[go: up one dir, main page]

JPH03195922A - Detecting apparatus for degree of congestion - Google Patents

Detecting apparatus for degree of congestion

Info

Publication number
JPH03195922A
JPH03195922A JP1335581A JP33558189A JPH03195922A JP H03195922 A JPH03195922 A JP H03195922A JP 1335581 A JP1335581 A JP 1335581A JP 33558189 A JP33558189 A JP 33558189A JP H03195922 A JPH03195922 A JP H03195922A
Authority
JP
Japan
Prior art keywords
pixels
data
congestion
zone
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335581A
Other languages
Japanese (ja)
Inventor
Isao Sasao
笹尾 勇夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1335581A priority Critical patent/JPH03195922A/en
Publication of JPH03195922A publication Critical patent/JPH03195922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To enable highly-precise detection of the degree of congestion by dividing an image pickup screen into a plurality and by setting a criterion of detection for each divided screen. CONSTITUTION:When a zone A to a zone D are set, beginning with the nearest to a TV camera 1, on the occasion of setting a criterion of detection, the number of pixels for detecting one person is determined in such a manner that eight pixels are allocated to the zone A, six pixels to the zone B, four pixels for the zone C and two pixels to the zone D, for instance. First the content of a video memory on the occasion when there is no waiting person in an elevator hall is read in CPU 18A and stored in a reference data area of a data memory 18C. Next, fresh video data are read in the CPU 18A from the memory 14. Reference data and the fresh data are compared with each other for each pixel, and the pixels wherein a difference in brightness is a prescribed value or above are extracted and written in places corresponding to them respectively in a detected data area of the memory 18C so as to be stored. Now, when there is a waiting person, the criterion of detection is selected in accordance with the position on a screen and the degree of congestion is calculated. The calculated data thus obtained are outputted as data 13a on the degree of congestion to a group control device 17 through an output port 18E.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、テレビジョンカメラ等を用いて撮像したデ
ータを処理して人の混雑度を検出する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a device that detects the degree of crowding by processing data captured using a television camera or the like.

[従来の技術] 第5図は例えば特公昭57−30782号公報に示され
た従来の混雑度検出装置を示すブロック図である。
[Prior Art] FIG. 5 is a block diagram showing a conventional congestion level detection device disclosed in, for example, Japanese Patent Publication No. 57-30782.

図中、(1)はエレベータ−ホールを撮像するテレビジ
ョンカメラ(以下テレビカメラという)、(2)はテレ
ビカメラ(1)の撮像信号をディジタル信号に変換する
アナログ・ディジタル変換器(以下A/D変換器という
)、(3)は上記ディジタル信号を処理して画素単位の
特徴を抽出する演算器、(4) (5)は演算器(3)
の出力を記憶するメモリ、(6)はメモリ(4)(5)
の出力を比較する比較器、(7)は比較器(6)から出
力される不一致画素信号(後述)の個数を計数するカウ
ンタである。
In the figure, (1) is a television camera (hereinafter referred to as television camera) that images the elevator hall, and (2) is an analog-to-digital converter (hereinafter referred to as A/ (3) is an arithmetic unit that processes the digital signal and extracts the features of each pixel; (4) (5) is an arithmetic unit (3)
Memory that stores the output of (6) is memory (4) (5)
A comparator (7) is a counter that counts the number of mismatched pixel signals (described later) output from the comparator (6).

従来の混雑度検出装置は上記のように構成され、テレビ
カメラ(1)で撮像されたエレベータ−ホールの待客の
画像は、演算器(3)で処理され、画素単位の特徴が抽
出される。エレベータ−ホールに待客がいないときの演
算器(3)の処理結果をメモリ(4)に記憶させ、同じ
く待客がいるときの処理結果をメモリ(5)に記憶させ
る。そして、メモリ(4)(5)の記憶内容を各画素ご
とに比較器(6)で比較し、対応する画素の信号が異な
る場合は、不一致画素信号を出力する。この信号はカウ
ンタ(7)で計数され、その計数値がそのときの混雑度
に対応する。
A conventional congestion level detection device is configured as described above, and an image of waiting passengers in an elevator hall captured by a television camera (1) is processed by a computing unit (3) to extract features in pixel units. . The processing results of a computing unit (3) when there are no waiting customers in the elevator hall are stored in a memory (4), and the processing results when there are waiting customers in the elevator hall are also stored in a memory (5). Then, the contents stored in the memories (4) and (5) are compared for each pixel by a comparator (6), and if the signals of corresponding pixels are different, a mismatched pixel signal is output. This signal is counted by a counter (7), and the counted value corresponds to the degree of congestion at that time.

