JPH0319187A - Bloch line memory device - Google Patents
Bloch line memory deviceInfo
- Publication number
- JPH0319187A JPH0319187A JP1153840A JP15384089A JPH0319187A JP H0319187 A JPH0319187 A JP H0319187A JP 1153840 A JP1153840 A JP 1153840A JP 15384089 A JP15384089 A JP 15384089A JP H0319187 A JPH0319187 A JP H0319187A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- magnetic anisotropy
- bloch line
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 70
- 230000005408 paramagnetism Effects 0.000 claims abstract description 11
- 230000001747 exhibiting effect Effects 0.000 claims description 18
- 238000003860 storage Methods 0.000 claims description 6
- 239000002223 garnet Substances 0.000 abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 5
- 230000006641 stabilisation Effects 0.000 abstract description 4
- 238000011105 stabilization Methods 0.000 abstract description 4
- 239000004020 conductor Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 11
- 230000005298 paramagnetic effect Effects 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 229910052695 Americium Inorganic materials 0.000 description 1
- 229910018979 CoPt Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- -1 GGG Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は垂直ブロッホライン対を記憶情報単位として用
いた,コンピュータ用外部メモリ、ファイル装置用メモ
リ等に有用なブロッホラインデバイスに関し、特に垂直
ブロッホライン対の安定化に関する.
〔従来技術〕
高密度記憶素子の開発に伴って,IEEE Trans
.Magn.MAG 19,1838(1983)、特
開昭59−101092等に発表されたブロッホライン
メモリデバイスが記憶容量の膨大さ及び不揮発性である
ことから、近年注目されている。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a Bloch line device that uses vertical Bloch line pairs as storage information units and is useful for external memory for computers, memory for file devices, etc. Regarding stabilization of line pairs. [Prior art] With the development of high-density memory elements, IEEE Trans
.. Magn. Bloch line memory devices announced in MAG 19, 1838 (1983), Japanese Patent Laid-Open No. 59-101092, etc. have attracted attention in recent years because of their enormous storage capacity and non-volatility.
ブロッホラインメモリデバイスは、情報記憶部をバブル
ドメインを細長く伸ばしたストライプドメイン周辺磁壁
で構成し、その中に垂直ブロッホライン対の有無の形で
情報を記憶させるというもので、このストライプドメイ
ンの磁壁にはブロッホライン対が記憶情報単位として規
則正しく存在し、例えばブロッホライン対がある場合は
“1″、ない場合は“O”に対応するようになっている
.またこのブロッホライン対は書込み又は読出し時、垂
直パルス磁界を印加することにより順次隣りのポテンシ
ャルウェルに転送されるようになっている.
このようなブロッホラインメモリデバイスの主要構成部
は例えば第1図に示すように一般にGGG等の希土類ガ
ーネット単結晶からなる基板1上にエビタキシャル成長
により(YSmLuCa).(FaGe)so.=.
(YSmTm),(FeGa),O,,等からなる磁性
ガーネット膜2を設け、更にその上にストライブドメイ
ンを安定化させるためにGdCo,TbFe,GdFe
,GdFeCo,TbFeCo等の希土類金属〜遷移金
属系アモルファス合金膜又はCoPt , CoCr等
の多結晶膜等からなる垂直磁化膜3を設けたものである
.また必要に応じて磁性膜2と垂直磁化膜3との間には
Si3N, , Sin, , SiO等の絶縁膜が設
けられる.また図示していないが、ストライプドメイン
が平行に規則正しく並ぶように垂直磁化膜3は平行に規
則正しくパターニングしてあり、この垂直磁化膜に対し
て垂直方向に、絶縁膜を介して書込み・読出し用のコン
ダクターなども設けてある.デバイス全体にはバイアス
磁界Hヨが印加されており、バイアス磁界H8と反対方
向に飽和された垂直磁化膜の周りにストライブドメイン
4が安定化される.垂直磁化膜パターンの代りにパーマ
ロイ等の軟磁性膜パターンを用いてもよい.垂直磁化膜
パターンでも軟磁性膜パターンでもそこからの洩えい磁
界によりストライブドメインは安定化される.
