JPH0318911A - Output controller for power generating system of solar battery - Google Patents
Output controller for power generating system of solar batteryInfo
- Publication number
- JPH0318911A JPH0318911A JP1152556A JP15255689A JPH0318911A JP H0318911 A JPH0318911 A JP H0318911A JP 1152556 A JP1152556 A JP 1152556A JP 15255689 A JP15255689 A JP 15255689A JP H0318911 A JPH0318911 A JP H0318911A
- Authority
- JP
- Japan
- Prior art keywords
- output
- voltage
- solar cell
- current
- solar radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は太陽電池発電システムの出力制御装置、こと
に太陽電池の出力電流を太陽電池の出力側に配された電
力変換器忙より制御し、太陽電池の出力電圧をその動作
点によって決まる設定電圧に保持して発電を行う発電シ
ステムが、前記設定電圧に対する太陽電池出力電圧の偏
差を求控る電圧演算器と、その出力信号を電流設定値と
して太陽電池出力電流との偏差を求める電流演算器と、
その出力信号をパルス幅変調されたオン・オフ指令信号
に変換して前記電力変換器に向けて出力するパルス幅変
調器とを備えた出力制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is an output control device for a solar cell power generation system, and in particular, an output control device for a solar cell power generation system, which controls the output current of a solar cell from a power converter disposed on the output side of the solar cell. , a power generation system that generates power by maintaining the output voltage of a solar cell at a set voltage determined by its operating point includes a voltage calculator that calculates the deviation of the solar cell output voltage from the set voltage, and a voltage calculator that calculates the deviation of the solar cell output voltage from the set voltage, and a current setting that outputs the output signal. a current calculator that calculates the deviation from the solar cell output current as a value;
The present invention relates to an output control device including a pulse width modulator that converts the output signal into a pulse width modulated on/off command signal and outputs the signal to the power converter.
第6図は従来の太陽電池発電システムとその出力制御装
置の構成を示す接続図である。図において、太陽光発電
システムは、太陽電池2と、その出力側に配された電力
変換器としての降圧チ蘭ツパ3と、降圧チlツバ3の出
力側に配された蓄電池4とで構成される主回路1および
、太陽電池2の出力電圧実際値を電圧設定器11の設定
値と比較しその偏差を求める比例・積分調節器(以下P
工調節器と称する)である電圧調節器12と、Px!I
ltm器の出力信号(比例ゲインと積分ゲインの和)′
t−電流設定値として電流検出器6Aにより検出される
太陽電池の出力電流実際値と比較し、その偏差を演算し
出力する電流調節器13と、その出力信号と鋸歯状波三
角波等の搬送波との切シ合いによる二値化制御によって
パルス幅変調されたパルス列を出力するパルス幅変調器
14とからなる出力制御装置10とで構成される。出力
制御装置10のパルス幅変調されたパルス列は降圧チ冒
ツバ乙のトランジスタなどのスイッチング素子にオン・
オフ制御指令信号として供給され、チロツバの通流率お
よび太陽電池2の出力電流が制御されることにより、太
陽電池の出力電圧をその動作点によって決まる一定電圧
に保持して効率のよい発電運転が行われる。FIG. 6 is a connection diagram showing the configuration of a conventional solar cell power generation system and its output control device. In the figure, the solar power generation system includes a solar cell 2, a step-down converter 3 as a power converter placed on the output side of the solar cell 2, and a storage battery 4 placed on the output side of the step-down converter 3. A proportional/integral regulator (hereinafter referred to as P
Px! I
Output signal of ltm unit (sum of proportional gain and integral gain)'
A current regulator 13 that compares the actual output current value of the solar cell detected by the current detector 6A as a t-current set value, calculates the deviation, and outputs the result, and the output signal and a carrier wave such as a sawtooth triangular wave. The output control device 10 includes a pulse width modulator 14 that outputs a pulse train whose pulse width is modulated by binary control based on the cut and match of the pulse width modulator 14. The pulse width modulated pulse train of the output control device 10 turns on and off switching elements such as transistors in the step-down circuit.
It is supplied as an off control command signal, and the conduction rate of the chirotsuba and the output current of the solar cell 2 are controlled, so that the output voltage of the solar cell is maintained at a constant voltage determined by its operating point, and efficient power generation operation is achieved. It will be done.