[発明が解決しようとする課題] 上記のような従来の混雑度検出装置では、不一致画素信
号の計数結果により混雑度を算出しているため、テレビ
カメラ(1)を斜めに設置した場合、テレビカメラ(1
)に近い人は大きく映り、−人を検出する画素数が多く
なる。逆に、テレビカメラ(1)から遠い人は小さく映
り、−人を検出する画素数は少なくなる。したがって1
人がいる位置によって、得られた混雑度が大きく変化し
、検出精度が低くならざるを得ないという問題点がある
[Problems to be Solved by the Invention] In the conventional congestion level detection device as described above, the congestion level is calculated based on the results of counting mismatched pixel signals. Camera (1
) will appear larger, and the number of pixels to detect - people will increase. Conversely, a person who is far from the television camera (1) appears small, and the number of pixels for detecting a person becomes smaller. Therefore 1
There is a problem in that the obtained degree of crowding varies greatly depending on the location of the person, and the detection accuracy inevitably becomes low.

この発明は上記問題点を解決するためになされたもので
、撮像装置と人との遠近にかかわらず、精度高く検出が
できる混雑度検出装置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a crowding degree detection device that can detect the degree of crowding with high accuracy regardless of the distance between the imaging device and the person.

[課題を解決するための手段] この発明に係る混雑度検出装置は、撮像画面を複数に分
割して、分割画面ごとに検出基準を設定するようにした
ものである。
[Means for Solving the Problems] A congestion degree detection device according to the present invention divides an imaging screen into a plurality of parts, and sets a detection standard for each divided screen.

[作 用] この発明においては、分割画面ごとに検出基準を設定す
るようにしたため、分割画面ごとに一人を検出する画素
数が設定され、これに基づいて混雑度が検出される。
[Operation] In this invention, since the detection standard is set for each split screen, the number of pixels for detecting a person is set for each split screen, and the degree of congestion is detected based on this.

[実施例] 第1図〜第4図はこの発明の一実施例を示す図で、第1
図は全体構成図、第2図は要部ブロック図、第3図は動
作を示すフローチャート、第4図は画面分割説明図であ
り、従来装置と同様の部分は同一符号で示す。
[Example] Figures 1 to 4 are diagrams showing an example of the present invention.
2 is a block diagram of main parts, FIG. 3 is a flowchart showing the operation, and FIG. 4 is an explanatory diagram of screen division. Portions similar to those of the conventional device are designated by the same reference numerals.

第1図中、(11)はエレベータ−ホール、(12)は
待客、(13)は混雑度検出装置で、A/D変換器(2
)と、A/D変換器(2)でディジタル化された撮像デ
ータを映像同期信号(図示しない)に同期して順次記憶
し常に最新の撮像データを記憶しているビデオメモリ(
14)と、画面を分割して分割画面ごとに検出基準を設
定する検出基準設定手段(15)と、上記検出基準に基
づいて画面位置対応の待客人数を算出して混雑度データ
(13a)を算出する混雑度算出手段(16)とからな
っている。(17)は混雑度データ(13a)によりエ
レベータ−を群管理するエレベータ−群管理装置である
In Figure 1, (11) is an elevator hall, (12) is a waiting customer, (13) is a congestion level detection device, and an A/D converter (2
), and a video memory () that sequentially stores the imaging data digitized by the A/D converter (2) in synchronization with a video synchronization signal (not shown) and always stores the latest imaging data.
14), a detection standard setting means (15) that divides the screen and sets a detection standard for each divided screen, and calculates the number of waiting customers corresponding to the screen position based on the detection standard and generates congestion level data (13a). and a congestion degree calculation means (16) for calculating the congestion degree calculation means (16). (17) is an elevator group management device that manages elevators in groups based on congestion degree data (13a).

第2図中、(18)はマイクロコンピュータ(以下マイ
コンという)で、CP U (18A)、プログラムメ
モリ(18B)、データメモリ(18C)、入力ポート
(180)及び出カポ−)−(18E)を有し、これら
はパスライン(18F)で接続されており、入力ポート
(1811)はビデオメモリ(14)に接続され、出力
ポート(18B)は群管理装置(17)に接続されてい
る。
In Figure 2, (18) is a microcomputer (hereinafter referred to as microcomputer), which includes a CPU (18A), a program memory (18B), a data memory (18C), an input port (180), and an output port (18E). These are connected by a pass line (18F), the input port (1811) is connected to the video memory (14), and the output port (18B) is connected to the group management device (17).

次に、この実施例の動作を第3図及び第4図を参照して
説明する。なお、第3図のフローチャートのプログラム
は、マイコン(18)のプログラムメモリ(18B)に
記憶されている。
Next, the operation of this embodiment will be explained with reference to FIGS. 3 and 4. The program shown in the flowchart of FIG. 3 is stored in the program memory (18B) of the microcomputer (18).

