JPH03186725A - Method and instrument for measuring magnetic stress - Google Patents
Method and instrument for measuring magnetic stressInfo
- Publication number
- JPH03186725A JPH03186725A JP32489289A JP32489289A JPH03186725A JP H03186725 A JPH03186725 A JP H03186725A JP 32489289 A JP32489289 A JP 32489289A JP 32489289 A JP32489289 A JP 32489289A JP H03186725 A JPH03186725 A JP H03186725A
- Authority
- JP
- Japan
- Prior art keywords
- stress
- core
- ferromagnetic material
- material sample
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title description 6
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 35
- 230000004907 flux Effects 0.000 claims abstract description 20
- 230000005284 excitation Effects 0.000 claims description 49
- 230000005347 demagnetization Effects 0.000 claims description 5
- 238000000691 measurement method Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims 1
- 230000006698 induction Effects 0.000 abstract 3
- 238000005259 measurement Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、磁気的応力測定方法及び磁気的応力測定装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic stress measuring method and a magnetic stress measuring device.
〔従来の技術]
機械装置、構造物などの応力分布状態を測定、モニタリ
ングすることは、それらの強度や耐久性を知る上で非常
に重要なことであり、その信頼性や安全性の要求に応え
るものである。[Prior art] Measuring and monitoring the stress distribution state of mechanical devices, structures, etc. is extremely important in order to know their strength and durability, and it is important to measure and monitor the stress distribution state of mechanical devices, structures, etc. It is something to respond to.
強磁性材料に応力が加わると逆磁歪効果によって磁気異
方性が変化し、方向によって透磁率が変化する。この磁
気異方性の変化を検出することによって応力を測定する
ことができる。When stress is applied to a ferromagnetic material, the magnetic anisotropy changes due to the inverse magnetostriction effect, and the magnetic permeability changes depending on the direction. Stress can be measured by detecting changes in this magnetic anisotropy.
従来の技術において、一般に磁気的応力測定器は、第1
図乃至第3図に示すようなこの発明の磁気的応力測定装
置における検出器本体IOと同様の構成をしている。In the prior art, magnetic stress measuring instruments generally use a first
It has the same structure as the detector main body IO in the magnetic stress measuring apparatus of the present invention as shown in FIGS.
そうして、上記の磁気的応力測定器による測定に際して
は、励磁コア11及び検出コア12は、夫々の両脚部の
端部13a、 15a;14a、 16aが強磁性材料
試料Mの表面に近接するように置かれ、励磁コア11の
両脚部の端部13a、 15aを結ぶ線と検出コア12
の両脚の端部14a、 16aを結ぶ線との交点Oを中
心に回動される。Then, during measurement by the above-mentioned magnetic stress measuring device, the excitation core 11 and the detection core 12 have ends 13a, 15a; A line connecting the ends 13a and 15a of both legs of the excitation core 11 and the detection core 12
is rotated around the intersection point O with the line connecting the ends 14a and 16a of both legs.
そうして、励磁コイル17に交番励磁信号が加えられ、
励磁コア11の両脚部13.15から交番磁束が強磁性
材料試料Mに供給される。Then, an alternating excitation signal is applied to the excitation coil 17,
An alternating magnetic flux is supplied to the ferromagnetic material sample M from both legs 13.15 of the excitation core 11.
すると、強磁性材料試料Mに加わる応力の方向と透磁率
とは密接々関係があるので、検出コア12の両脚部14
.16に導入される磁束は、その経路と応力の方向との
交差角度、即ち経路方向の透磁率に応じて変化し、検出
コイル18には、それに応じた誘導電圧が誘起される。Then, since there is a close relationship between the direction of stress applied to the ferromagnetic material sample M and the magnetic permeability, both legs 14 of the detection core 12
.. The magnetic flux introduced into the magnetic flux 16 changes depending on the intersection angle between the path and the stress direction, that is, the magnetic permeability in the path direction, and a corresponding induced voltage is induced in the detection coil 18.
そこで、励磁コア11の両脚部の端部13a、 !5a
を結ぶ線と強磁性材料試料Mに加わる応力の方向との交
角をθとすると、応力の方向と励磁コア11の両脚部の
端部13a、 15aを結ぶ線とは、0=061800
では一致し、θ=90’ 、270’では直交しく第8
図(a)参照)、検出コア12の検出コイル18におい
て、第8図(b)に示すような誘導電圧V。が検出され
る。この誘導電圧Voは、検出コイルに誘起される交番
電圧を励磁電流と同期して検波し、直流電圧にしたもの
である。Therefore, the ends 13a of both legs of the excitation core 11, ! 5a
If the intersection angle between the line connecting the ferromagnetic material sample M and the direction of the stress applied to the ferromagnetic material sample M is θ, then the line connecting the direction of the stress and the ends 13a and 15a of both legs of the excitation core 11 is 0=061800.
, they match, and at θ=90' and 270', the 8th orthogonal
(see FIG. 8(a)), the induced voltage V in the detection coil 18 of the detection core 12 as shown in FIG. 8(b). is detected. This induced voltage Vo is obtained by detecting the alternating voltage induced in the detection coil in synchronization with the exciting current and converting it into a direct current voltage.