なお、電圧設定器11への設定値の与え方は、あらかじ
め太陽電池2の電圧−電流特性に基づいて固定の電圧値
に固定する方法と、小きざみに設定電圧を調整して実際
値と比較し、よシ大きな発電電力が得られる電圧(動作
点)へとシフトして行く方法とが知られている。Note that the setting value can be given to the voltage setting device 11 in two ways: by fixing it to a fixed voltage value in advance based on the voltage-current characteristics of the solar cell 2, and by adjusting the setting voltage in small steps and comparing it with the actual value. However, a method is known in which the voltage is shifted to a voltage (operating point) at which a larger amount of generated power can be obtained.
また、日射量の変化に対応して太陽電池2の発電電力が
変化するので、負荷5で消費する電力とに差が生ずるが
、この差は蓄電池4の放電によって負荷に補給したシ、
逆に太陽電池の発電電力によって蓄電池を充電したシす
ることKよって発電が持続される。In addition, since the power generated by the solar cell 2 changes in response to changes in the amount of solar radiation, there is a difference in the power consumed by the load 5, but this difference is caused by the power supplied to the load by discharging the storage battery 4.
Conversely, power generation is sustained by charging the storage battery with the power generated by the solar cell.
第7図は異なる従来列を示す接続図であシ、主回路20
が電力変換器としてインバータ23を備え、得られた交
流電力を電力系統25に供給する発電システムを例に示
したものである。この場合、掛算器22で電圧調節器1
2の出力と電圧検出器27で検出された交流電圧とが掛
は合わされ、これを交流出力電流設定値として電流調節
器13に供給する点が前述の従来例と異なってお)、パ
ルス幅変調器14の出力パルス列によってインバータの
スイッチング素子がオン・オフ制御される。Figure 7 is a connection diagram showing different conventional columns, main circuit 20
This example shows a power generation system that includes an inverter 23 as a power converter and supplies the obtained AC power to a power grid 25. In this case, the multiplier 22
2 and the AC voltage detected by the voltage detector 27 are multiplied together, and this is supplied to the current regulator 13 as the AC output current setting value (different from the conventional example described above), pulse width modulation. The switching elements of the inverter are controlled on/off by the output pulse train of the inverter 14.
第3図の場合、出力力率を1とするために、系統なお、
電流調節器13とパルス幅変調器14の組み合わせをヒ
ステリシスコンパレータに代え、いわゆる電流瞬時値制
御とし走ものも知られている。In the case of Fig. 3, in order to set the output power factor to 1, the system should be
It is also known to replace the combination of the current regulator 13 and the pulse width modulator 14 with a hysteresis comparator, resulting in so-called current instantaneous value control.
第8図は太陽電池の一般的な電圧−電流特性(■工時性
)を示すグラフ、第9図および第1゛0図は第8図にお
けるA位置およびB位置の拡大図である。第8図におい
て、日射量が大きい場合のV工時性を曲線100で1日
射量が小さい場合の特性を曲線110で示すように、太
陽電池の出力電流工8は日射量によって大幅忙変化する
ので、それぞれ発電量Vp −L゛、 またはVp・
工2 が最も大きくなる点Ps + P* ’fr
動作点として、いいかえれば出力電圧Vpを一定に保持
して発電運転が行われる。マ九、動作点P1 における
V工面線の傾斜と、動作点P、におけるそれとは第9図
および第10図に示すように異なるので、第6図または
第7図におけるP工調節器である電圧調節器12の比例
ゲインは通常日照量が大きいときのV工面線100の傾
斜に基づき、かつv工面線を微視的にみて直線と仮定し
て比例ゲインを一定値に決めるのが普通である。FIG. 8 is a graph showing the general voltage-current characteristics (① workability) of solar cells, and FIGS. 9 and 10 are enlarged views of positions A and B in FIG. 8. In FIG. 8, the output current of the solar cell 8 changes significantly depending on the amount of solar radiation, as shown by the curve 100 representing the V time efficiency when the amount of solar radiation is large, and the curve 110 representing the characteristics when the amount of solar radiation is small. Therefore, the power generation amount Vp −L゛, or Vp・
Point Ps + P* 'fr where 2 is the largest
In other words, the power generation operation is performed while keeping the output voltage Vp constant as the operating point. Since the slope of the V plane line at the operating point P1 and that at the operating point P are different as shown in Figures 9 and 10, the voltage at the P regulator in Figures 6 or 7 is The proportional gain of the regulator 12 is normally determined to a constant value based on the slope of the V-plane line 100 when the amount of sunlight is large, and on the assumption that the V-plane line is a straight line when viewed microscopically. .
いま、第6図に示す装置において負荷5に流れる電流が
増加し、これKよって蓄電池4の電圧が下が9、チ、、
パ3の出力電流工1がΔ工だけ増し九と仮定する。この
とき、太陽電池2はそのV工時性に基づいて日射量が大
きい時にはその出力電圧Vpが第9図に示すようにΔv
hだけ低下し、日射量が小さいときには第10図に示す
ように曲線110の傾斜が小さいため忙Δvhよシ大き
いΔvlIだけ低下することになる。したがって、出力
制御装置10は太陽電池の出力電圧ヲvpに戻すために
、チロツバ3の通流率を絞るようパルス幅を狭くしたパ
ルス列を出力することになる。とζろが、P工調節器の
比例ゲインが一定で日射量の大きい時の曲線100に合
わせて最適化されている念めに1日射量の大きいときに
は第9図に示すように電流増加分Δ工をパルス幅変11
によって絞って減少させ、出力電圧をΔvhだけ上昇さ
せてVpに近づける制御を行うことができるが、日射量
の小さく電流増加分Δ工に対する電圧の補正量ΔVl、
が大きい場合には、あたかも第9図においてΔvLなる
大きな電圧降下があり九ものと誤判断して大きな電流設
定値を出力するので、チ冒ツバの通流率を大きく絞シ込
んでしまうという問題が発生し、これが原因で日射量の
少いときの制御が過補償となり、発電システムの動作が
不安定になるという欠点がある。また主回路にインバー
タを用いた発電システムについても同様である。Now, in the device shown in Fig. 6, the current flowing through the load 5 increases, and as a result, the voltage of the storage battery 4 decreases to 9.
Assume that the output current factor 1 of Part 3 is increased by Δ factor 9. At this time, the output voltage Vp of the solar cell 2 becomes Δv as shown in FIG. 9 when the amount of solar radiation is large based on its V workability.
When the amount of solar radiation is small, the slope of the curve 110 is small as shown in FIG. 10, so the amount of radiation decreases by ΔvlI, which is larger than Δvh. Therefore, in order to return the output voltage of the solar cell to vp, the output control device 10 outputs a pulse train with a narrowed pulse width so as to reduce the conduction rate of the cap 3. and ζ are optimized according to the curve 100 when the proportional gain of the P regulator is constant and the amount of solar radiation is large.Please note that when the amount of solar radiation is large, the current increase is as shown in Figure 9. Pulse width change 11
It is possible to perform control to increase the output voltage by Δvh and bring it closer to Vp by reducing the output voltage by Δvh, but the voltage correction amount ΔVl for the current increase ΔΔ due to small solar radiation
If ΔvL is large, it is assumed that there is a large voltage drop of ΔvL in FIG. occurs, and this causes overcompensation in control when the amount of solar radiation is low, resulting in unstable operation of the power generation system. The same applies to power generation systems using inverters in the main circuit.
この発明の目的は、太陽電池の出力電圧の変化に対する
出力制御装置の制御定数を日射量に対して可変にするこ
とにより、太陽電池の制御を日射量の広い変化範囲にわ
たって最適化することにある。An object of the present invention is to optimize the control of solar cells over a wide range of changes in solar radiation by making the control constant of an output control device for changes in solar cell output voltage variable with respect to solar radiation. .
上記課題を解決するために、この発明によれば、太陽電
池の出力電流全太陽電池の出力側に配された電力変換器
によ多制御し、太陽電池の出力電圧をその動作点によっ
て決まる設定電圧に保持して発電を行う発電システムが
、前記設定電圧に対する太陽電池出力電圧の偏差を求め
る電圧調節器と、その出力信号を電流設定値として太陽
電池出力電流との偏差を求める電流調節器と、その出力
信号をパルス幅変調され六オン・オフ指令信号に変換し
て前記電力変換器に向けて出力するパルス幅変調器とか
らなる′出力制御装置を備えたものにおいて、前記電圧
調節器が比例演算器と積分演算器とが分離された比例・
積分調節器からなり、かつ比例演算器の出力全日射量の
変化に対応して補正して出力する比例ゲインの補正手段
、およびこの補正手段の出力と前記積分演算器の出力と
を加算して出力する加算器とを備えてなるものとする。In order to solve the above problems, according to the present invention, the output current of a solar cell is controlled by a power converter disposed on the output side of all solar cells, and the output voltage of the solar cell is set to be determined by its operating point. A power generation system that generates power by maintaining a voltage has a voltage regulator that calculates the deviation of the solar cell output voltage from the set voltage, and a current regulator that uses the output signal as a current set value to calculate the deviation from the solar cell output current. and a pulse width modulator that converts the output signal into a pulse width modulated on/off command signal and outputs it to the power converter, wherein the voltage regulator is Proportional/integral calculator with separate proportional calculator and integral calculator
a proportional gain correction means comprising an integral regulator and outputting a corrected proportional gain according to changes in the output total solar radiation of the proportional calculator; and a proportional gain correction means that adds the output of this correction means and the output of the integral calculator and an adder for output.