ストライプドメインの安定化方法としてはその他、バブ
ル用磁性膜に溝を設けて,この溝の段差部近傍にできる
反磁界により安定化する方法、ループ状のコンダクター
をバブル用磁性膜の上に設けてコンダクターに電流を流
してループエリア内に垂直磁界を発生させ安定化する方
法などがある.第2図は磁性膜に溝を設けた例で,この
溝(基板まで達する溝でもよい.)は磁区(ドメイン)
巾の1/2程度の巾で所定位置(ストライプドメインが
安定化する位!)に設けられ、バイアス磁界H8の印加
により溝の周りにストライプドメイン4が安定化される
.しかし以上のようなストライブドメイン安定化法はバ
ブル用磁性膜上にパターンを設けたり、磁性膜自体を加
工するため、その上に更にコンダクターなどを設けた場
合,段差が生じて膜厚方向の形状の影響を受け、このた
め平坦化プロセスが必要となったり、パターニングされ
た膜をバブル用磁性膜上に設ける際、磁性膜との間にス
トレスが生じ磁壁が引掛かったりして磁壁の場所によっ
てストライプドメインの安定性が異なり、またこれに伴
って安定した垂直ブロッホラインの転送ができない等の
問題を有していた.〔発明が解決しようとする課題〕
本発明の目的は従来技術における以上のような問題を解
消し、平坦化プロセスを必要とせずに、磁性膜のストレ
スや溝の形状等による磁壁部のポテンシャルウェルの不
均一を回避してストライプドメインの正確で,且つ信頼
性の高い安定化、従ってブロッホライン対の安定化した
転送が可能なブロッホラインメモリデバイスを提供する
ことである.
〔発明の構成・動作〕
本発明のブロッホラインメモリデバイスはストライプド
メインの磁壁に垂直ブロッホライン対を記憶情報単位と
して記憶する垂直磁気異方性を示す磁性膜を有するブロ
ッホラインメモリデバイスにおいて、磁性膜に一定間隔
で並列する垂直以外の磁気異方性又はパラ磁性を示す領
域を設けることによりストライプドメインを垂直磁気異
方性を示す領域内で安定化させたことを特徴とするもの
である.
このように本発明デバイスは従来のような平坦化プロセ
スを用いずに、バブル用磁性膜内でストライプドメイン
を安定化させたものである.本発明のブロッホラインメ
モリデバイスを図面によって説明すると、第3〜5図は
本発明デバイスの主要構或部を示す断面図であって、第
3図及び第4図の場合は垂直磁気異方性を示す単結晶磁
性ガーネット[112内にパラ磁性を示すアモルファス
領域2bを一定間隔で並列させて設けることにより、第
3図の場合はバラ磁性領域2bの周囲に(この周囲は垂
直磁気異方性領域2a内にある.),また第4図の場合
は2つのパラ磁性領域2b間にストライプドメイン4を
安定化させたものであり、また第5図の場合?垂直磁気
異方性を示す希土類金属〜遷移金属系アモルファス磁性
膜2に垂直以外(例えば面内)の磁気異方性(以下異磁
気異方性という)を示す帯状の多結晶領域2bを設ける
ことにより、2つの異磁気異方性領域2b間にストライ
プドメイン4を安定化させたものである.以上のような
本発明のデバイスを作るには一般に次の2通りの方法が
ある.一つはGGG等の希土類ガーネット単結晶、石英
、ガラス,プラスチック等の非磁性基板面に、パラ磁性
又は異磁気異方性を示す領域に担当する部分を除いてフ
ォトレジストをコートし、その上からイオン照射を行な
った後、フォトレジストを除去し、こうして処理した基
板上に(YSmLuCa). (FaGe)sO.t、
(YSmLuLu), (FaGe),01,、(YS
mTm), (FeGe),01■等の磁性ガーネット
材をRFマグネトロンスパッタ法,LPE法(液相エビ
タキシャル法)等の或膜法により成膜して0.1〜5μ
鵬厚程度の磁性ガーネット膜を形成する方法である.こ
の場合,基板のイオン照射部分はパラ磁性を示すアモル
ファス構造の膜(領域)が形成され、イオン照射を受け
ない部分ではエビタキシャル成長によって保磁力Heの
小さい垂直磁気異方性を示す単結晶構造のII(領域)
が形成される.他の一つの方法は前記無処理の基板上に
GdCo.TbFe. GdFe. GdFeCo.