まず、ステップ(21)でエレベータ−ホール(11)
に待客(12)がいないときのビデオメモリ(14)の
内容を、入力ポート(180)を介してCP U (1
8A)に読み込む。ステップ(22)でCP U (1
8A)に読み込んだデータを順次データメモリ(18C
)の基準データ領域に記憶させる。ステップ(23)で
ビデオメモリ(14)から新しいビデオデータをCP 
U (18A)に読み込む。ステップ(24)で基準デ
ータと新データを各画素ごとに比較し、明るさの差が所
定値以上の画素を抽出して、データメモリ(18C)の
検出データ領域の各画素に対応する場所に書き込んで記
憶させる。
First, step (21) takes the elevator to the hall (11).
The contents of the video memory (14) when there is no waiting customer (12) in the CPU (1
8A). In step (22), CPU (1
The data read into the data memory (18C) is sequentially transferred to the data memory (18C).
) is stored in the reference data area. In step (23), new video data is transferred from the video memory (14) to the CP.
Load into U (18A). In step (24), the reference data and new data are compared pixel by pixel, and pixels with a difference in brightness greater than or equal to a predetermined value are extracted and placed in the location corresponding to each pixel in the detected data area of the data memory (18C). Write it down and memorize it.

次に、ステップ(25)でステップ(24)から得られ
たデータから、待客(12)がいるか否かを判断し、い
ないときはステップ(23)へ戻り、ステップ(23)
〜(25)を繰り返す。待客(12)がいるときはステ
ップ(26)へ進み、待客(12)すなわち異なる画素
の画面上の位置により、画素の集まりごとに一人又は複
数人数を決める検出基準を選択し、画素の集まりごとに
待客数を算出する。そして、ステップ(27)でステッ
プ(26)により得られたデータに基づいて、エレベー
タ−ホール(11)全体の混雑度を算出する。ステップ
(28)で算出データを出力ポート(18E)を介して
混雑度データ(13a)として群管理装置(17)に出
力する。
Next, in step (25), it is determined from the data obtained from step (24) whether or not there is a waiting customer (12), and if there is not, the process returns to step (23), and step (23)
- Repeat (25). If there is a waiting customer (12), proceed to step (26), select a detection criterion to determine one or more people for each group of pixels according to the waiting customer (12), that is, the position of different pixels on the screen, and Calculate the number of customers waiting for each gathering. Then, in step (27), the degree of congestion of the entire elevator hall (11) is calculated based on the data obtained in step (26). In step (28), the calculated data is output to the group management device (17) as congestion degree data (13a) via the output port (18E).

以下、同様のステップを繰り返すことにより。By repeating the same steps below.

混雑度の検出が行われる。The degree of congestion is detected.

第4図はステップ(26)で行われる検出基準の設足手
段の一例として、画面の位置により人物の大きさの一例
を図示したものである。第4図では画面を上下に4分割
した例を示しており、テレビカメラ(1)に近い方から
Aゾーン〜Dゾーンとすると、−人を検出する画素数を
、例えばAゾーンは8画素、Bゾーンは6画素、Cゾー
ンは4画素、Dゾーンは2画素というように、検出基準
を設定する。
FIG. 4 illustrates an example of the size of a person depending on the position on the screen, as an example of the means for establishing a detection standard performed in step (26). Figure 4 shows an example in which the screen is divided into four vertically, and if zones A to D are defined from the one closest to the TV camera (1), the number of pixels for detecting a person is, for example, 8 pixels for zone A, Detection standards are set such as 6 pixels for the B zone, 4 pixels for the C zone, and 2 pixels for the D zone.

なお、画面分割に当たっては、2分割又は4分割以上、
若しくは左右方向に分割することも可能である。
In addition, when dividing the screen, 2 or 4 or more divisions,
Alternatively, it is also possible to divide it in the left and right direction.

また、上記実施例では、エレベータ−ホール(11)の
混雑度を検出するものとして説明したが。
Furthermore, in the embodiment described above, the degree of congestion in the elevator hall (11) is detected.

例えば駅のホームの混雑度を検出する場合にも適用する
ことは可能である。
For example, it can be applied to detect the degree of congestion on a station platform.