日射量が大きいときの太陽電池のv工時性を考慮して比
例ゲインが一定値に設定されたPI調節器の比例ゲイン
を、日射量によって変化する発電電力や電流等の電気量
によって補正するよう構成したことにより、P工調節器
の比例ゲインを日射量によって変化する太陽!池のVI
工特に対応して最適化できるので、P工調節器である電
圧調節器の出力は太陽電池の電圧変化に対して日射量が
大きいとき大きく1日射量が小さいとき小さく制御され
ることKなシ、日射量が小さいときにも過補償となるこ
となく太陽電池の動作点を保持して安定した発電運転を
行うことができる。比例ゲインの補正手段としては、電
力または電流検出器と関数演算器とで構成することがで
き、太陽電池の出力電力または出力電流、電力変換器の
中間電流。The proportional gain of the PI controller, which is set to a constant value in consideration of the v-manufacturing efficiency of solar cells when the amount of solar radiation is large, is corrected by the amount of electricity such as generated power and current that changes depending on the amount of solar radiation. With this configuration, the proportional gain of the P controller changes depending on the amount of solar radiation! Pond VI
Since the output of the voltage regulator, which is a P-modulator, can be controlled to correspond to the voltage change of the solar cell, it is controlled to be large when the amount of solar radiation is large and small when the amount of solar radiation is small. Even when the amount of solar radiation is small, the operating point of the solar cell can be maintained without overcompensation, and stable power generation operation can be performed. The proportional gain correction means can be composed of a power or current detector and a function calculator, and can be configured to measure the output power or output current of the solar cell and the intermediate current of the power converter.
電力変換器の出力電流または出力電力を電圧検出器、電
流検出器で検出して演算器に入力することべよシ日射量
をこれに比例した電気量に変換して演算を行うことがで
きる。また、パイロットセルまたは日射量計を有する発
電システムでは、これらの出力電力または出力電流を演
算器に入力して比例ゲインの補正を行うことができる。By detecting the output current or output power of the power converter with a voltage detector or a current detector and inputting it to a calculator, calculations can be performed by converting the amount of solar radiation into an amount of electricity proportional to this. Furthermore, in a power generation system having a pilot cell or a solar radiation meter, the proportional gain can be corrected by inputting the output power or output current to a computing unit.
以下この発E!Aを実施例に基づいて説明する。 Below is this release! A will be explained based on an example.
第1図は仁の発明の実施例である太陽電池発電システム
とその出力制御装置の構成を示す接続図であ夛、電力変
換器として降圧チョッパを用いた場合を例に示したもの
である。図において、太陽電池2の出力側には、スイッ
チングトランジスタ等ノスイッチング素子3A、フライ
ホイールタイオード3B、リアクトル3C,コンデンサ
3D等からなる降圧チ曹ツバ3と、蓄電池4とが設けら
れ、負荷5が要求する電力と日射量によって変化する太
陽電池2の出力電力との差を蓄電a4の充放電によって
調整しつつ太陽電池の動作点を保持して発電運転が行わ
れる。一方、電圧調節器30゜電流調節器13.および
パルス幅変調器14で構成される出力制御装置の電圧調
!fJ器3Dは、t8E設定器11の設定値と太陽電池
2の出方電圧とを比較してその偏差を求める比例演算器
61と積分演算器32とが分離され、かつ加算器33を
有するP工調節器として構成される。また、40は比例
ゲインの補正手段であシ、図の場合太陽電池2の出力電
力を太陽電池の出力電圧および電流検出器6Aの検出電
流とで求める電力演算器41と、電力演算器41の出力
に基づいて比例演算器31の出力を補正し、補正した出
力を加算器33に向けて出力する関数演算器42とで構
成される。FIG. 1 is a connection diagram showing the configuration of a solar cell power generation system and its output control device, which is an embodiment of Jin's invention, and shows an example in which a step-down chopper is used as a power converter. In the figure, the output side of the solar cell 2 is provided with a step-down silicon capacitor 3 consisting of a switching element such as a switching transistor 3A, a flywheel diode 3B, a reactor 3C, a capacitor 3D, etc., and a storage battery 4. Power generation operation is performed while maintaining the operating point of the solar cell while adjusting the difference between the power required by the solar cell 2 and the output power of the solar cell 2, which changes depending on the amount of solar radiation, by charging and discharging the storage battery a4. On the other hand, voltage regulator 30° current regulator 13. and voltage adjustment of the output control device consisting of the pulse width modulator 14! The fJ device 3D has a proportional calculator 61 and an integral calculator 32 that compare the setting value of the t8E setting device 11 and the output voltage of the solar cell 2 to find the deviation, and has an adder 33. It is configured as a mechanical controller. Further, 40 is a proportional gain correction means; in the case shown in the figure, a power calculator 41 calculates the output power of the solar cell 2 based on the output voltage of the solar cell and the detected current of the current detector 6A; The function calculator 42 corrects the output of the proportional calculator 31 based on the output, and outputs the corrected output to the adder 33.