TbFeCo等の希土類金属〜遷移金属系アモルファス
合金をRFマグネトロンスパッタ法等の成膜法により成
膜して0.1〜5μ鵬厚程度の垂直磁性異方性を示す希
土類金属〜遷移金属系アモルファス合金磁性膜を形成し
た後、その上から異磁気異方性を示す領域にパターン状
にレーザー光を照射、アニールする方法である.この場
合、磁性膜のレーザー光照射部分では多結晶構造になり
、面内磁気異方性を示す領域が形威され、一方,レーザ
ー光照射を受けない部分にはアモルファス構造の垂直磁
気異方性を示す膜(領域)がそのまN残存する.以上の
2方法以外にも異磁気異方性又はパラ磁性領域の形成は
可能である.例えば基板表面へのイオン注入によるパラ
磁性領域または異磁気異方性領域の作製やアモルファス
垂直磁化膜へのイオンビーム照射または電子ビーム照射
による異磁気異方性領域の作製などが可能である.本発
明のデバイスにはその他,第6〜7図に示すようにスト
ライプドメイン4の先端部近傍の磁性膜上に0.1〜1
μ鳳厚程度の絶縁層(Si, NいSin2, SiO
等よりなる)(図示せず)を介して夫々0.1〜1μ■
厚程度のバブル発生用コンダクター5、ブロッホライン
制御用コンダクター6及びチョッピング用コンダクター
7 (Au,Ag, Am、Cu等からなる)がパター
ニングにより配設されている.なお2bはガイド用パラ
磁性領域である.
以下に本発明デバイスの製造実施例を示す.実施例1
本例は第3図のようにバラ磁性を示す領域2bの周囲に
ストライプドメインを安定化した例である.
Gd2Gab01xよりなる基板に、第6図に示すよう
なパラ磁性を示す領域2bに相当する部分を除いてフォ
トレジストをコートし、下記条件でイオン照射を行なう
.
ガ ス 圧: A r ,5 X10−’Torr
RF放電々力: 20011, 13.56MHz照射
時間:lO■in
次にこうして処理した基板上にターゲットとして100
■φの(YSmTm), (FeGe)s01,をRF
マグネトロンスバッタ法により下記条件で成膜して約2
μ鵬厚の磁性ガーネット膜を形成した。A Bloch line memory device consists of an information storage section consisting of a domain wall around a striped domain, which is an elongated bubble domain, and stores information in the form of vertical Bloch line pairs in the domain wall. Bloch line pairs exist regularly as storage information units, and for example, if there is a Bloch line pair, it corresponds to "1", and if there is no Bloch line pair, it corresponds to "O". Furthermore, during writing or reading, this Bloch line pair is sequentially transferred to adjacent potential wells by applying a vertical pulsed magnetic field. The main components of such a Bloch line memory device are generally formed by epitaxial growth (YSmLuCa) on a substrate 1 made of a rare earth garnet single crystal such as GGG, as shown in FIG. (FaGe) so. =.
A magnetic garnet film 2 made of (YSmTm), (FeGa), O, etc. is provided, and on top of that, GdCo, TbFe, GdFe is added to stabilize the stripe domain.