そうして、θ=45°+nX90’のとき、誘導電圧は
ピークを示し、その誘導電圧は応力値に対応するので、
誘導電圧から強磁性材料試料Mに働く応力が求められる
。Then, when θ=45°+nX90', the induced voltage shows a peak, and the induced voltage corresponds to the stress value, so
The stress acting on the ferromagnetic material sample M is determined from the induced voltage.
上記のような従来の技術の磁気的応力測定器は、応力が
低い場合には、誘導電圧も線形になり、応力測定に有効
であるが、応力範囲がある程度以上大きくなると、応力
履歴、磁気履歴等により、応力に対応する誘導電圧の特
性は、第10図に示すようにヒステリシスを描き、実用
上問題がある。When the stress is low, the conventional magnetic stress measuring instrument described above is effective in measuring stress because the induced voltage becomes linear, but when the stress range increases beyond a certain point, the stress history and magnetic history become distorted. As a result, the characteristics of the induced voltage corresponding to the stress exhibit hysteresis as shown in FIG. 10, which poses a practical problem.
この問題に対して、磁化装置によって応力測定範囲を飽
和磁化まで磁化させ、応力測定範囲の残留磁化や磁気履
歴による透磁率の斑を小さくする方法がある(実公昭6
2−36149号公報参照)。To solve this problem, there is a method of magnetizing the stress measurement range to saturation magnetization using a magnetization device to reduce the unevenness of magnetic permeability due to residual magnetization and magnetic history in the stress measurement range (Jikko Kosho 6).
2-36149).
磁化装置により直流バイアス磁界を応力測定範囲に印加
する方法は、応力測定範囲の応力履歴、磁化履歴等によ
る検出感度斑やヒステリシスを抑制する方法であるとい
うことちできる。The method of applying a DC bias magnetic field to the stress measurement range using a magnetization device can be said to be a method of suppressing detection sensitivity unevenness and hysteresis due to stress history, magnetization history, etc. of the stress measurement range.
しかし、透磁率の小さな範囲での測定になるので、感度
を大きくするのには有利ではない。又、飽和磁化の領域
まで磁化させて応力測定する必要があるため、測定対象
へ加わる力等の問題が発生する可能性がある。更に、測
定終了後、測定範囲の磁化した箇所を脱磁しておく必要
がある等、実用化する上での問題が多い。However, since the measurement is performed in a small range of magnetic permeability, it is not advantageous for increasing sensitivity. Furthermore, since it is necessary to measure the stress by magnetizing the magnet to the saturation magnetization region, problems such as force applied to the measurement object may occur. Furthermore, there are many problems in practical use, such as the need to demagnetize the magnetized areas in the measurement range after the measurement is completed.
この発明による磁気的応力測定方法は、強磁性材料試料
に回転磁界を印加し、回転磁界により誘起される誘導電
圧と回転磁界の回転位置とを検出し、その誘導電圧のピ
ーク値に基づいて強磁性材料試料に働いている応力の大
きさを検出する共に誘導電圧のピーク値を呈する時点の
交番磁束に回転位置に基づいて前記応力の方向を検出す
るのに際し、回転交番磁束と同心的に回転し、且つ漸減
する脱磁交番磁界を所定時間だけ強磁性材料試料に与え
、その時間の末期において前記誘導電圧のピーク値及び
同ピーク値時点の交番磁束の回転位置を検出する。The magnetic stress measurement method according to the present invention applies a rotating magnetic field to a ferromagnetic material sample, detects the induced voltage induced by the rotating magnetic field and the rotational position of the rotating magnetic field, and calculates the intensity based on the peak value of the induced voltage. In order to detect the magnitude of the stress acting on the magnetic material sample and to detect the direction of the stress based on the rotational position of the alternating magnetic flux at the time when the induced voltage peaks, the magnetic material rotates concentrically with the rotating alternating magnetic flux. Then, a gradually decreasing demagnetizing alternating magnetic field is applied to the ferromagnetic material sample for a predetermined period of time, and at the end of that time, the peak value of the induced voltage and the rotational position of the alternating magnetic flux at the time of the peak value are detected.
この発明による磁気的応力測定装置は、夫々−対の磁極
を持つと共にそれらの磁極が中心点回り回転方向に交互
に配置され、一体的に中心点回りに回転駆動される励磁
コアと検出コアとから成る検出ヘッド、励磁コアの励磁
コイルへの励磁電源、励磁コア回転位置検出器及び検出
コアの検出コイルの誘導電圧検出器を具備した検出器本
体と、検出器本体の周囲に配置され回転交番磁界を発生
する複数の磁極対から成る脱磁器とから構成されている
。The magnetic stress measuring device according to the present invention includes an excitation core and a detection core, each having a pair of magnetic poles, the magnetic poles being arranged alternately in the direction of rotation around the center point, and integrally driven to rotate around the center point. A detection head consisting of a detection head, an excitation power supply to the excitation coil of the excitation core, a detector body equipped with an excitation core rotational position detector and an induced voltage detector of the detection coil of the detection core, and a rotating alternating box arranged around the detector body. It consists of a demagnetizer consisting of a plurality of magnetic pole pairs that generate a magnetic field.