[発明の効果] 以上説明したとおりこの発明では、撮像画面を分割し1
分割画面ごとに検出基準を設定するようにしたので、分
割画面ごとに一人を検出する画素数が設定され1画面位
置による検出誤差が修正され、精度高く混雑度を検出す
ることができる効果がある。
[Effect of the invention] As explained above, in this invention, the imaging screen is divided into 1
Since the detection standard is set for each split screen, the number of pixels for detecting a person is set for each split screen, and the detection error due to the position of one screen is corrected, making it possible to detect the degree of congestion with high accuracy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明による混雑度検出装置の一実
施例を示す図で、第1図は全体構成図、第2図は要部ブ
ロック図、第3図は動作を示すフローチャート、第4図
は画面分割説明図、第5図は従来の混雑度検出装置を示
すブロック図である。 図中、(1)は撮像装置(テレビカメラ)、(11)は
人の集合する場所(エレベータ−ホール)、(12)は
人(待客)、(13)は混雑度検出装置、(15)は検
出基準設定手段、(16)は混雑度算出手段である。 なお、図中同一符号は同一部分を示す。
1 to 4 are diagrams showing one embodiment of the congestion degree detection device according to the present invention, in which FIG. 1 is an overall configuration diagram, FIG. 2 is a block diagram of main parts, and FIG. 3 is a flowchart showing the operation. FIG. 4 is an explanatory diagram of screen division, and FIG. 5 is a block diagram showing a conventional congestion degree detection device. In the figure, (1) is an imaging device (TV camera), (11) is a place where people gather (elevator hall), (12) is a person (waiting customers), (13) is a congestion level detection device, (15) ) is a detection standard setting means, and (16) is a congestion degree calculation means. Note that the same reference numerals in the figures indicate the same parts.

Claims (1)

【特許請求の範囲】[Claims] 人の集合する場所を撮像装置で撮像し、この撮像画面に
対応する撮像信号を画像処理して、上記場所の混雑度を
検出する装置において、上記撮像画面を複数に分割して
分割画面ごとに検出基準を設定する検出基準設定手段を
備えたことを特徴とする混雑度検出装置。
In a device that captures an image of a place where people gather with an imaging device, and performs image processing on the image signal corresponding to this image capture screen to detect the degree of congestion of the place, the image capture screen is divided into a plurality of parts and each divided screen is divided into two. A congestion level detection device comprising a detection standard setting means for setting a detection standard.
JP1335581A 1989-12-25 1989-12-25 Detecting apparatus for degree of congestion Pending JPH03195922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335581A JPH03195922A (en) 1989-12-25 1989-12-25 Detecting apparatus for degree of congestion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335581A JPH03195922A (en) 1989-12-25 1989-12-25 Detecting apparatus for degree of congestion

Publications (1)

Publication Number Publication Date
JPH03195922A true JPH03195922A (en) 1991-08-27

Family

ID=18290183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335581A Pending JPH03195922A (en) 1989-12-25 1989-12-25 Detecting apparatus for degree of congestion

Country Status (1)

Country Link
JP (1) JPH03195922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111994A (en) * 1992-09-24 2000-08-29 Canon Kabushiki Kaisha Outline extraction using partial image processing
JP2018022340A (en) * 2016-08-03 2018-02-08 キヤノン株式会社 Image processor, information processing method and program
JP2019067208A (en) * 2017-10-02 2019-04-25 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2021009728A (en) * 2020-10-14 2021-01-28 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2022033169A (en) * 2020-10-14 2022-02-28 キヤノン株式会社 Image processing apparatus, image processing method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111994A (en) * 1992-09-24 2000-08-29 Canon Kabushiki Kaisha Outline extraction using partial image processing
JP2018022340A (en) * 2016-08-03 2018-02-08 キヤノン株式会社 Image processor, information processing method and program
JP2019067208A (en) * 2017-10-02 2019-04-25 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2021009728A (en) * 2020-10-14 2021-01-28 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2022033169A (en) * 2020-10-14 2022-02-28 キヤノン株式会社 Image processing apparatus, image processing method, and program

Similar Documents

Publication Publication Date Title
CA2083074A1 (en) Defect detection
JPH0644292B2 (en) Two-dimensional visual recognition device
JPH03195922A (en) Detecting apparatus for degree of congestion
JP2941511B2 (en) Method for detecting boil in mold
JPS5946036B2 (en) Multiple pattern recognition device
JPH0259976A (en) Block integration processing method
JPH0575913A (en) Motion vector detecting circuit and jiggling correcting circuit
JPH0383474A (en) Car detector
JPH01298479A (en) Inclination angle detector
JPH04196993A (en) Image monitor device
JP4087946B2 (en) Image processing device
JP2546653B2 (en) Position detection method of detected surface by image processing
JP2659783B2 (en) Image processing device
JPS6365347A (en) Singular point detecting method by image processing
JPS58158761A (en) Pattern position detecting method
JP2810867B2 (en) Specific color extraction device
JPH01242986A (en) Crowdedness detecting device for elevator hall
JPH05135176A (en) Image processor with interrupting function
JPH087099A (en) Area dividing device
JPH1163936A (en) Particle size measuring device
JP2638074B2 (en) Intersection position detection device
JP3482717B2 (en) Image target detection device
KR100267879B1 (en) A vision system of a equipment for manufacturing a semiconductor
JPH04281680A (en) Moving object extraction processing system
CN113395463A (en) Matting method and device, electronic equipment and storage medium