比例演算器31の比例ゲインは、日射量の大きいときの
太陽電池2のV工時性(第8図における曲線100)の
動作点P1近傍t−最適化するに好的な一定ゲインに設
定されてお)、シたがって電圧偏差ΔVlに対して日射
量の高低に関わりなく一定の電流補正指令Δ工を出力す
る。一方、関数演算器42は、太陽電池2の動作点Ps
tたはP。The proportional gain of the proportional calculator 31 is set to a constant gain suitable for optimizing the operating point P1 of the V workability (curve 100 in FIG. 8) of the solar cell 2 when the amount of solar radiation is large. Therefore, a constant current correction command ΔF is output for the voltage deviation ΔVl regardless of the level of solar radiation. On the other hand, the function calculator 42 calculates the operating point Ps of the solar cell 2.
It's P.
近傍でVI特性曲線の傾斜が直線辺/Lスできる場合掛
算器として構成される。したがって、比例演算器31の
出力は関数演算器42で日射量に比例して変化する太陽
電池2の出力電力と掛は算されることになシ、比例ゲイ
ンの補正手段を付追する仁とKよル可変ゲインの比例演
算器を用いたと等価な機能を得ることができる。すなわ
ち、第9図における日射量の大きいときの71曲1s1
00に対しても、また第10図における日射量の小さい
ときのV工曲線に対しても最適化された可変比例ゲイン
を有する電圧調節器30を得ることができる。If the slope of the VI characteristic curve in the vicinity is equal to the straight line/L, it is configured as a multiplier. Therefore, the output of the proportional calculator 31 is multiplied by the output power of the solar cell 2, which changes in proportion to the amount of solar radiation, by the functional calculator 42. It is possible to obtain a function equivalent to using a proportional calculator with variable gain. In other words, 71 songs 1s1 when the amount of solar radiation is large in Fig. 9
It is possible to obtain a voltage regulator 30 having a variable proportional gain that is optimized for the voltage V. 00 and also for the V-force curve when the amount of solar radiation is small in FIG. 10.
第2図は第1図に示す実施ガの変形的を示す接続図であ
り、降圧チッッパ3の出力電圧、出力電流を電圧検出器
7および電流検出器6Cで検出しその積を電力演算器4
1で求めて日射量に比例した電気量としたものである。FIG. 2 is a connection diagram showing a modification of the embodiment shown in FIG.
1 and is the amount of electricity proportional to the amount of solar radiation.
第3図はこの発明の異なる実施例である太陽電池発電シ
ステムとその出力制御装置を示す接続図であ夛、比例ゲ
インの補正手段を主回路1に配された電流検出器6と、
その検出電流と比例演算器31の出力を掛は算する関数
演算器52とで構成し、日射量によって変化する電流を
電気量として比例ゲインを補正し死点が前述の実施例と
異なる。FIG. 3 is a connection diagram showing a solar cell power generation system and its output control device according to a different embodiment of the present invention.
It is composed of a function calculator 52 that multiplies the detected current and the output of the proportional calculator 31, and corrects the proportional gain by using the current that changes depending on the amount of solar radiation as an electrical quantity, so that the dead center differs from the previous embodiment.
電流検出器としては、太陽電池2の出力電流を検出する
検出器6A、降圧チlツバ3の中間回路電流の検出器6
B、降圧チ曹ツバ3の出力電流の検出a6Cのいずれを
用いてもよく、電力演算器を省略できるので、装置を簡
素化できる利点が得られる。The current detectors include a detector 6A that detects the output current of the solar cell 2, and a detector 6A that detects the intermediate circuit current of the step-down converter 3.
Either B or A6C for detecting the output current of the step-down sodium carbonate tube 3 may be used, and since the power calculator can be omitted, there is an advantage that the device can be simplified.