測定に際して、磁気的応力測定器は、強磁性材料試料の
表面上に載置され、検出器本体は中心点回りに回転駆動
され、検出器本体の励磁コイルには交番励磁電源回路か
ら交番励磁信号が加えられる。すると、励磁コアの対向
磁極から中心点回りに回動する交番磁束が強磁性材料試
料に供給される。During measurement, the magnetic stress measuring device is placed on the surface of a ferromagnetic material sample, the detector body is driven to rotate around the center point, and the excitation coil of the detector body is supplied with an alternating excitation signal from an alternating excitation power supply circuit. is added. Then, alternating magnetic flux rotating around the center point is supplied to the ferromagnetic material sample from the opposing magnetic poles of the excitation core.
すると、検出コイルには、強磁性材料試料に加えられて
いる応力の方向に対する磁束の方向に応じた電圧が誘起
され、それが検出される。Then, a voltage corresponding to the direction of the magnetic flux relative to the direction of the stress applied to the ferromagnetic material sample is induced in the detection coil, and this voltage is detected.
励磁コアの対向磁極を結ぶ線と強磁性材料試料に加わる
応力の方向との交角θは、回転位置検出器で検出され、
交角θがθ=45°+nX90゜のとき、誘導電圧はピ
ークを示し、その誘導電圧は応力値に対応するので、θ
により応力の方向が求められ、ピークの誘導電圧Vma
xから応力σの大きさが求められる。The intersection angle θ between the line connecting the opposing magnetic poles of the excitation core and the direction of stress applied to the ferromagnetic material sample is detected by a rotational position detector.
When the intersection angle θ is θ=45°+nX90°, the induced voltage shows a peak, and the induced voltage corresponds to the stress value, so θ
The direction of the stress is determined by the peak induced voltage Vma
The magnitude of stress σ can be found from x.
この際、脱磁器の複数対の脱磁コイルには、脱磁電源回
路から脱磁信号が入力され、順次位相差をもった交番電
流が流れる。それにより強磁性材料試料における応力測
定範囲には回転交番脱磁磁界が印加される。しかも、脱
磁電源回路における脱磁指令信号により電流の大きさが
所定時間で指数的に零に漸減され、即ち脱磁磁界の強さ
は漸減される。これにより強磁性材料試料における応力
測定範囲は、任意のタイミングで応力方向及び検出器本
体の回転位置に関係なく脱磁される。At this time, a demagnetizing signal is inputted from the demagnetizing power supply circuit to the plurality of pairs of demagnetizing coils of the demagnetizing device, and alternating currents having phase differences sequentially flow therethrough. As a result, a rotating alternating demagnetizing field is applied to the stress measurement range in the ferromagnetic material sample. Furthermore, the magnitude of the current is gradually reduced exponentially to zero over a predetermined period of time by the demagnetizing command signal in the demagnetizing power supply circuit, that is, the strength of the demagnetizing magnetic field is gradually reduced. Thereby, the stress measurement range in the ferromagnetic material sample is demagnetized at any timing, regardless of the stress direction and the rotational position of the detector body.
従って、θ=45°の場合の応力・誘導電圧関係ヒステ
リシス曲線は1本の、しかも原点を通る曲線とflる。Therefore, the stress/induced voltage relationship hysteresis curve when θ=45° is a single curve that passes through the origin.
そこで誘導電圧検出器で検出された検出コイルにおける
誘導電圧のピーク値Vmaxに基づいて、予め用意され
た応力・誘導電圧関係ヒステリシス曲線(原点通過)上
で応力σの大きさを求めることができる。Therefore, based on the peak value Vmax of the induced voltage in the detection coil detected by the induced voltage detector, the magnitude of the stress σ can be determined on a previously prepared stress/induced voltage relationship hysteresis curve (passing through the origin).
なお、上記の応力・誘導電圧関係ヒステリシス曲線(原
点通過)は、所定の強磁性材料試料Mに対し所定の方向
に種々の応力σを加えて上記の磁気的応力測定装置によ
り誘導電圧のピーク値Vmaxを測定し、キャリプレー
トすることにより求めることができる。The above stress/induced voltage relationship hysteresis curve (passing through the origin) is calculated by applying various stresses σ in a predetermined direction to a predetermined ferromagnetic material sample M and measuring the peak value of the induced voltage using the above magnetic stress measuring device. It can be determined by measuring Vmax and calibrating it.
この発明の実施例を図面に従って説明する。 Embodiments of the invention will be described with reference to the drawings.
磁気的応力測定装置は、第1図乃至第3図に示すように
検出器本体IOが脱磁器20と組立構成されているもの
である。The magnetic stress measuring device has a detector main body IO assembled with a demagnetizer 20 as shown in FIGS. 1 to 3.
検出器本体IOは、門型(目状)の励磁コア11と門型
の検出コア12とから構成され、励磁コア11の両脚部
13. Isは、検出コア12の両脚部14.16より
長く、励磁コア11の両脚部13.15と検出コア12
の両脚部14、16とが同方向に向き、励磁コア11の
両脚部13゜15の端部13a、 15aと検出コア1
2の両脚部14.16の端部14a、 16aとが同一
平面において互に対角線関係にある正方形状の角部位置
に位置するような関係になるように励磁コア11が検出
コアI2に対して跨るようにして組立てられている。脚
部13.15の端部13a、 15aを結ぶ線と脚部1
4.16の端部14a、 +6aを結ぶ線とは交点、即
ち中心点Oで直交している。The detector main body IO is composed of a gate-shaped (eye-shaped) excitation core 11 and a gate-shaped detection core 12 , and both legs 13 . Is is longer than both legs 14.16 of the detection core 12, and is longer than both legs 13.15 of the excitation core 11 and the detection core 12.
The legs 14 and 16 of the excitation core 11 face the same direction, and the ends 13a and 15a of the legs 13 and 15 of the excitation core 11 and the detection core 1
The excitation core 11 is positioned relative to the detection core I2 such that the ends 14a and 16a of both legs 14. It is assembled so as to straddle it. The line connecting the ends 13a and 15a of the legs 13.15 and the leg 1
It is orthogonal to the line connecting the ends 14a and +6a of 4.16 at the intersection, that is, the center point O.
励磁コア11の両脚部13.15には励磁コイル17が
、検出コア12の両脚部14.16には検出コイル18
が。Excitation coils 17 are mounted on both legs 13.15 of the excitation core 11, and detection coils 18 are mounted on both legs 14.16 of the detection core 12.
but.
夫々一方の脚部13.14から他方の脚部15.16へ
巻き方向が逆方向になり、磁束の流れに対しては和動的
になるように巻装されている。The winding direction is reversed from one leg 13.14 to the other leg 15.16, so that the winding is harmonious with respect to the flow of magnetic flux.
励磁コイル17には、図示しない交番励磁電源回路が接
続され、検出コイル18には、図示しない誘導電圧検出
器が接続されている。An alternating excitation power supply circuit (not shown) is connected to the excitation coil 17, and an induced voltage detector (not shown) is connected to the detection coil 18.
励磁コイルI7が巻装された励磁コア11と検出コイル
18が巻装された検出コア12との組立体の外側には、
円筒形の非磁性体のケーシング19が嵌装され、非磁性
体のケーシングI9の上部には小径筒部をなした各コイ
ルのリード線が挿通されるリード線引出し口部19aが
形成されている。On the outside of the assembly of the excitation core 11 around which the excitation coil I7 is wound and the detection core 12 around which the detection coil 18 is wound,
A cylindrical non-magnetic casing 19 is fitted, and the upper part of the non-magnetic casing I9 is formed with a lead wire outlet portion 19a through which the lead wires of each coil having a small diameter cylindrical portion are inserted. .
脱磁器20は、第1図乃至第3図に示すような正方形状
の角部位置関係にある4本脚のテーブル状の励磁コアの
各脚部22.23.24.25には各励磁コイル26.
27.28.29が同方向に巻装されており、検出器本
体10のリード線引出し口部19aが嵌合する嵌合孔3
1が穿設された天板部は、共通磁路部30となっている
。The demagnetizer 20 has a four-legged table-like excitation core with four excitation coils located at the corners of a square as shown in FIGS. 26.
27, 28, and 29 are wound in the same direction, and the fitting hole 3 into which the lead wire outlet portion 19a of the detector main body 10 fits.
The top plate portion in which the number 1 is perforated serves as a common magnetic path portion 30.
脱磁器20の脱磁コイル26.27.28.29には、
回転交番磁界を生じさせる第4図に示すような脱磁電源
回路に接続されている。The demagnetizing coils 26, 27, 28, 29 of the demagnetizer 20 include
It is connected to a demagnetizing power supply circuit as shown in FIG. 4 which generates a rotating alternating magnetic field.
各脚部22.23.24.25に励磁コイル26.27
.28.29が巻装された脱磁器20の外側は、円筒形
の非磁性体のケーシング32が嵌装され、非磁性体のケ
ーシング32の上部には検出器本体10のリード線引出
し口部19aが嵌合する嵌合孔33が穿設されている。Excitation coil 26.27 on each leg 22.23.24.25
.. A cylindrical non-magnetic casing 32 is fitted on the outside of the demagnetizer 20, in which the demagnetizer 28 and 29 are wound. A fitting hole 33 into which is fitted is bored.
脱磁器20の励磁コイル26.27.28.29が巻装
された脚部22.23.24.25間の中心空間には、
検出器本体10が回転自在に嵌挿され、検出器本体IO
のリード線引出し口部!9aが脱磁器20の共通磁路部
30の嵌合孔31及びケーシング32の嵌合孔33に回
転自在に嵌挿されてケーシング32から突出し、軸線方
向に拘束されて係止されている。その結果、検出器本体
10と脱磁器20とは、脱磁器20における対角線関係
にある脚部22.24の端部22a、 24aを結ぶ線
と脚部23.25の端部23a、 25aを結ぶ線との
交点が検出器本体10における中心点Oと一致している
関係にあって、検出器本体IOが脱磁器20に対し共軸
線関係で回転自在に一体に組立てられ、磁気的応力測定
装置が構成されている。In the central space between the legs 22.23.24.25 around which the excitation coils 26.27.28.29 of the demagnetizer 20 are wound,
The detector body 10 is rotatably inserted, and the detector body IO
Lead wire outlet! 9a is rotatably fitted into the fitting hole 31 of the common magnetic path section 30 of the demagnetizer 20 and the fitting hole 33 of the casing 32, protrudes from the casing 32, and is restrained and locked in the axial direction. As a result, in the detector body 10 and the demagnetizer 20, a line connecting the ends 22a, 24a of the legs 22.24 in a diagonal relationship in the demagnetizer 20 connects the ends 23a, 25a of the legs 23.25. The intersecting point with the line coincides with the center point O of the detector body 10, and the detector body IO is rotatably assembled integrally with the demagnetizer 20 in a coaxial relationship, thereby forming a magnetic stress measuring device. is configured.