, GdFeCo, TbFeCo, etc., or a polycrystalline film such as CoPt, CoCr, etc., is provided. Further, an insulating film of Si3N, , Sin, SiO, etc. is provided between the magnetic film 2 and the perpendicularly magnetized film 3 as necessary. Although not shown, the perpendicular magnetization film 3 is regularly patterned in parallel so that the striped domains are regularly arranged in parallel. A conductor is also provided. A bias magnetic field H8 is applied to the entire device, and the stripe domain 4 is stabilized around the perpendicular magnetization film saturated in the direction opposite to the bias magnetic field H8. A soft magnetic film pattern such as permalloy may be used instead of the perpendicular magnetization film pattern. Strive domains are stabilized by the leakage magnetic field from both perpendicular magnetization film patterns and soft magnetic film patterns. Other methods for stabilizing striped domains include providing a groove in the bubble magnetic film and stabilizing it by the demagnetizing field generated near the stepped portion of the groove, and placing a loop-shaped conductor on the bubble magnetic film. There are methods to stabilize the magnetic field by passing current through the conductor and generating a vertical magnetic field within the loop area. Figure 2 shows an example in which a groove is provided in the magnetic film.
It is provided at a predetermined position (to the extent that the stripe domain is stabilized!) with a width of about 1/2 of the groove, and the stripe domain 4 is stabilized around the groove by applying a bias magnetic field H8. However, in the above-mentioned method of stabilizing a stripe domain, a pattern is provided on the magnetic film for bubbles or the magnetic film itself is processed, so if a conductor or the like is further provided on top of the pattern, a step may occur in the film thickness direction. Due to the influence of the shape, a flattening process is required, and when a patterned film is placed on the magnetic film for bubbles, stress is generated between the magnetic film and the domain wall, causing the domain wall to become stuck. The stability of the stripe domain differs depending on the method, and this causes problems such as the inability to transfer stable vertical Bloch lines. [Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems in the prior art, and to eliminate potential wells in the domain wall due to the stress of the magnetic film, the shape of the groove, etc., without the need for a planarization process. It is an object of the present invention to provide a Bloch line memory device capable of accurate and reliable stabilization of stripe domains while avoiding non-uniformity of Bloch lines, and thus capable of stable transfer of Bloch line pairs. [Structure/Operation of the Invention] The Bloch line memory device of the present invention has a magnetic film exhibiting perpendicular magnetic anisotropy that stores perpendicular Bloch line pairs as storage information units on the domain walls of striped domains. This is characterized by stabilizing the stripe domain within the region exhibiting perpendicular magnetic anisotropy by providing regions exhibiting magnetic anisotropy or paramagnetism other than perpendicular to each other at regular intervals. In this way, the device of the present invention stabilizes the stripe domains within the bubble magnetic film without using the conventional planarization process. To explain the Bloch line memory device of the present invention with reference to the drawings, FIGS. 3 to 5 are cross-sectional views showing the main components of the device of the present invention, and in the case of FIGS. By arranging the amorphous regions 2b exhibiting paramagnetism in parallel at regular intervals within the single crystal magnetic garnet [112], in the case of FIG. In the case of FIG. 4, the stripe domain 4 is stabilized between two paramagnetic regions 2b, and in the case of FIG. A band-shaped polycrystalline region 2b exhibiting magnetic anisotropy other than perpendicular (for example, in-plane) (hereinafter referred to as different magnetic anisotropy) is provided in the rare earth metal to transition metal-based amorphous magnetic film 2 exhibiting perpendicular magnetic anisotropy. This stabilizes the stripe domain 4 between the two different magnetic anisotropy regions 2b. There are generally two methods for making the device of the present invention as described above. One is to coat the surface of a non-magnetic substrate such as rare earth garnet single crystal such as GGG, quartz, glass, plastic, etc. with photoresist except for the areas that exhibit paramagnetism or different magnetic anisotropy, and then After performing ion irradiation from ., the photoresist was removed and (YSmLuCa). (FaGe)sO. t,
(YSmLuLu), (FaGe),01,, (YS
A magnetic garnet material such as mTm), (FeGe), or 01■ is formed into a film with a thickness of 0.1 to 5μ by a film method such as RF magnetron sputtering or LPE (liquid phase epitaxial method).
This is a method to form a magnetic garnet film with a thickness of about 100 ml. In this case, a film (region) with an amorphous structure exhibiting paramagnetism is formed in the ion-irradiated part of the substrate, and a single-crystalline film (region) exhibiting perpendicular magnetic anisotropy with a small coercive force He due to epitaxial growth in the part not irradiated with ions. II (area)
is formed. Another method is to coat GdCo on the untreated substrate. TbFe. GdFe. GdFeCo.
A rare earth metal to transition metal based amorphous alloy such as TbFeCo is formed into a film by a film forming method such as RF magnetron sputtering, and exhibits perpendicular magnetic anisotropy with a thickness of approximately 0.1 to 5 μm. This method involves forming a magnetic film and then annealing it by irradiating laser light in a pattern onto regions exhibiting different magnetic anisotropy. In this case, the part of the magnetic film that is irradiated with the laser beam has a polycrystalline structure and exhibits in-plane magnetic anisotropy, while the part that is not irradiated with the laser beam has an amorphous structure with perpendicular magnetic anisotropy. The film (region) showing N remains intact. It is possible to form a heteromagnetic anisotropic or paramagnetic region in addition to the above two methods. For example, it is possible to create a paramagnetic region or a different magnetically anisotropic region by ion implantation into the substrate surface, or to create a different magnetically anisotropic region by irradiating an amorphous perpendicularly magnetized film with an ion beam or an electron beam. In addition, in the device of the present invention, as shown in FIGS. 6 and 7, 0.1 to 1
Insulating layer (Si, NiSin2, SiO
etc.) (not shown), respectively 0.1 to 1 μ■
A conductor 5 for bubble generation, a conductor 6 for Bloch line control, and a conductor 7 for chopping (made of Au, Ag, Am, Cu, etc.) of approximately the same thickness are arranged by patterning. Note that 2b is a paramagnetic region for guiding. Examples of manufacturing the device of the present invention are shown below. Example 1 This example is an example in which a stripe domain is stabilized around the region 2b exhibiting dispersion magnetism as shown in FIG. A substrate made of Gd2Gab01x was coated with photoresist except for the area corresponding to the region 2b exhibiting paramagnetism as shown in FIG. 6, and ion irradiation was performed under the following conditions. Gas pressure: Ar, 5 X10-'Torr
RF discharge power: 20011, 13.56MHz Irradiation time: lOin Next, 100 MHz was applied as a target on the substrate treated in this way.
■RF (YSmTm), (FeGe)s01, of φ
A film was formed using the magnetron scattering method under the following conditions, and the film was deposited approximately 2 times.
A μ-thick magnetic garnet film was formed.
残留ガス圧: I XIO−’TorrArガス圧:
5 XIO””TorrRF放電々力: 4001
基板温度:500℃
その結果,基板へのイオン照射された部分の上に作製さ
れたガーネット膜はアモルファス構造でバラ磁性を示し
、基板へのイオン照射を受けない部分の膜は、エビタキ
シャル成長した単結晶構造となり、保磁力Hcの小さい
垂直磁気異方性膜となった.
以下常法によりストライプドメインの先端部?傍の磁性
膜上に,0.5μ鵬厚のSi, N,製絶縁層を設け、
更にその上に夫々0.5μ重厚のAU製のバブル発生用
コンダクター、プロツホライン制御用コンダクター及び
チョッピング用コンダクターを設けることにより第6図
に示すような本発明のブロッホラインメモリデバイスを
作製した.なお本例ではストライプドメインを伸ばす場
合に真っ直に伸びるようにガイド用パラ磁性領域2bを
各ストライプドメイン4の間の末端部分に設けた.