第4図はこの発明の他の実施例を示す接続図であり日射
量の変化をパイロットセル62と、その短絡電流の検出
器63と、検出器63の検出電流を比例ゲインの補正信
号とする関数演算器52とで比例ゲインの補正手段を構
成し死点が前述の各実施例と異なっており、パイロット
セルを備えた発電システムに適用することにより、出力
制御装置をよシー層簡素化できるとともに、パイロット
セルの配置やその数によp1日射量の変化音より正確に
とらえた制御を行うことができる。FIG. 4 is a connection diagram showing another embodiment of the present invention, in which a change in solar radiation is detected by a pilot cell 62, a short-circuit current detector 63, and a current detected by the detector 63 is used as a proportional gain correction signal. The function calculator 52 constitutes a proportional gain correction means, and the dead center is different from each of the above-described embodiments, and by applying it to a power generation system equipped with a pilot cell, the output control device can be further simplified. At the same time, it is possible to perform control that more accurately captures the change in p1 solar radiation by adjusting the arrangement and number of pilot cells.
第5図はこの発明の異なる他の実施例を示す接続図であ
り、日射量計70で日射量の変化を電圧値として検出し
、この検出電圧を関数演算器72の比例ゲイン補正信号
とした点が前・述の各実施例と異なっておル、日射量計
を備えた発電システムに適用することにより、装置の構
成を簡素化できるとともに、日射量の変化をよル適正に
とらえた制御を行うことができる。FIG. 5 is a connection diagram showing another embodiment of the present invention, in which a change in solar radiation is detected as a voltage value by a solar radiation meter 70, and this detected voltage is used as a proportional gain correction signal for a function calculator 72. This differs from the previous embodiments in that it is applied to a power generation system equipped with a solar radiation meter, which simplifies the configuration of the device and provides control that accurately captures changes in solar radiation. It can be performed.
なお上述の各実施列は電力変換器として降圧チ画ツバを
用いた発電システム1に例に説明し九が、電力変換器と
してイ/パータを用いた発電システムにも同様に適用す
ることができる。Each of the above-mentioned implementation rows is explained using the example of power generation system 1 using a step-down chip as a power converter, but it can be similarly applied to a power generation system using an I/P converter as a power converter. .
この発明は前述のように、電圧調節器、電流調節器、お
よびパルス幅変調器からなる出力制御装置の電圧v14
節器を比例演算器と積分演算器を分離し友比例積分調節
器とし、かつ比例演算器の出力を日射量の変化に対応し
て変化させる比例ゲインの補正手段を付加し、その出力
と積分演算器の出力を加算器で加算して出力するよう構
成した。その結果、日射量が大きいときの太陽電池のV
I工特に基づいて比例ゲインが一定値に固定され喪比例
演算器の出力を比例ゲインの補正手段によって日射量の
変化に比例して変化する可変比例ゲインに補正すること
が可能とな)、従来最適化されていない低い日射量で負
荷電流が変化し、これに伴なって太陽電池の出力電圧が
変化すると、電力変換器の出力電流の制御が過補償にな
って制御が不安定になるという問題点が排除され、日射
量の広い変化範囲にわ友って制御定数を最適化できる出
力制御回路を備え九太陽電池発電システムを提供するこ
とができる0日射量に比的して変化する電気量としては
、太陽電池の出力電力、出力電流。As described above, the present invention provides a voltage v14 of an output control device consisting of a voltage regulator, a current regulator, and a pulse width modulator.
The proportional calculator and the integral calculator are separated into a proportional-integral regulator, and a proportional gain correction means is added to change the output of the proportional calculator in response to changes in solar radiation, and the output and integral are added. It was configured to add the outputs of the arithmetic units using an adder and output the result. As a result, the V of the solar cell when the amount of solar radiation is large is
Conventionally, the proportional gain is fixed at a constant value based on I engineering, and the output of the proportional gain calculator can be corrected to a variable proportional gain that changes in proportion to changes in solar radiation using a proportional gain correction means. When the load current changes due to unoptimized low solar radiation, and the output voltage of the solar cell changes accordingly, the control of the output current of the power converter becomes overcompensated and becomes unstable. Equipped with an output control circuit that eliminates problems and can optimize control constants over a wide range of changes in solar radiation, the solar cell power generation system can provide electricity that changes relative to zero solar radiation. The amount is the output power and output current of the solar cell.
電力変換器の中間回路電流、電力変換器の出力電力、出
力電流を利用でき、また、パイロットセルの出力電流や
日射量計の出力電圧を利用することもでき、上記の電気
量のうち既設の検出器を利用することによって装置を簡
素化できる利点が得られる。The intermediate circuit current of the power converter, the output power and output current of the power converter can be used, and the output current of the pilot cell and the output voltage of the solar radiation meter can also be used. The advantage of using a detector is that the device can be simplified.
第1図はこの発明の実施的である太陽電池発電システム
とその出力制御装置の構成を示す接続図、第2図は第1
図に示す実施列の変形例を示す接続図、第3図はこの発
明の異なる実施例になる装置の構成を示す接続図、第4
図はこの発明の他の実施例になる装置の構成を示す接続
図、第5図はこの発明の異なる他の実施例になる装置の
構成を示す接続図、第6図および第7図は従来の互いに
異なる太陽電池発電システムとその出力制御装置の構成
をそれぞれ示す接続図、第8図は太陽電池の一般的な電
圧−電流特性を示すグラフ、第9図および第10図は第
8図のA部およびB部をそれぞれ拡大して示すグラフで
ある。
1.20・・・主回路、2・・・太陽電池、3・・・電
力変換器(降圧チ曹ツバ)、4・・・蓄電池、5・・・
負荷、6AI6B、6C・・・電流検出器、7,27・
・・電圧検出器、11・・・電圧設定器、12・・・電
圧調節器、13・・・電流調節器、14・・・パルス幅
変調器、22・・・掛算器、23・・・電力変換器(イ
ンバータ)、25・・・電力系統、30・・・電圧調節
器(PI調節器)、41・・・比例演算器、42・・・
積分演算器、33・・・加算器、40・・・比例ゲイン
の補正手段、41・・・電力演算器、42,52,72
・・・関数演算器、62・・・パイロットセル、63・
・・電流検出器、70・・・日射すな
躬
?
IA3区
第4図Fig. 1 is a connection diagram showing the configuration of a solar cell power generation system and its output control device according to the present invention, and Fig.
3 is a connection diagram showing a modification of the embodiment shown in the figure; FIG. 3 is a connection diagram showing the configuration of a device according to a different embodiment of the present invention;
The figure is a connection diagram showing the configuration of a device according to another embodiment of the invention, FIG. 5 is a connection diagram showing the configuration of a device according to another embodiment of the invention, and FIGS. 6 and 7 are conventional Fig. 8 is a graph showing the general voltage-current characteristics of solar cells, and Figs. 9 and 10 are connection diagrams showing the configurations of different solar cell power generation systems and their output control devices. It is a graph which enlarges and shows part A and part B, respectively. 1.20...Main circuit, 2...Solar cell, 3...Power converter (step-down carbon dioxide), 4...Storage battery, 5...
Load, 6AI6B, 6C...Current detector, 7,27.
... Voltage detector, 11... Voltage setter, 12... Voltage regulator, 13... Current regulator, 14... Pulse width modulator, 22... Multiplier, 23... Power converter (inverter), 25... Power system, 30... Voltage regulator (PI regulator), 41... Proportional calculator, 42...
Integral calculator, 33... Adder, 40... Proportional gain correction means, 41... Power calculator, 42, 52, 72
...Function calculator, 62...Pilot cell, 63.
...Current detector, 70... Don't expose yourself to sunlight? IA3 Ward Figure 4
Claims (1)
電力変換器により制御し、太陽電池の出力電圧をその動
作点によって決まる設定電圧に保持して発電を行う発電
システムが、前記設定電圧に対する太陽電池出力電圧の
偏差を求める電圧調節器と、その出力信号を電流設定値
として太陽電池出力電流との偏差を求める電流調節器と
、その出力信号をパルス幅変調されたオン・オフ指令信
号に変換して前記電力変換器に向けて出力するパルス幅
変調器とからなる出力制御装置を備えたものにおいて、
前記電圧調節器が比例演算器と積分演算器とが分離され
た比例・積分調節器からなり、かつ比例演算器の出力を
日射量の変化に対応して補正して出力する比例ゲインの
補正手段、およびζの補正手段の出力と前記積分演算器
の出力とを加算して出力する加算器とを備えてなること
を特徴とする太陽電池発電システムの出力制御装置。1) A power generation system that controls the output current of a solar cell with a power converter placed on the output side of the solar cell, and generates power by maintaining the output voltage of the solar cell at a set voltage determined by its operating point. A voltage regulator that determines the deviation of the solar cell output voltage with respect to the voltage, a current regulator that uses the output signal as a current setting value to determine the deviation from the solar cell output current, and a pulse width modulated on/off command for the output signal. An output control device comprising a pulse width modulator that converts the signal into a signal and outputs the signal to the power converter,
The voltage regulator is composed of a proportional/integral regulator in which a proportional calculator and an integral calculator are separated, and a proportional gain correction means for correcting the output of the proportional calculator in accordance with changes in solar radiation and outputting the corrected output. , and an adder that adds and outputs the output of the correction means for ζ and the output of the integral calculator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1152556A JPH0812570B2 (en) | 1989-06-15 | 1989-06-15 | Output control device for photovoltaic power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1152556A JPH0812570B2 (en) | 1989-06-15 | 1989-06-15 | Output control device for photovoltaic power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0318911A true JPH0318911A (en) | 1991-01-28 |
JPH0812570B2 JPH0812570B2 (en) | 1996-02-07 |
Family
ID=15543053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1152556A Expired - Lifetime JPH0812570B2 (en) | 1989-06-15 | 1989-06-15 | Output control device for photovoltaic power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0812570B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001211659A (en) * | 2000-01-27 | 2001-08-03 | Sanyo Electric Co Ltd | System interconnection inverter |
JP2005115553A (en) * | 2003-10-06 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Power supply |
JP2007221893A (en) * | 2006-02-15 | 2007-08-30 | Nec Engineering Ltd | Capacitor-charging circuit by solar cell |
JP2010193712A (en) * | 2010-05-24 | 2010-09-02 | Sanyo Electric Co Ltd | System linked inverter |
JP2010226950A (en) * | 2010-05-24 | 2010-10-07 | Sanyo Electric Co Ltd | System interconnection inverter |
JP2016181977A (en) * | 2015-03-24 | 2016-10-13 | サンケン電気株式会社 | Power supply unit |
CN117129883A (en) * | 2023-10-25 | 2023-11-28 | 广东亿昇达科技有限公司 | Loop control-based battery detection method and device |
-
1989
- 1989-06-15 JP JP1152556A patent/JPH0812570B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001211659A (en) * | 2000-01-27 | 2001-08-03 | Sanyo Electric Co Ltd | System interconnection inverter |
JP2005115553A (en) * | 2003-10-06 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Power supply |
JP2007221893A (en) * | 2006-02-15 | 2007-08-30 | Nec Engineering Ltd | Capacitor-charging circuit by solar cell |
JP2010193712A (en) * | 2010-05-24 | 2010-09-02 | Sanyo Electric Co Ltd | System linked inverter |
JP2010226950A (en) * | 2010-05-24 | 2010-10-07 | Sanyo Electric Co Ltd | System interconnection inverter |
JP2016181977A (en) * | 2015-03-24 | 2016-10-13 | サンケン電気株式会社 | Power supply unit |
CN117129883A (en) * | 2023-10-25 | 2023-11-28 | 广东亿昇达科技有限公司 | Loop control-based battery detection method and device |
CN117129883B (en) * | 2023-10-25 | 2024-02-09 | 广东亿昇达科技有限公司 | Loop control-based battery detection method and device |
Also Published As
Publication number | Publication date |
---|---|
JPH0812570B2 (en) | 1996-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Benlahbib et al. | Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid | |
EP2469680B1 (en) | Power conversion system and method | |
KR100908156B1 (en) | Solar maximum power tracking device and method | |
JP3516101B2 (en) | Solar power generator | |
Khanh et al. | Power-management strategies for a grid-connected PV-FC hybrid system | |
JP2000020150A (en) | Solar power generation inverter device | |
JP5929258B2 (en) | Power supply system and power supply device | |
US20230261510A1 (en) | Method and apparatus for controlling busbar voltage of photovoltaic system | |
JPH08315841A (en) | Output control device for fuel cell power generator | |
KR102051208B1 (en) | Solar generating system of maximum powr tracking control | |
JPH0318911A (en) | Output controller for power generating system of solar battery | |
JP2017192191A (en) | Dc/dc converter and solar power generation system | |
KR20190036914A (en) | High Efficiency Photovoltaic System Using DC-DC Voltage Regulator | |
KR20150025977A (en) | Method for tracking maximum power point in phtovoltaic power generating system and system using the same | |
EP3869682B1 (en) | A method and a control device for controlling a power converter | |
US12160100B2 (en) | Method and apparatus for photovoltaic DC direct-fed power generation | |
US12316122B2 (en) | Direct-current power supply and distribution system | |
KR102713751B1 (en) | Integrated power supply for controlling voltage | |
JP2000020149A (en) | Sunshine inverter device | |
KR102535493B1 (en) | Solar array simulation system | |
US20250132657A1 (en) | Power converter and dc power supply system | |
KR102566205B1 (en) | Maximum power point tracking algorithm with separate double loops and dc-dc converter for executing the algorithm | |
JP7700499B2 (en) | Distributed power supply control device, control program, and distributed power supply system | |
KR101360539B1 (en) | Photovoltaic power generation system and control method thereof | |
Mali et al. | Maximum power point tracking along with perturb and observe method in hybrid micro-grid |