磁気的応力測定装置において、
検出器本体IOは、
周知の駆動装置(図示しない)で回転駆動されるように
なっており、その回転角位相は、周知の回転位置検出器
(図示とない)で検出されるようになっている。そうし
て、検出器本体lOにおける励磁コア11の脚部13.
15の端部13a、 15a、検出コア12の脚部14
.16の端部14a、 16a及びケーシング19の先
端面は、脱磁器20におけるケーシング32の先端面及
び脚部22.24.23.25の端部22a、 23a
、 24a、 25aより僅かに(例えば約0:5mm
)軸線方向内側に引っ込んでいる。In the magnetic stress measuring device, the detector main body IO is rotatably driven by a well-known drive device (not shown), and its rotational angle phase is determined by a well-known rotational position detector (not shown). It is now detected. Then, the legs 13 of the excitation core 11 in the detector main body lO.
15 end portions 13a, 15a, leg portions 14 of the detection core 12
.. The ends 14a, 16a of the casing 16 and the end face of the casing 19 are the end faces 22a, 23a of the casing 32 and the ends 22a, 23a of the leg parts 22, 24, 23, 25 in the demagnetizer 20.
, 24a, slightly smaller than 25a (e.g. about 0:5 mm
) retracted inward in the axial direction.
従って、測定時には、脱磁器20の脚部22.23.2
4゜25の端部22a、 23a、 24a、 25a
が強磁性材料試料Mの表面上に接触して載置され、検出
器本体lOは、脚部13.14.15.16の端部13
a、 14a、 15a、 16aが強磁性材料試料M
の表面に微小間隙(例えば約0 、5 mm)をあけて
近接する位置に保持され、図示しない駆動源によりリー
ド線引出し口部19aを介して脚部と平行な中心点Oを
通る軸線回りに回動するようになっている。Therefore, when measuring, the legs 22.23.2 of the demagnetizer 20
4°25 ends 22a, 23a, 24a, 25a
is placed in contact with the surface of the ferromagnetic material sample M, and the detector body lO is connected to the end 13 of the leg 13.14.15.16.
a, 14a, 15a, and 16a are ferromagnetic material samples M
The lead wire is held in a position close to the surface of the lead wire with a small gap (for example, about 0.5 mm) therebetween, and is driven by a drive source (not shown) through the lead wire outlet 19a around an axis passing through the center point O parallel to the leg. It is designed to rotate.
上記の磁気的応力測定装置の脱磁器20は、その脚部の
数は、上記のように4本に限るちのでなく、例えば第5
図に示すように端部が正3角形の角部位置関係にある3
本にした上、励磁コイルを第6図に示すような励磁電源
回路に接続して構造を簡素化してもよく、又第7図に示
すように端部が正6角形の角部位置関係にある6本にし
て方向による回転磁界の大きさの斑を小さくしてもよい
。The number of legs of the demagnetizer 20 of the magnetic stress measuring device described above is not limited to four as described above, but for example, the number of legs is not limited to four.
As shown in the figure, the ends are in the positional relationship of the corners of a regular triangle 3
In addition, the excitation coil may be connected to an excitation power supply circuit as shown in Figure 6 to simplify the structure, or the end portions may be arranged in a regular hexagonal corner position relationship as shown in Figure 7. It is also possible to use a certain number of six to reduce unevenness in the magnitude of the rotating magnetic field depending on the direction.
上記の磁気的応力測定方法を上記の磁気的応力測定装置
の操作・作用として説明する。The above magnetic stress measuring method will be explained as the operation and operation of the above magnetic stress measuring device.
測定に際して、磁気的応力測定器は、強磁性材料試料M
の表面上に載置され、検出器本体10は中心点Oを通る
軸線回りに駆動装置(図示し々い)で回転駆動され、検
出器本体10の励磁コイル17には交番励磁電源回路か
ら交番励磁信号が加えられる。During the measurement, the magnetic stress measuring device uses a ferromagnetic material sample M
The detector body 10 is rotated by a drive device (not shown) around an axis passing through the center point O, and the excitation coil 17 of the detector body 10 is connected to an alternating excitation power supply circuit. An excitation signal is applied.
すると、励磁コア11の両脚部13.15から中心点0
回りに回動する交番磁束が強磁性材料試料Mに供給され
る。Then, from both legs 13.15 of the excitation core 11 to the center point 0
A rotating alternating magnetic flux is supplied to the ferromagnetic material sample M.
すると、応力に対応する磁束の一部は、励磁コア11の
脚部13、端部13a、強磁性材料試料M、検出コア1
2の脚部14の端部14a、脚部14、脚部16、端部
16a、強磁性材料試料M、励磁コア11の脚部15の
端部15a、脚部15、脚部13の経路で流れる。Then, a part of the magnetic flux corresponding to the stress is transmitted to the leg portion 13 of the excitation core 11, the end portion 13a, the ferromagnetic material sample M, and the detection core 1.
In the path of the end 14a of the leg 14 of No. 2, the leg 14, the leg 16, the end 16a, the ferromagnetic material sample M, the end 15a of the leg 15 of the excitation core 11, the leg 15, the leg 13. flows.
そこで、既に従来の技術における磁気的応力測定器につ
いて述べたように、検出コイル18には、強磁性材料試
料Mに加えられている応力の方向に対する磁束の方向に
応じた誘導電圧が誘起され、それが検出される。Therefore, as already described with respect to the conventional magnetic stress measuring device, an induced voltage is induced in the detection coil 18 according to the direction of the magnetic flux with respect to the direction of the stress applied to the ferromagnetic material sample M. it is detected.
励磁コアllの両脚部の端部13a、 15aを結ぶ線
と強磁性材料試料Mに加わる応力の方向との交角θは、
回転位置検出器(図示しない)により検出され、交角θ
が0=45°+nX90’のとき、誘導電圧はピークを
示しく第8図(a)(b)参照)、その誘導電圧は応力
値に対応するので、θにより応力の方向が求められ、ピ
ークの誘導電圧V m a xから応力σの大きさが求
められる。The intersection angle θ between the line connecting the ends 13a and 15a of both legs of the excitation core 11 and the direction of the stress applied to the ferromagnetic material sample M is:
Detected by a rotational position detector (not shown), the intersection angle θ
When is 0 = 45° + n The magnitude of the stress σ can be determined from the induced voltage Vmax.
この際、脱磁器20の脱磁コイル26.27.28.2
9には、第4図に示す脱磁電源回路から脱磁信号が入力
され、X5inωt、 Xcosωt、 −X5inω
t、 −XCOSωtの電流が流れる。それにより強磁
性材料試料Mにおける応力測定範囲には毎秒f回(ω=
2πf)の時計回りの回転交番脱磁磁界が印加される6
しかも、脱磁電源回路における脱磁指令信号により電流
の大きさXが数秒間で指数的に零に漸減され、即ち脱磁
磁界の強さは漸減される(第9図参照)。At this time, the demagnetizing coil 26.27.28.2 of the demagnetizing machine 20
9, a demagnetizing signal is input from the demagnetizing power supply circuit shown in FIG. 4, and X5inωt, Xcosωt, -X5inω
A current of t, -XCOSωt flows. Thereby, the stress measurement range in the ferromagnetic material sample M is applied f times per second (ω=
A clockwise rotating alternating demagnetizing field of 2πf) is applied6.
Furthermore, the magnitude of the current X is gradually reduced exponentially to zero in a few seconds by the demagnetizing command signal in the demagnetizing power supply circuit, that is, the strength of the demagnetizing magnetic field is gradually reduced (see FIG. 9).
これにより強磁性材料試料Mにおける応力測定範囲は、
任意のタイミングで応力方向及び検出器本体10の回転
位置に関係なく脱磁される。As a result, the stress measurement range for the ferromagnetic material sample M is
Demagnetization is performed at any timing regardless of the stress direction and the rotational position of the detector body 10.
従って、第8図におけるθ=45’の場合の応力・誘導
電圧関係ヒステリシス曲線は第10図に示すように1本
の、しかも原点を通る曲線となる。Therefore, the stress/induced voltage relationship hysteresis curve in the case of θ=45' in FIG. 8 becomes one curve that passes through the origin as shown in FIG. 10.
なお、脱磁方向がこの発明のようでなく、一方向の場合
には、応力方向と脱磁方向との間の角度φにより第11
図のような特性になる。即ち、脱磁によって第10図の
ヒステリシスをなくすことはできるが、角度φによって
応力に対する誘導電圧が異なる。Note that if the demagnetization direction is not as in the present invention but is in one direction, the angle φ between the stress direction and the demagnetization direction
The characteristics will be as shown in the figure. That is, although the hysteresis shown in FIG. 10 can be eliminated by demagnetization, the induced voltage with respect to stress differs depending on the angle φ.
上記の応力・誘導電圧関係ヒステリシス曲線(原点通過
)は、所定の強磁性材料試料Mに対し所定の方向に種々
の応力σを加えて上記の磁気的応力測定装置により誘導
電圧のピーク値Vmaxを測定し、キャリプレートする
ことにより求めることができる。The above stress/induced voltage relationship hysteresis curve (passing through the origin) is obtained by applying various stresses σ in a predetermined direction to a predetermined ferromagnetic material sample M, and measuring the peak value Vmax of the induced voltage using the above magnetic stress measuring device. It can be determined by measuring and calibrating.
〔発明の効果j
この発明よれば、応力の方向が予め知られていない場合
でも応力の方向と大きさとを検出・測定し得るし、その
際、脱磁が測定対象に与えられ、しかもその応力検出範
囲に限定されて行われようになっているので、検出・測
定がS/N比が良い状態で高感度で行い得ると共に装置
の大きさも小型化される。[Effects of the invention j According to this invention, even when the direction of stress is not known in advance, the direction and magnitude of stress can be detected and measured. Since detection is performed within a limited range, detection and measurement can be performed with high sensitivity with a good S/N ratio, and the size of the apparatus can also be reduced.
しかも、飽和磁化の領域まで磁化させて応力測定する必
要がないので、測定対象へ加わる力等の問題がなく、更
に、測定終了後、測定範囲の磁化した箇所を脱磁してお
く必要もない。Moreover, since there is no need to magnetize to the saturation magnetization region to measure stress, there are no problems such as force applied to the measurement object, and furthermore, there is no need to demagnetize the magnetized part of the measurement range after the measurement is completed. .
第1図は、この発明の実施例における磁気的応力測定装
置の断面正面図、
第2図は、この発明の実施例における磁気的応力測定装
置の底面図(第1図のU−II矢矢視内向、第3図は、
第1図の■−■線における断面図、第4図は、この発明
の実施例における磁気的応力測定装置の脱磁器の電源回
路図、
第5図は、この発明の実施例における磁気的応力測定装
置の変型脱磁器の磁極の説明図、第6図は、第4図の変
型脱磁器の電源回路図、第7図は、この発明の実施例に
おける磁気的応力測定装置の別の変型脱磁器の磁極の説
明図、第8図は、この発明の実施例における磁気的応力
測定の試料の応力方向と磁気的応力測定装置の検出器本
体の位置方向との関係説明図及び検出器本体の位置方向
と誘導電圧との関係グラフ、第9図は、この発明の実施
例における磁気的応力測定の脱磁器の脱磁と応力値読取
りとのタイミング説明図、
第10図は、この発明の実施例における磁気的応力測定
の誘導電圧と試料の応力との関係のヒステリシス曲線図
、
第11図は、この発明の実施例における磁気的応力測定
の誘導電圧・試料の応力関係曲線の脱磁方向依存度を示
すグラフである。
ll:励磁コア 12:検出コア
+3a、 14a、 15a、 16a :端部18:
検出コイル
19a:リード線引出し口部
22、23.24.25 +脚部
26、27.28.29 :脱磁コイル31、33:嵌
合孔
M:強磁性材料試料
lO:検出器本体
+3.14.15.16:脚部
I7:励磁コイル
19.32:ケーシング
20:脱磁器
22a、 23a、 24a、 25a :端部30:
共通磁路部
O:中心点FIG. 1 is a cross-sectional front view of a magnetic stress measuring device according to an embodiment of the present invention, and FIG. 2 is a bottom view of the magnetic stress measuring device according to an embodiment of the present invention (arrowed by the Introversion, Figure 3 is
1 is a sectional view taken along the line ■-■, FIG. 4 is a power supply circuit diagram of a demagnetizer of a magnetic stress measuring device according to an embodiment of the present invention, and FIG. FIG. 6 is a power supply circuit diagram of the modified demagnetizer of FIG. 4, and FIG. 7 is an explanatory diagram of the magnetic poles of the modified demagnetizer of the measuring device. FIG. 8 is an explanatory diagram of the magnetic poles of porcelain, and is an explanatory diagram of the relationship between the stress direction of the sample for magnetic stress measurement and the positional direction of the detector body of the magnetic stress measuring device in the embodiment of the present invention, and FIG. FIG. 9 is a graph showing the relationship between the position direction and the induced voltage. FIG. 9 is an explanatory diagram of the timing of demagnetizing the demagnetizer for magnetic stress measurement in the embodiment of the present invention and stress value reading. FIG. FIG. 11 is a hysteresis curve diagram of the relationship between induced voltage in magnetic stress measurement and sample stress in an example of the present invention. FIG. It is a graph showing degree. ll: Excitation core 12: Detection core +3a, 14a, 15a, 16a: End portion 18:
Detection coil 19a: Lead wire outlet portions 22, 23, 24, 25 + legs 26, 27, 28, 29: Demagnetizing coils 31, 33: Fitting hole M: Ferromagnetic material sample 1O: Detector body + 3. 14.15.16: Leg I7: Excitation coil 19.32: Casing 20: Demagnetizer 22a, 23a, 24a, 25a: End 30:
Common magnetic path part O: center point
Claims (1)
より誘起される誘導電圧と回転磁界の回転位置とを検出
し、その誘導電圧のピーク値に基づいて強磁性材料試料
に働いている応力の大きさを検出する共に誘導電圧のピ
ーク値を呈する時点の交番磁束に回転位置に基づいて前
記応力の方向を検出するのに際し、回転交番磁束と同心
的に回転し、且つ漸減する脱磁交番磁界を所定時間だけ
強磁性材料試料に与え、その時間の末期において前記誘
導電圧のピーク値及び同ピーク値時点の交番磁束の回転
位置を検出する磁気的応力測定方法(2)夫々一対の磁
極を持つと共にそれらの磁極が中心点回り回転方向に交
互に配置され、一体的に中心点回りに回転駆動される励
磁コアと検出コアとから成る検出ヘッド、励磁コアの励
磁コイルへの励磁電源、励磁コア回転位置検出器及び検
出コアの検出コイルの誘導電圧検出器を具備した検出器
本体と、検出器本体の周囲に配置され回転交番磁界を発
生する複数の磁極対から成る脱磁器とから構成されてい
る磁気的応力測定装置(1) A rotating magnetic field is applied to a ferromagnetic material sample, the induced voltage induced by the rotating magnetic field and the rotational position of the rotating magnetic field are detected, and the voltage applied to the ferromagnetic material sample is based on the peak value of the induced voltage. Demagnetization that rotates concentrically with the rotating alternating magnetic flux and gradually decreases when detecting the magnitude of stress and the direction of the stress based on the rotational position of the alternating magnetic flux at the time when the induced voltage exhibits a peak value. A magnetic stress measurement method in which an alternating magnetic field is applied to a ferromagnetic material sample for a predetermined period of time, and at the end of that time, the peak value of the induced voltage and the rotational position of the alternating magnetic flux at the time of the peak value are detected (2) Each pair of magnetic poles a detection head consisting of an excitation core and a detection core whose magnetic poles are arranged alternately in a rotational direction around a center point and are integrally driven to rotate around the center point; an excitation power supply to an excitation coil of the excitation core; Consists of a detector body equipped with an excitation core rotational position detector and an induced voltage detector of the detection coil of the detection core, and a demagnetizer consisting of a plurality of magnetic pole pairs arranged around the detector body and generating a rotating alternating magnetic field. Magnetic stress measuring device
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32489289A JPH03186725A (en) | 1989-12-16 | 1989-12-16 | Method and instrument for measuring magnetic stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32489289A JPH03186725A (en) | 1989-12-16 | 1989-12-16 | Method and instrument for measuring magnetic stress |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03186725A true JPH03186725A (en) | 1991-08-14 |
Family
ID=18170791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32489289A Pending JPH03186725A (en) | 1989-12-16 | 1989-12-16 | Method and instrument for measuring magnetic stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03186725A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886697A (en) * | 1994-09-19 | 1996-04-02 | Honda Motor Co Ltd | Method for detecting surface stress of plane structural member |
US5828211A (en) * | 1993-05-21 | 1998-10-27 | Aea Technology Plc | Determining stress in ferromagnetic materials from measurements of magnetic anisotropy and magnetic permeability |
JP2003021563A (en) * | 2001-07-09 | 2003-01-24 | Chuden Gijutsu Consultant Kk | Apparatus and method for measurement of stress |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017330A (en) * | 1983-07-11 | 1985-01-29 | Japanese National Railways<Jnr> | Measuring device of stress of rail shaft |
JPS6236149U (en) * | 1985-08-20 | 1987-03-03 |
-
1989
- 1989-12-16 JP JP32489289A patent/JPH03186725A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017330A (en) * | 1983-07-11 | 1985-01-29 | Japanese National Railways<Jnr> | Measuring device of stress of rail shaft |
JPS6236149U (en) * | 1985-08-20 | 1987-03-03 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828211A (en) * | 1993-05-21 | 1998-10-27 | Aea Technology Plc | Determining stress in ferromagnetic materials from measurements of magnetic anisotropy and magnetic permeability |
JPH0886697A (en) * | 1994-09-19 | 1996-04-02 | Honda Motor Co Ltd | Method for detecting surface stress of plane structural member |
JP2003021563A (en) * | 2001-07-09 | 2003-01-24 | Chuden Gijutsu Consultant Kk | Apparatus and method for measurement of stress |
JP4691277B2 (en) * | 2001-07-09 | 2011-06-01 | 中電技術コンサルタント株式会社 | Stress measuring apparatus and stress measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6698299B2 (en) | Magnetoelastic torque sensor | |
US5708216A (en) | Circularly magnetized non-contact torque sensor and method for measuring torque using same | |
JP3091398B2 (en) | Magnetic-impedance element and method of manufacturing the same | |
JP2008532012A (en) | Current sensor with annular coil | |
JPH08179020A (en) | Magnetic correcting circuit and image display device using it | |
JP2635714B2 (en) | DC bias detection method for transformer core | |
Tumański | Modern methods of electrical steel testing—A review | |
US5287056A (en) | Surface magnetometer with modulated flux gate section | |
JPH03186725A (en) | Method and instrument for measuring magnetic stress | |
JP4418986B2 (en) | Magnetic field detection element and magnetic field detection method using the same | |
US9816888B2 (en) | Sensor and method for detecting a position of an effective surface of the sensor | |
JP3326737B2 (en) | DC current sensor | |
JP2912003B2 (en) | Method for measuring magnetic properties of superconductors | |
JP2003282995A (en) | Magnetic field detecting element | |
JPH1068744A (en) | Direct current sensor | |
JP2000149223A (en) | Magnetic field sensor | |
EP0595915B1 (en) | Method and device for measuring the distance between two mutually opposing surfaces by means of the reluctance method | |
JP3166986B2 (en) | Current sensor | |
JP2000055940A (en) | Dc current sensor | |
JPH02110331A (en) | Excitation of magnetostriction-type stress sensor | |
JPH074617Y2 (en) | Magnetic hysteresis characteristic measuring device | |
JP3494947B2 (en) | MI element control device | |
JP4691277B2 (en) | Stress measuring apparatus and stress measuring method | |
JPS58210579A (en) | Magnetism measuring device | |
JPH08122422A (en) | Magnetic field sensor utilizing reversible susceptibility |