実施例2
本例は第4図に示すように、2つのパラ磁性領域間にス
トライプドメインを安定化した例である.
Gd, Ga, 0■,よりなる基板に、第7図に示す
ようなパラ磁性を示す領域2bに相当する部分を除いて
フォトレジストをコートし、下記条件でイオン照射を行
なう.
ガ ス 圧: X e , 5 XIO−”T
orrRF放電々力: 2001, 13.56MHz
照射時間: 10min
次にこうして処理した基板上に、ターゲットとして10
0■φの(YSmLu)a (FeGe)sO,,をR
Fマグネトロンスバッタ法により実施例1と同じ条件で
或膜して約2μ■厚の磁性ガーネット膜を形或した.
以下、実施例1と同様にストライプドメインの先端部近
傍の磁性膜上に、Si, N.製絶縁層を設け,更にそ
の上に夫々Au製のバブル発生用コンダクター,ブロッ
ホライン制御用コンダクター及びチョッピング用コンダ
クターを設けることにより本発明のブロッホラインメモ
リデバイスを作製した.なお本例では第7図に示すよう
にストライプドメインが片側(第7図では右側)に伸び
ないようにパラ磁性領域で囲んだ.実施例3
本例は第5図に示すように2つの異磁気異方性領域間に
ストライプドメインを安定化した例である.
ガラス基板上にターゲットとして100■φのc(Io
.zcoo−s合金をRFマグネットロンスパッタ法に
より下記条件で威膜して約2μ厘厚の希土類金属〜遷移
金属系アモルファス磁性膜を作製した。Residual gas pressure: I XIO-'TorrAr gas pressure:
5 The film in the area without it had an epitaxially grown single crystal structure, and became a perpendicular magnetic anisotropic film with a small coercive force Hc. Below is the tip of the striped domain using the usual method? An insulating layer made of Si and N with a thickness of 0.5μ is provided on the adjacent magnetic film.
Furthermore, a Bloch line memory device of the present invention as shown in FIG. 6 was fabricated by providing a bubble generation conductor, a Proch line control conductor, and a chopping conductor each made of AU with a thickness of 0.5 μm. In this example, the guiding paramagnetic region 2b is provided at the end portion between each stripe domain 4 so that the stripe domain extends straightly. Example 2 This example is an example in which a stripe domain is stabilized between two paramagnetic regions, as shown in FIG. A substrate made of Gd, Ga, 0■, is coated with photoresist except for the area corresponding to the region 2b exhibiting paramagnetism as shown in FIG. 7, and ion irradiation is performed under the following conditions. Gas pressure: Xe, 5XIO-”T
orrRF discharge power: 2001, 13.56MHz
Irradiation time: 10 min Next, on the substrate treated in this way, 10 min was applied as a target.
(YSmLu)a (FeGe)sO,, of 0■φ is R
A magnetic garnet film with a thickness of approximately 2 μm was formed using the F magnetron scattering method under the same conditions as in Example 1. Thereafter, as in Example 1, Si, N. The Bloch line memory device of the present invention was fabricated by providing an insulating layer made of Au, and further providing a bubble generation conductor, a Bloch line control conductor, and a chopping conductor made of Au, respectively. In this example, as shown in Figure 7, the stripe domain is surrounded by a paramagnetic region so that it does not extend to one side (to the right in Figure 7). Example 3 This example is an example in which a stripe domain is stabilized between two different magnetic anisotropy regions as shown in Fig. 5. A c (Io
.. Zcoo-s alloy was filmed by RF magnetron sputtering under the following conditions to produce a rare earth metal to transition metal amorphous magnetic film having a thickness of approximately 2 μm.
残留ガス圧 : I XIO−’TorrArガス圧:
5 X 10−’TorrRF放電々力: 4001
j
基板温度:水冷
次にこの磁性膜に第7図に示すような異磁気異方性を示
す領域パターン状に30w+WのArレーザー光(ビー
ム径:約1.5μm)を照射、アニール(約400℃)
した.その結果、レーザ照射された部分は多結晶構造に
なり、面内磁気異方性を示し、レーザー照射されない部
分はアモルファス構造のま\で垂直磁気異方性を示した
.
以下、実施例1と同様にストライプドメインの先端部近
傍の磁性膜上に、Si, N4製絶縁層を設け、更にそ
の上に夫々Au製のバブル発生用コンダクター、ブロッ
ホライン制御用コンダクター及びチョッピング用コンダ
クターを設けることにより本発明のブロッホラインメモ
リデバイスを作製した.なお本例では第7図に示すよう
にストライプドメインが片側(第7図では右側)に伸び
ないように異磁気異方性領域で囲んだ.〔発明の作用効
果〕
本発明のブロッホラインメモリデバイスは従来の垂直磁
気異方性を示す磁性膜内に異磁気異方性又はパラ磁性を
示す領域を設けたので、磁性膜のストレスや溝の形状等
による磁壁部のポテンシャルウエルの不均一を回避して
ストライブドメインの正確で、且つ信頼性の高い安定化
、従ってブロッホライン対の安定化した転送が可能であ
る.また平坦化プロセスを必要とせずにストライプドメ
インを安定化できるので、この膜上への正確なコンダク
ターなどのパターンが形成でき、信頼性の高い書込み、
読出し及び転送が行なえる.Residual gas pressure: I XIO-'TorrAr gas pressure:
5 X 10-'TorrRF discharge power: 4001
j Substrate temperature: Water cooling Next, this magnetic film was irradiated with 30W+W Ar laser light (beam diameter: approximately 1.5 μm) in a region pattern exhibiting different magnetic anisotropy as shown in Figure 7, and annealed (approximately 400 μm). ℃)
did. As a result, the part that was irradiated with the laser had a polycrystalline structure and exhibited in-plane magnetic anisotropy, while the part that was not irradiated with the laser remained an amorphous structure and showed perpendicular magnetic anisotropy. Hereinafter, as in Example 1, an insulating layer made of Si and N4 is provided on the magnetic film near the tip of the striped domain, and on top of that, a conductor for bubble generation, a conductor for Bloch line control, and a conductor for chopping are made of Au, respectively. A Bloch line memory device of the present invention was fabricated by providing a conductor. In this example, as shown in Figure 7, the stripe domain is surrounded by a different magnetic anisotropy region so that it does not extend to one side (to the right in Figure 7). [Operations and Effects of the Invention] The Bloch line memory device of the present invention has a region exhibiting heteromagnetic anisotropy or paramagnetism within a conventional magnetic film exhibiting perpendicular magnetic anisotropy, thereby reducing stress in the magnetic film and grooves. By avoiding the non-uniformity of the potential well in the domain wall due to the shape etc., accurate and reliable stabilization of the stripe domain, and therefore stable transfer of Bloch line pairs, is possible. In addition, since the striped domain can be stabilized without the need for a planarization process, accurate patterns such as conductors can be formed on this film, resulting in highly reliable writing and
Can be read and transferred.
第1〜2@は従来のブロッホラインメモリデバイスの主
要構成部の断面図、第3〜5図は本発明のブロッホライ
ンメモリデバイスの主要構成部の断面図、第6図及び第
7図は夫々第3図,及び第4〜5図の主要構成部を有す
るデバイスの上面図である.
1・・・基 板 2・・・磁性膜2a・・・
垂直磁化膜を示す領域
2b’・・・ガイド用バラ磁性領域
4・・・ストライプドメイン
5・・・バブル発生用コンダクター
6・・・ブロッホライン制御用コンダクター7・・・チ
ョッピング用コンダクター
H1・・バイアス磁界
第2図
第3図
第4図1-2@ are sectional views of the main components of a conventional Bloch line memory device, FIGS. 3-5 are sectional views of the main components of the Bloch line memory device of the present invention, and FIGS. 6 and 7 are respectively 5 is a top view of a device having the main components shown in FIG. 3 and FIGS. 4 and 5. FIG. 1...Substrate 2...Magnetic film 2a...
Region 2b' showing perpendicular magnetization film...Bara magnetic region for guide 4...Stripe domain 5...Bubble generation conductor 6...Bloch line control conductor 7...Chopping conductor H1...Bias Magnetic field Figure 2 Figure 3 Figure 4
Claims (1)
を記憶情報単位として記憶する垂直磁気異方性を示す磁
性膜を有するブロッホラインメモリデバイスにおいて、
磁性膜に一定間隔で並列する、垂直以外の磁気異方性又
はパラ磁性を示す領域を設けることによりストライプド
メインを垂直磁気異方性を示す領域内で安定化させたこ
とを特徴とするブロッホラインメモリデバイス。1. In a Bloch line memory device having a magnetic film exhibiting perpendicular magnetic anisotropy that stores perpendicular Bloch line pairs as storage information units on the domain wall of a stripe domain,
A Bloch line characterized in that a stripe domain is stabilized within a region exhibiting perpendicular magnetic anisotropy by providing regions exhibiting magnetic anisotropy other than perpendicular or paramagnetism parallel to each other at regular intervals in a magnetic film. memory device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153840A JP2763920B2 (en) | 1989-06-16 | 1989-06-16 | Bloch line memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153840A JP2763920B2 (en) | 1989-06-16 | 1989-06-16 | Bloch line memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0319187A true JPH0319187A (en) | 1991-01-28 |
JP2763920B2 JP2763920B2 (en) | 1998-06-11 |
Family
ID=15571251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1153840A Expired - Fee Related JP2763920B2 (en) | 1989-06-16 | 1989-06-16 | Bloch line memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2763920B2 (en) |
-
1989
- 1989-06-16 JP JP1153840A patent/JP2763920B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2763920B2 (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5989406A (en) | Magnetic memory having shape anisotropic magnetic elements | |
US4887236A (en) | Non-volatile, radiation-hard, random-access memory | |
US5372698A (en) | High magnetic moment thin film head core | |
US4070658A (en) | Ion implanted bubble propagation structure | |
FI57673B (en) | MAGNETIC DOMAINING | |
JPH0319187A (en) | Bloch line memory device | |
JP2957664B2 (en) | Method of manufacturing magnetic read and / or write head | |
US3736579A (en) | Circular magnetic domain devices | |
JP2798976B2 (en) | Bloch line memory device | |
US4330848A (en) | Charged wall amorphous magnetic layers | |
US4343038A (en) | Magnetic bubble domain structure | |
JPS5810792B2 (en) | Bubble domain nuclear generator | |
JP2763917B2 (en) | Bloch line memory device | |
EP0125536A2 (en) | Thermo-magnetic recording materials supporting small stable domains | |
JP2682672B2 (en) | Bloch line memory device | |
JP2866875B2 (en) | Bloch line memory device | |
JP2871199B2 (en) | Bloch line memory | |
JPS5867006A (en) | Laminated vertically magnetizing film | |
JPH0355910B2 (en) | ||
US4229807A (en) | Current controlled disk replicator | |
JPS5885916A (en) | Thin film magnetic head and its production | |
JP2025030841A (en) | Magnetic nanowire, magnetic nanowire memory, and method for forming magnetic nanowire | |
JPH033187A (en) | Bloch line memory device | |
JPH04310608A (en) | Manufacture of thin film magnetic head | |
JPH0456392B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |