JPH03195567A - Processing method for carbon tetrachloride - Google Patents
Processing method for carbon tetrachlorideInfo
- Publication number
- JPH03195567A JPH03195567A JP1339095A JP33909589A JPH03195567A JP H03195567 A JPH03195567 A JP H03195567A JP 1339095 A JP1339095 A JP 1339095A JP 33909589 A JP33909589 A JP 33909589A JP H03195567 A JPH03195567 A JP H03195567A
- Authority
- JP
- Japan
- Prior art keywords
- carbon tetrachloride
- methanol
- reaction
- carbon
- hydrogen chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/16—Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Fire-Extinguishing Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はオゾン層破壊の元凶の一つとされている四塩化
炭素を無害化するための処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a treatment method for rendering carbon tetrachloride harmless, which is considered to be one of the causes of ozone layer depletion.
(従来の技術とその問題点)
近年、特定フロン等の化学物質による地球オゾン層の破
壊が大きな社会的問題となってきている。(Prior art and its problems) In recent years, the destruction of the earth's ozone layer due to chemical substances such as specific fluorocarbons has become a major social problem.
この特定フロンについては今世紀中に全廃するという内
外の決議が行なわれ産業界もそれに従う方向で計画が進
められている。しかし、オゾンの破壊能という点では特
定フロン以外にもこれに匹敵する能力を持つ物質があり
、四塩化炭素(CC1,)もその一つである。オゾン破
壊係数ではフロン−11、−12が各々1.0であるの
に対し、四塩化炭素は1.0〜1.2と同等もしくはそ
れ以上の破壊能を持つ。また四塩化炭素はオゾン破壊能
力に加え、地球温暖化の元凶の一つに数えられている。Resolutions have been made both domestically and internationally to completely abolish this specific fluorocarbon by the end of this century, and plans are being made in the industrial world to follow the same. However, in terms of ozone destruction ability, there are substances other than specific fluorocarbons that have comparable ability, and carbon tetrachloride (CC1,) is one of them. While Freon-11 and -12 each have an ozone depletion coefficient of 1.0, carbon tetrachloride has an ozone depletion coefficient of 1.0 to 1.2, which is equivalent to or higher than that. In addition to its ability to destroy ozone, carbon tetrachloride is also considered one of the causes of global warming.
そこで、四塩化炭素もフロンと同様に今世紀中の全廃が
内外の趨勢となって−いる。Therefore, similar to fluorocarbons, carbon tetrachloride has become a trend both domestically and internationally to be completely abolished by the end of this century.
四塩化炭素の工業的製法は、
■二硫化炭素法:
CS2+ 3 C1□−一→CCV4+52C1□■メ
タンまたは塩化メチルの塩素化法:CH,+ 4 Cl
2CCL + 4 HClCH3Cl+3 C12−一
→CCl4+3HC1である。前者は四塩化炭素を選択
的に製造する方法のため、製造中止になったとしても、
それ以外への影響は小さい。しかし、後者は四塩化炭素
を選択的に得る方法ではない。すなわち、CH2CH2
CH,C1+I■CI
CI(、Cl + C」2−CH□C1□+HCICI
(、Cl□十C1□−一→CHCl、+HCICI(C
]3 + C1□□−CC] 4 + HC1とい
うように、CI−(4→CH、Cl→CH2Cl□→C
HCLを経由して最後にCCl4が作られる逐次併発塩
素化法であり、その生成物は未反応メタンや塩化メチル
から四塩化炭素に至るクロロメタン類の混合物となる。The industrial method for producing carbon tetrachloride is: ■ Carbon disulfide method: CS2+ 3 C1□-1→CCV4+52C1□■ Chlorination method of methane or methyl chloride: CH, + 4 Cl
2CCL + 4 HClCH3Cl+3 C12-1 → CCl4+3HC1. The former method selectively produces carbon tetrachloride, so even if production is discontinued,
The impact on other areas is small. However, the latter is not a method for selectively obtaining carbon tetrachloride. That is, CH2CH2
CH, C1+I■CI CI(, Cl + C"2-CH□C1□+HCICI
(, Cl □ 1 □ - 1 → CHCl, + HCICI (C
]3 + C1□□-CC] 4 + HC1, CI-(4→CH, Cl→CH2Cl□→C
This is a sequential simultaneous chlorination method in which CCl4 is finally produced via HCL, and the product is a mixture of unreacted methane and chloromethanes ranging from methyl chloride to carbon tetrachloride.
これらメタンの中途塩素化物は、それ白身有用な大きな
マーケットを持っているので、この製造法を中止した場
合には他に及ぼす影響が極めて大きい。その」二CHJ
C1、CH2−C1,またはCHC1,を得るには、こ
の反応機構の特性上四塩化炭素(CCI4)の副生を避
けられない宿命にある。These intermediate chlorinated products of methane have a large market where they are useful, so if this production method is discontinued, it will have an extremely large impact on other products. That'2 CHJ
In order to obtain C1, CH2-C1, or CHC1, the by-product of carbon tetrachloride (CCI4) is unavoidable due to the characteristics of this reaction mechanism.
それ故、副生する四塩化炭素を速やかに他の無害な有用
物質に転換する手段が望まれることになる。この方法と
して、研究開発途上のもの、既に工業化されているもの
として以下のものがある。Therefore, a means for quickly converting by-product carbon tetrachloride into other harmless useful substances is desired. The following methods are currently under research and development and have already been industrialized.
i)四塩化炭素の水素による低塩素化メタンへの還元:
CCI、+H2うニー:7ケノ’ CHCl、、CH2
Cl。i) Reduction of carbon tetrachloride with hydrogen to less chlorinated methane: CCI, +H2 uni: 7keno' CHCl,, CH2
Cl.
この方法は反応速度が遅く、触媒の寿命に限界があり、
かつClCH2CH2C1などの不純物が多く副生する
などの問題があって、未だ研究室レベルの域を脱してい
ない。This method has a slow reaction rate and a limited catalyst life.
In addition, there are problems such as a large amount of impurities such as ClCH2CH2C1 being produced as by-products, and the method has not yet reached the level of a laboratory.
it)高温燃焼:
メタン、LPGなどと一緒に燃焼させ、二酸化炭素と塩
化水素として回収する方法であるが、1、.000℃と
いう高温での燃焼であり、炉材に煉瓦等を用いた特殊な
構造の炉が必要となる。また回収によって得られる二酸
化炭素と塩化水素は、いずれも別の方法で安価に大量に
得られる付加価値の低いものである。it) High-temperature combustion: This is a method in which methane, LPG, etc. are burned together and recovered as carbon dioxide and hydrogen chloride. It burns at a high temperature of 1,000 degrees Celsius, and requires a specially constructed furnace using bricks or the like as the furnace material. Furthermore, the carbon dioxide and hydrogen chloride obtained by recovery have low added value and can be obtained in large quantities at low cost using other methods.
塩化メチル(CH3C1)の工業的製法にはメタンの直
接塩素化以外にメタノールと塩化水素の反応が知られて
いる。この反応は液相では反応速度が遅いので、両原料
の利用率を高めることが難しいが、気相触媒下ではそれ
が可能となる。In addition to direct chlorination of methane, a reaction between methanol and hydrogen chloride is known as an industrial method for producing methyl chloride (CH3C1). Since the reaction rate of this reaction is slow in the liquid phase, it is difficult to increase the utilization rate of both raw materials, but it is possible under a gas phase catalyst.
この気相触媒としては、A1□O3、軽石、カオリン、
ゼオライト、活性炭等の担体に、周規律表のIB族(C
11)、■Δ族(Mg、 Ca、 Ba)、II B族
(z「1、Cd、 Hg)、VIB族(Cr、 Mo)
、■B族(Mn)、■族(Fe、 Co、 Ni)の元
素のハロゲン化物または酸化物を担持させた触媒が知ら
れている。This gas phase catalyst includes A1□O3, pumice, kaolin,
IB group (C
11), ■Δ group (Mg, Ca, Ba), II B group (z"1, Cd, Hg), VIB group (Cr, Mo)
Catalysts are known in which halides or oxides of elements of Group 1B (Mn) and Group 2 (Fe, Co, Ni) are supported.
メタノールのエステル化反応だけであれば、」二記の触
媒能について極端な差は認められないが、メタノールと
四塩化炭素との反応では四塩化炭素の加水分解反応の進
行が前提となり、過去において塩化メチルにまで高収率
で高速に転化させた例は無い。In the case of just the esterification reaction of methanol, there is no extreme difference in the catalytic ability of the above two, but in the reaction of methanol and carbon tetrachloride, it is assumed that the hydrolysis reaction of carbon tetrachloride proceeds, and in the past There is no example of high-yield, high-speed conversion to methyl chloride.
また、特開昭56−167628号および同57−16
5330号公報には、ZnCl2担持のAl2O,触媒
系でCH2−C1□、CHCl、、CCl4を含んだ塩
化水素ガスとメタノールとを反応させる記述があるが、
これらは塩素化反応器から出た直後の塩化水素に、生成
物であるクロロメタンを含むガスから塩化水素を分離せ
ずに直接メタノールを反応させて、CH3−C1を得る
ことを目的とするものであるから、同伴する一方の製品
であるCH2Cl□、CHCl3、CCl4が分解しな
いことを前提としている。Also, JP-A-56-167628 and JP-A No. 57-16
Publication No. 5330 has a description of reacting hydrogen chloride gas containing CH2-C1□, CHCl, and CCl4 with methanol using a ZnCl2-supported Al2O catalyst system.
These products aim to obtain CH3-C1 by directly reacting hydrogen chloride immediately after leaving the chlorination reactor with methanol without separating hydrogen chloride from the gas containing chloromethane, which is the product. Therefore, it is assumed that one of the accompanying products, CH2Cl□, CHCl3, and CCl4, does not decompose.
(製品クロロメタン)
特開昭56−167628号に記載の技術は、CHCl
3、CCl4の分解による炭素析出がメタノールと塩化
水素の反応触媒であるZ n Cl□/Al□0.の不
活性化を防ぐことを目的とし、また特開昭57−165
330号は、その実施例でZn’C1□/Al□03触
媒では同伴するCH2Cl□、CHCl、、CCl4が
全く分解しないことを示している。(Product chloromethane) The technology described in JP-A-56-167628 uses CHCl
3. Z n Cl□/Al□0. Carbon precipitation due to decomposition of CCl4 is a reaction catalyst between methanol and hydrogen chloride. The purpose is to prevent the inactivation of
No. 330 shows in its examples that entrained CH2Cl□, CHCl, and CCl4 are not decomposed at all with the Zn'C1□/Al□03 catalyst.
(発明が解決しようとする課題)
本発明の目的は、四塩化炭素を高収率で高速にメタノー
ルと反応させて経済的に有用な物質に転換する方法を提
供しようとするものである。(Problems to be Solved by the Invention) An object of the present invention is to provide a method for converting carbon tetrachloride into an economically useful substance by reacting it with methanol in high yield and at high speed.
(課題を解決するための手段)
本発明による四塩化炭素の処理方法は、周規律表のIB
族、IIA族、IIB族、VIB族、■B族、■族の内
の少なくとも1種の元素のハロゲン化物または酸化物を
、必要に応じ塩化水素の共存下で。(Means for Solving the Problems) The method for treating carbon tetrachloride according to the present invention is based on IB of the periodic table.
A halide or oxide of at least one element from Group IIA, Group IIB, Group VIB, Group 1B, Group 2, optionally in the coexistence of hydrogen chloride.
活性炭に担持させた触媒を用い、メタノールと四塩化炭
素とを気相で反応させることを特徴とするものである。This method is characterized by reacting methanol and carbon tetrachloride in the gas phase using a catalyst supported on activated carbon.
この発明を一括した反応式で示すと、
4、CH,○I(+CC14)4CH,C1+2H20
+C○、=・(1)となるが、この未反応は
CCI、+2I−I20−)CO2+4HC1・・・・
・・(2)(四塩化炭素の加水分解反応)
4CII、○H+4HC1−→4CH,C1+2H20
・・・・・・(3)(メタノールのエステル化反応)
となる。This invention is shown in a comprehensive reaction formula as follows: 4, CH, ○I (+CC14)4CH, C1+2H20
+C○, =・(1), but this unreacted portion is CCI, +2I-I20-)CO2+4HC1...
...(2) (hydrolysis reaction of carbon tetrachloride) 4CII, ○H+4HC1-→4CH, C1+2H20
...(3) (Esterification reaction of methanol)
これをさらに詳細に説明すると、本発明で用いられる触
媒としては、周規律表のIB族(Cu)、nA族(Mg
、 Ca、 Ba)、IIB族(Zn、Cd、Hg)、
VIB族(Cr、 Mo)、■B族(M n )、■族
(Fe、 Co、 Ni)の金属のハロゲン化物または
酸化物を、活性炭に担持させたものであるが、これらの
内では反応速度の速い■族の金属のハロゲン化物または
酸化物、とりわけ塩化亜鉛が好ましい。To explain this in more detail, the catalysts used in the present invention include group IB (Cu) of the periodic table, group nA (Mg
, Ca, Ba), Group IIB (Zn, Cd, Hg),
Activated carbon supports halides or oxides of metals from Group VIB (Cr, Mo), Group ■B (M n ), Group II (Fe, Co, Ni), but there is no reaction within them. Preferred are halides or oxides of metals of Group 1, which have high kinetics, especially zinc chloride.
本発明では担体に活性炭を使用したことで、上記の全体
の反応(1)での速度を支配する、未反応(2)が際立
って促進され、高収率で高速度のメタノールと四塩化炭
素との反応が可能となった。In the present invention, by using activated carbon as a carrier, unreacted (2), which dominates the rate of the above-mentioned overall reaction (1), is significantly promoted, and methanol and carbon tetrachloride are produced in high yield and at a high rate. It became possible to react with
担体の種類による反応速度°の違いは、次表に示すよう
に比表面積に起因する。The difference in reaction rate depending on the type of carrier is due to the specific surface area, as shown in the table below.
担体の種類 比表面−積(耐72)活性炭 7
00〜1,500
アルミナ 150〜350
シ リ カ 200〜 60
0活性白土 100〜250
合成ゼオライト 400〜750これより活性炭
は他の担体に比べ比表面積が大きく、反応物に対し大面
積の活性表面を提供している。Type of carrier Specific surface area (resistance 72) Activated carbon 7
00~1,500 Alumina 150~350 Silica 200~60
0 Activated clay 100-250 Synthetic zeolite 400-750 Activated carbon has a larger specific surface area than other carriers and provides a large area of active surface for reactants.
この反応は150℃位から始まるが、250℃位までが
好ましい。高温になれば反応速度はさらに増すが、25
0℃を超えると腐食性が増し恒久材質の選定が困難にな
る。反応圧力は加圧になれば、それだけ容積が少なくて
済むが、腐食を考慮した強度から恒久材質の選定がやは
り困難となり、結局大気圧から5 kg/a+?G位ま
でが好ましい。以上の条件下では、滞留時間10〜20
秒で四塩化炭素の95%以上かメタノールと反応し、そ
のほぼ全量が塩化メチルに転換される。This reaction starts at about 150°C, but preferably up to about 250°C. The reaction rate increases further at higher temperatures, but 25
If the temperature exceeds 0°C, corrosivity increases and it becomes difficult to select a permanent material. If the reaction pressure is increased, the volume can be reduced accordingly, but it becomes difficult to select a permanent material due to its strength considering corrosion, and in the end, it is reduced from atmospheric pressure to 5 kg/a+? Preferably up to G position. Under the above conditions, the residence time is 10-20
In seconds, more than 95% of carbon tetrachloride reacts with methanol, and almost all of it is converted to methyl chloride.
工業的プロセスを考える場合には、過剰のメタノールと
それに見合う量の塩化水素の同時添加が好ましい。四塩
化炭素を副生ずるメタンまたは塩化メチルの塩素化プラ
ントでは、反応の副生物である塩化水素をメタノールと
反応させ、塩化メチルに転化する工程を付属させること
が経済的に有利であり、その際本発明を同一の反応器で
行なえば有害な四塩化炭素を排出しないクロロメタンの
製造法が可能となる。その際の原料比は、であることが
好ましい。ここでモル比が1.01未満では、メタノー
ルの未反応物が増え、かつ[2CI−I30H−→(C
H3)20+H20〕の副反応によるジメチルエーテル
が増加する。モル比の上限の1.30は臨界値ではない
が、この比が増すほど塩素分の塩化メチルへの転換が非
効率的となり、塩化水素の形態での未反応物が増加する
。When considering an industrial process, simultaneous addition of an excess of methanol and a commensurate amount of hydrogen chloride is preferred. In a methane or methyl chloride chlorination plant that produces carbon tetrachloride as a by-product, it is economically advantageous to add a step in which hydrogen chloride, a by-product of the reaction, is reacted with methanol and converted to methyl chloride. If the present invention is carried out in the same reactor, it becomes possible to produce chloromethane without emitting harmful carbon tetrachloride. The raw material ratio at that time is preferably as follows. Here, if the molar ratio is less than 1.01, the amount of unreacted methanol increases and [2CI-I30H-→(C
H3)20+H20] dimethyl ether increases due to the side reaction. Although the upper limit of the molar ratio of 1.30 is not a critical value, as this ratio increases, the conversion of chlorine to methyl chloride becomes less efficient, and unreacted substances in the form of hydrogen chloride increase.
メタンまたは塩化メチルの塩素化工程からJJJl:出
される塩化水素は通常水に吸収されて再利用される場合
が多いので、本反応において四塩化炭素、メタノール、
塩化水素の他に、水が存在することは何ら差し支えない
。JJJl: Hydrogen chloride released from the chlorination process of methane or methyl chloride is usually absorbed by water and recycled, so in this reaction carbon tetrachloride, methanol,
There is no problem with the presence of water in addition to hydrogen chloride.
また、本反応で副生ずる二酸化炭素は水酸化ナトリウム
、炭酸アルカリ、エタノールアミンによる吸収等の常法
によって塩化メチルから分離除去される。Further, carbon dioxide produced as a by-product in this reaction is separated and removed from methyl chloride by a conventional method such as absorption with sodium hydroxide, alkali carbonate, or ethanolamine.
(実施例)
以下、本発明の具体的態様を実施例および比較例により
説明するが、本発明はこれに限定されるものではない。(Examples) Hereinafter, specific aspects of the present invention will be explained using Examples and Comparative Examples, but the present invention is not limited thereto.
実施例 1゜
比表面積が1,500イ/gで、4冊φX 6 mm
Hの粒状活性炭に塩化亜鉛を30重量%担持させた触媒
を内径45 noφのガラス管に450mmの長さに充
填し、200’Cに加熱した。この反応管へ、四塩化炭
素=56.26/時(0,365モル/時)、メタノー
ル: 130.9g/時(/!、091モル/時)、塩
化水素: 111.Og/時(3,042モル/時)を
ガス状で供給し、200°Cに保ちつつ100時間反応
させた。反応生成ガスは凝縮物をコンデンサーで水冷分
離した後、氷冷水中でバブリングし、その後ガスメータ
ーで未凝縮、未トラップのガス量をatJlだ。凝縮物
、氷冷水、ガスメーター人1]ガスについて、以下の分
析を行なった。Example 1゜ Specific surface area is 1,500 I/g, 4 books φX 6 mm
A glass tube having an inner diameter of 45 no.phi. was filled with a catalyst having a length of 450 mm and heated to 200'C. To this reaction tube, carbon tetrachloride = 56.26/hour (0,365 mol/hour), methanol: 130.9 g/hour (/!, 091 mol/hour), hydrogen chloride: 111. Og/hour (3,042 mol/hour) was supplied in gaseous form, and the reaction was carried out for 100 hours while maintaining the temperature at 200°C. After the reaction product gas is separated by water cooling in a condenser, it is bubbled in ice-cold water, and then the amount of uncondensed and untrapped gas is measured with a gas meter. Condensate, ice-cold water, gas meter person 1] The following analysis was performed on the gas.
凝縮物:水、塩化水素、メタノール、塩素化メタン類の
組成および重量。Condensate: composition and weight of water, hydrogen chloride, methanol, chlorinated methane.
氷冷水:塩化水素、メタノール、塩素化メタン類の組成
および重量増加分。Ice-cold water: Composition and weight increase of hydrogen chloride, methanol, and chlorinated methane.
ガスメーター人ロガス: メタノール、塩素化メタン類、−酸化 炭素、二酸化炭素、ジメチルエーテル の組成。Gas meter person logas: Methanol, chlorinated methane, -oxidation carbon, carbon dioxide, dimethyl ether composition.
3種のサンプルの組成、重量、容量を合算した生成ガス
量は、以下の通りであった。The amount of generated gas, which is the sum of the composition, weight, and volume of the three types of samples, was as follows.
塩化メチル: 4.080モルフ時
二酸化炭素: 0.355
メタノール: 0.011
塩化水素: 0.382
水 : 4.080・
四塩化炭素: 0,010
なお、ジメチルエーテルに関しては定量不能程度のごく
微量が検出されたが、CH2Cl□、CH−C1,、C
Oは全く検出されず、また100時間の間、ガスメータ
ーでの発生ガス量は減少することなく反応が進行した。Methyl chloride: 4.080 Morph carbon dioxide: 0.355 Methanol: 0.011 Hydrogen chloride: 0.382 Water: 4.080 Carbon tetrachloride: 0,010 As for dimethyl ether, there is a very small amount that cannot be quantified. Although detected, CH2Cl□, CH-C1,,C
No O was detected at all, and the reaction proceeded for 100 hours without decreasing the amount of gas generated by the gas meter.
四塩化炭素の反応率: 97.2%
メタノールの : 99.7%
実施例 2゜
反応管への供給ガスを、四塩化炭素: 173.3g/
時(1,125モル/時)、メタノール: 130.9
gZ時(4゜091モル/時)としたほかは、実施例
】−と同様に反応させ、生成ガスを同様に分析した。Reaction rate of carbon tetrachloride: 97.2% Methanol: 99.7% Example 2゜The gas supplied to the reaction tube was reduced to 173.3 g/g of carbon tetrachloride.
hour (1,125 mol/hour), methanol: 130.9
The reaction was carried out in the same manner as in Example - except that the reaction time was changed to gZ hour (4°091 mol/hour), and the resulting gas was analyzed in the same manner.
3種のサンプルの組成、重量、容量を合算した生成ガス
量は2以下の通りであった。The amount of generated gas, which is the sum of the composition, weight, and volume of the three types of samples, was 2 or less.
塩化メチル: 4.058モル/時
−酸化炭素: 1.09]
メタノール: 0.033
塩化水素: 0,306
水 : 4.058
四塩化炭素: 0,034
なお、ジメチルエーテルは定量不能程度のごく微量を検
出したが、CH2Cl2、CHCl3、COは全く検出
されず、また100時間の間、ガスメーターでの発生ガ
ス量は減少することなく反応が進行した。Methyl chloride: 4.058 mol/hour - carbon oxide: 1.09] Methanol: 0.033 Hydrogen chloride: 0,306 Water: 4.058 Carbon tetrachloride: 0,034 Note that dimethyl ether is present in very small amounts that cannot be quantified. was detected, but CH2Cl2, CHCl3, and CO were not detected at all, and the reaction proceeded for 100 hours without any decrease in the amount of gas generated as measured by the gas meter.
四塩化炭素の反応率797.0%
メタノールの : 99.2%
比較例
担体として粒状活性炭に代えて比表面積が150m2/
gで、4〜6IIITlの球状のAl□O,としたほか
は実施例と同じ条件で反応を行なった。50時間を経過
するあたりからガスメーターでの発生ガス量が減少し始
め、60時時間上は極端に低下したので反応を停止した
。それまでの間に分析した結果はつぎの通りであった。Reaction rate of carbon tetrachloride: 797.0% Methanol: 99.2% Comparative example Instead of using granular activated carbon as a carrier, a specific surface area of 150 m2/
The reaction was carried out under the same conditions as in the example except that spherical Al□O of 4 to 6 IIITl was used. After about 50 hours, the amount of gas generated by the gas meter began to decrease, and after 60 hours, the reaction was stopped because it was extremely low. The results of the analysis up to that point were as follows.
塩 化 メ チ ル: 2.586モル/時二酸化炭素
: 0.274
メ タ ノ − ル : 1.501ジ
メチルエーテル:’0.002
塩 化 水 素: 1.560
水 : 2.586四塩化炭素:
0.089
なお、CH2Cl□、CHCL、COは実施例と同様全
く検出されなかった。Methyl chloride: 2.586 mol/hour Carbon dioxide: 0.274 Methanol: 1.501 Dimethyl ether: 0.002 Hydrogen chloride: 1.560 Water: 2.586 Carbon tetrachloride:
0.089 Note that CH2Cl□, CHCL, and CO were not detected at all as in the example.
四塩化炭素の反応率: 75.0%
メタノールの :63.311
(発明の効果)
本発明によれば、150〜200℃という比較的低温で
10〜20秒という極めて短時間で、四塩化炭素の95
%以上という殆ど全量をメタノールと反応させることが
でき、メタノールのほぼ全量を有用な塩化メチルに転換
することが可能となる。Reaction rate of carbon tetrachloride: 75.0% Reaction rate of methanol: 63.311 (Effects of the invention) According to the present invention, carbon tetrachloride can be converted into carbon tetrachloride in an extremely short time of 10 to 20 seconds at a relatively low temperature of 150 to 200°C. 95
% or more can be reacted with methanol, making it possible to convert almost the entire amount of methanol into useful methyl chloride.
このため、本発明は単なる有害物の除害処理という意味
に止まらず、塩化メチルの有力な製造手段を提供するも
のである。Therefore, the present invention is not limited to a mere abatement treatment of harmful substances, but also provides a powerful means for producing methyl chloride.
Claims (1)
IB族、VIII族の内の少なくとも1種の元素のハロゲン
化物または酸化物を活性炭に担持させた触媒を用い、メ
タノールと四塩化炭素とを気相で反応させることを特徴
とする四塩化炭素の処理方法。 2、メタノールと四塩化炭素との反応を、塩化水素の共
存下で行なうことを特徴とする請求項1記載の四塩化炭
素の処理方法。[Claims] 1. Groups IB, IIA, IIB, VIB and VI of the Periodic Table
Carbon tetrachloride, which is characterized by reacting methanol and carbon tetrachloride in a gas phase using a catalyst in which a halide or oxide of at least one element from Group IB and Group VIII is supported on activated carbon. Processing method. 2. The method for treating carbon tetrachloride according to claim 1, characterized in that the reaction between methanol and carbon tetrachloride is carried out in the coexistence of hydrogen chloride.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339095A JPH0659331B2 (en) | 1989-12-26 | 1989-12-26 | Treatment method of carbon tetrachloride |
DE1990607262 DE69007262T2 (en) | 1989-12-26 | 1990-12-21 | Process for the production of methyl chloride. |
EP19900125164 EP0435210B1 (en) | 1989-12-26 | 1990-12-21 | Method for the preparation of methyl chloride |
US07/884,272 US5227550A (en) | 1989-12-26 | 1992-05-13 | Method for preparation of methyl chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339095A JPH0659331B2 (en) | 1989-12-26 | 1989-12-26 | Treatment method of carbon tetrachloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03195567A true JPH03195567A (en) | 1991-08-27 |
JPH0659331B2 JPH0659331B2 (en) | 1994-08-10 |
Family
ID=18324216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1339095A Expired - Lifetime JPH0659331B2 (en) | 1989-12-26 | 1989-12-26 | Treatment method of carbon tetrachloride |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0435210B1 (en) |
JP (1) | JPH0659331B2 (en) |
DE (1) | DE69007262T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040011107A (en) * | 2002-07-27 | 2004-02-05 | 임유훈 | Carbon chloride |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0501501B1 (en) * | 1991-03-01 | 1995-07-19 | Shin-Etsu Chemical Co., Ltd. | Method for the preparation of methyl chloride from carbon tetrachloride and methyl alcohol |
FR2720740B1 (en) | 1994-06-06 | 1996-07-19 | Atochem Elf Sa | Carbon tetrachloride alcoholysis process. |
JPH08141108A (en) * | 1994-11-18 | 1996-06-04 | Komatsu Ltd | Catalyst decomposing method for aliphatic halide |
MY139695A (en) | 1996-05-21 | 2009-10-30 | Panasonic Corp | Thin film, method and apparatus for forming the same, and electronic component incorporating the same |
RU2298542C1 (en) * | 2005-12-29 | 2007-05-10 | Открытое акционерное общество "Химпром" | Method of processing carbon tetrachloride into methyl chloride |
RU2379278C1 (en) * | 2008-08-13 | 2010-01-20 | Общество с ограниченной ответственностью "Синтез-2" | Method of converting organochloride wastes to methyl chloride |
CN101693643B (en) * | 2009-10-26 | 2013-01-16 | 江苏工业学院 | Novel process for catalytic conversion of tetrachloromethane on non-hydrogen condition |
CN102633591B (en) * | 2011-11-03 | 2014-10-01 | 常州大学 | A kind of technique of catalytic conversion of carbon tetrachloride |
-
1989
- 1989-12-26 JP JP1339095A patent/JPH0659331B2/en not_active Expired - Lifetime
-
1990
- 1990-12-21 EP EP19900125164 patent/EP0435210B1/en not_active Expired - Lifetime
- 1990-12-21 DE DE1990607262 patent/DE69007262T2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040011107A (en) * | 2002-07-27 | 2004-02-05 | 임유훈 | Carbon chloride |
Also Published As
Publication number | Publication date |
---|---|
EP0435210A3 (en) | 1991-10-23 |
JPH0659331B2 (en) | 1994-08-10 |
EP0435210B1 (en) | 1994-03-09 |
DE69007262T2 (en) | 1994-08-11 |
DE69007262D1 (en) | 1994-04-14 |
EP0435210A2 (en) | 1991-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5811603A (en) | Gas phase fluorination of 1230za | |
AU702786B2 (en) | Process for the production of difluoromethane | |
ES2660406T3 (en) | Tetrafluoropropene preparation process | |
US3427359A (en) | Oxychlorination of hydrocarbons and a catalyst therefor | |
JP7386233B2 (en) | Process for producing trifluoroiodomethane | |
US4145368A (en) | Process for the production of 1,1,1-trifluoro-2,2-dichloroethane | |
KR20100021368A (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JPH0427218B2 (en) | ||
US3591646A (en) | Process for obtaining halogenated,fluorine containing organic compounds | |
JPH03195567A (en) | Processing method for carbon tetrachloride | |
US5097081A (en) | Hydrodechlorination of higher chloromethanes | |
US2615925A (en) | Preparation of olefinic compounds | |
KR100618465B1 (en) | Method for preparing 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane | |
US3865885A (en) | Catalytic chlorofluorination of isopropyl fluoride to 1,1,2-trichlorotrifluoropropene-1 | |
US4155881A (en) | Activation of chromic fluoride catalyst with hydrogen chloride and chlorine | |
US5227550A (en) | Method for preparation of methyl chloride | |
KR20080008316A (en) | Synthesis of Fluorinated Ethers | |
JP4727830B2 (en) | Process for producing 1,1,1-trifluoro-2,2-dichloroethane | |
US4002695A (en) | Process for making tetrachloroethylene | |
US4115323A (en) | Catalyst and process for production of VCM | |
EP0007064B1 (en) | Purification of ethylene dichloride | |
FI66829B (en) | FOERFARANDE FOER FRAMSTAELLNING AV VINYLKLORIDMONOMER SAMT KATALYT FOER UTFOERANDE AV FOERFARANDET | |
EP0402652B1 (en) | Gas phase catalytic process for production of vinylidene fluoride | |
JPH01207249A (en) | Method for producing fluorine-containing olefin | |
US3699161A (en) | Process for the production of thiophosgene |