測定し、メンブレン化に必要な応力である0、
1〜g、Ox 10”dyne/cm”の引張応力のも
のを得た。アニール処理を行なうことにより、全て内部
応力が引張応力の方向に変動した。その結果を第1表に
示した。
Next, the obtained silicon substrate provided with the SiC film was annealed in the following manner. First, it was set in a wafer jig made of synthetic quartz and left in a high-temperature furnace. The pressure in the furnace was set to 20 mm Torr, and the temperature was raised at a rate of 10"C/min.
After reaching a predetermined temperature, it was maintained at that temperature for a certain period of time, and then cooled at a rate of lO"c/min. The internal stress after annealing was measured, and the stress required for membrane formation was 0,
A specimen with a tensile stress of 1 to 1 g, Ox 10"dyne/cm" was obtained. By performing the annealing treatment, the internal stress in all cases varied in the direction of the tensile stress. The results are shown in Table 1.

次に第1表の実施例1〜6のアニール後の試料について
、X線回折の測定、及び耐高エネルギービーム性、メン
ブレン化適正、更に得られたメンブレンの可視光透過率
について測定し、その結果を第2表に示した。メンブレ
ン化適性及びメンブレンの可視光透過率の測定に使用し
た試料は高エネルギー照射処理をしていないものである
Next, the annealed samples of Examples 1 to 6 in Table 1 were measured for X-ray diffraction, high energy beam resistance, membrane formation suitability, and visible light transmittance of the obtained membranes. The results are shown in Table 2. The samples used to measure membrane suitability and membrane visible light transmittance were not subjected to high-energy irradiation treatment.

X線回折の波形を第1図に示した。この波形より、2θ
=30°と2θ:40°の波形を結ぶ線を基線として2
θ=35.5°における基線からのピーク高さLlと2
θ=33mにおける基線からのピーク高さL2の比り、
/L、を求め、その結果を第2表に示した。又、比較例
としてアニール処理を行なわない場合、及びアニール温
度が500℃未満についても同様の測定を行ない、その
結果を第2表に併記した。 第2表より、 500℃以
上でアニール処理を行なうと、Ll/L!が1.5以上
となり、このものは高エネルギー電子線の照射を行なっ
ても内部応力に顕著な変化が認められなかった。
The waveform of X-ray diffraction is shown in FIG. From this waveform, 2θ
=30° and 2θ:2 with the line connecting the 40° waveform as the base line
Peak height Ll from the base line at θ=35.5° and 2
Comparison of peak height L2 from the base line at θ = 33 m,
/L, and the results are shown in Table 2. Further, as a comparative example, similar measurements were made without annealing treatment and at an annealing temperature of less than 500° C., and the results are also listed in Table 2. From Table 2, when annealing is performed at 500°C or higher, Ll/L! was 1.5 or more, and no significant change in internal stress was observed even after irradiation with high-energy electron beams.

(発明の効果) 本発明の成膜方法によれば、特定範囲の引張り応力を有
し、X線回折の波形で規定した結晶性を有するSiC膜
が得られ、従来得られなかった耐高エネルギービーム性
を有し、応力変化が極めて少なく、ピンホールやノジュ
ールのない優れたSiC膜がばらつきなく安定して量産
可能となった。更第1表 にX線リソグラフィー用マスクに加工することができ、
工業上極めて利用価値が高い。
(Effects of the Invention) According to the film forming method of the present invention, a SiC film having a tensile stress in a specific range and crystallinity defined by an X-ray diffraction waveform can be obtained, and has high energy resistance It has become possible to stably mass-produce excellent SiC films with beam properties, extremely little stress change, and no pinholes or nodules without variation. Furthermore, Table 1 shows the following materials that can be processed into masks for X-ray lithography.
It has extremely high utility value in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜6および比較例1〜3のSiC膜の
結晶性を規定するためのX線回折波形を示す。
FIG. 1 shows X-ray diffraction waveforms for defining the crystallinity of the SiC films of Examples 1 to 6 and Comparative Examples 1 to 3.

Claims (1)

【特許請求の範囲】 1、SiCよりなるターゲットを用い、スパッター法に
て基板上に圧縮応力の状態でSiC膜を形成し、次いで
これをアニールして引張応力の状態とすることを特徴と
するX線リソグラフィー用SiC膜の成膜方法。 2、基板温度が500℃未満であり、アニール温度が5
00℃以上である請求項1に記載のX線リソグラフィー
用SiC膜の成膜方法。 3、引張応力が0.1〜8.0×10^9dyne/c
m^2である請求項1に記載のX線リソグラフィー用S
iC膜の成膜方法。 4、スパッター圧力が0.2〜50×10^−^3To
rrである請求項1に記載のX線リソグラフィー用Si
C膜の成膜方法。 5、引張応力の状態にあるSiC膜が結晶質SiCを含
有することを特徴とする請求項1に記載のX線リソグラ
フィー用SiC膜の成膜方法。 6、請求項4に記載のSiC膜のX線回折ピークにおい
て、2θ=30°と2θ=40°の波形を結ぶ線を基線
として2θ=35.5°における基線からのピーク高さ
L_1と2θ:33°における基線からのピーク高さL
_2の比L_1/L_2が1.5以上であることを特徴
とするX線リソグラフィー用SiC膜の成膜方法。
[Claims] 1. Using a target made of SiC, a SiC film is formed on a substrate under compressive stress by a sputtering method, and then this is annealed to create a state under tensile stress. A method for forming a SiC film for X-ray lithography. 2. The substrate temperature is less than 500℃ and the annealing temperature is 5.
The method for forming a SiC film for X-ray lithography according to claim 1, wherein the temperature is 00°C or higher. 3. Tensile stress is 0.1 to 8.0 x 10^9 dyne/c
The S for X-ray lithography according to claim 1, which is m^2
A method for forming an iC film. 4. Sputter pressure is 0.2~50×10^-^3To
Si for X-ray lithography according to claim 1, which is rr.
Method for forming C film. 5. The method for forming an SiC film for X-ray lithography according to claim 1, wherein the SiC film under tensile stress contains crystalline SiC. 6. In the X-ray diffraction peak of the SiC film according to claim 4, the peak height L_1 and 2θ from the base line at 2θ = 35.5° with the line connecting the waveforms of 2θ = 30° and 2θ = 40° as the base line. : Peak height L from the base line at 33°
A method for forming a SiC film for X-ray lithography, characterized in that the ratio L_1/L_2 of _2 is 1.5 or more.
JP33909389A 1989-12-26 1989-12-26 Method for forming SiC film for X-ray lithography Expired - Fee Related JPH0712016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33909389A JPH0712016B2 (en) 1989-12-26 1989-12-26 Method for forming SiC film for X-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33909389A JPH0712016B2 (en) 1989-12-26 1989-12-26 Method for forming SiC film for X-ray lithography

Publications (2)

Publication Number Publication Date
JPH03196148A true JPH03196148A (en) 1991-08-27
JPH0712016B2 JPH0712016B2 (en) 1995-02-08

Family

ID=18324195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33909389A Expired - Fee Related JPH0712016B2 (en) 1989-12-26 1989-12-26 Method for forming SiC film for X-ray lithography

Country Status (1)

Country Link
JP (1) JPH0712016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933683A3 (en) * 1992-08-20 1999-12-15 Sony Corporation Method of forming a resist pattern by using an optimized silicon carbide anti-reflective layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933683A3 (en) * 1992-08-20 1999-12-15 Sony Corporation Method of forming a resist pattern by using an optimized silicon carbide anti-reflective layer

Also Published As

Publication number Publication date
JPH0712016B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH02502467A (en) Polysilicon thin film method and its products
WO1980000634A1 (en) Radiation mask structure
JPH07116588B2 (en) Method for manufacturing transparent body of mask for X-ray lithography
US4522842A (en) Boron nitride X-ray masks with controlled stress
JPH02213118A (en) Manafacture of sicmask supporting member for radiation lithography mask
JP3071876B2 (en) X-ray mask, method of manufacturing the same, and exposure method using the same
JPH0712017B2 (en) SiC / Si for X-ray lithography Lower 3 Lower N 4 Film forming method
EP0332130B1 (en) X-ray exposure masks
JPH03196148A (en) Formation of sic film for x-ray lithography
JPH03196147A (en) Sic film for x-ray lithography and production thereof and mask for x-ray lithography
US4946751A (en) Method of manufacturing a mask for radiation lithography
JP3360269B2 (en) Diamond film for X-ray lithography and method for producing the same
JPH10172884A (en) Mask membrane for X-ray lithography and method of manufacturing the same
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
JP3437389B2 (en) Mask membrane for electron beam and X-ray lithography
JP2790900B2 (en) Method for manufacturing a composite film composed of SiC and Si <3> N <4> and method for manufacturing a mask for X-ray lithography
US5246802A (en) X-ray permeable membrane for X-ray lithographic mask
JPH10199801A (en) X-ray lithography mask having artificial diamond film having little residual stress
JP3350235B2 (en) Method of manufacturing X-ray mask and X-ray mask obtained by the method
JPH08264419A (en) Manufacture of x-ray mask
JP2527009Y2 (en) Diamond window
JPS63145777A (en) Manufacturing method of hexagonal boron nitride film
JPH02281614A (en) Manufacture of polycrystalline silicon thin film
JPH07103460B2 (en) Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography
JPH10199802A (en) X-ray lithography mask with little time-varying positional deviation of membrane due to irradiating x-ray

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees