JPH03186717A - Cryogenic flowmeter - Google Patents
Cryogenic flowmeterInfo
- Publication number
- JPH03186717A JPH03186717A JP1326124A JP32612489A JPH03186717A JP H03186717 A JPH03186717 A JP H03186717A JP 1326124 A JP1326124 A JP 1326124A JP 32612489 A JP32612489 A JP 32612489A JP H03186717 A JPH03186717 A JP H03186717A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- temperature
- pressure
- piping
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 abstract description 11
- 230000006698 induction Effects 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、極低温流体の流量を測定する極低温流量計に
関する。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a cryogenic flowmeter for measuring the flow rate of cryogenic fluid.
(従来の技術)
液体窒素や液体ヘリウムのような極低温流体の流量を測
定する場合、オリフィスやベンチュリーなどで力学的な
量を測定する差圧測定法と熱的な量を測定するヒートパ
ルス法や加熱法などがある。(Prior technology) When measuring the flow rate of cryogenic fluids such as liquid nitrogen or liquid helium, there are two methods: the differential pressure measurement method that measures mechanical quantities using an orifice or venturi, etc., and the heat pulse method that measures thermal quantities. and heating methods.
加熱法は、低温工学Vo12.16. Na 3 (1
981年)p144− p146に示すように、流体の
流れている配管の一部を加熱し、加熱量とそれに伴う冷
媒の温度上昇を測定することにより、流量を次式から算
出する方法である。The heating method is described in Cryogenic Engineering Vol. 12.16. Na 3 (1
As shown in p. 144 to p. 146 of 1981), this method calculates the flow rate from the following equation by heating a part of the piping through which the fluid is flowing and measuring the amount of heating and the resulting temperature rise of the refrigerant.
G=Q/CpΔT (1)ここで
G:流体の質量流量 (kg/ h )Q:加熱量
(KcaQ/ h )Cp:加熱部の流体の
平均定圧比熱 (KcaIl/kg−K)ΔT:加熱
加熱日入口口
間の流体の温度差 (K)
(発明が解決しようとする課題)
以上のような流量測定方法には、それぞれ次のような欠
点、不都合がある。G=Q/CpΔT (1) where G: Mass flow rate of fluid (kg/h) Q: Amount of heating
(KcaQ/h)Cp: Average constant-pressure specific heat of the fluid in the heating section (KcaIl/kg-K)ΔT: Temperature difference of the fluid between the heating and inlet ports (K) (Problem to be solved by the invention) As described above Each flow rate measurement method has the following drawbacks and inconveniences.
一般に、極低温部において流体の流量が多い場合でも、
温度が低い為、流体の密度が大きく、流速が極端に小さ
くなる。この為、力学的な量である差圧を測定するオリ
フィスやベンチュリーなどでは十分な静水圧を得ること
ができず流量測定が困難となる。また、測定する静水圧
が小さいため。In general, even if the fluid flow rate is large in a cryogenic area,
Because the temperature is low, the density of the fluid is high and the flow velocity is extremely low. For this reason, an orifice or venturi that measures differential pressure, which is a dynamic quantity, cannot obtain sufficient hydrostatic pressure, making it difficult to measure the flow rate. Also, because the hydrostatic pressure to be measured is small.
測定に使用されるオリフィスやベンチュリーの寸法は、
超小型かつ高精度の加工が要求される。流量が更に少な
い場合は、ますます測定は困難となり測定誤差も増大す
る。更に、本方式の流路測定は、流体の流路の1部に差
圧発生の為の流動抵抗を設ける必要がある。The dimensions of the orifice or venturi used for measurement are
Ultra-compact and high-precision processing is required. If the flow rate is even lower, measurement becomes increasingly difficult and measurement errors increase. Furthermore, in this method of flow path measurement, it is necessary to provide a flow resistance for generating a pressure difference in a part of the fluid flow path.
一方、加熱法による流量Δ1り定の場合、流体の流路の
一部に流動抵抗を設ける必要がないが、加熱量Qがすべ
て流体に伝達されなければ流量を精度良<8(す定でき
ない。また、流体のエンタルピ変化から流量を測定する
ため、加熱部入ロ、出口の流体の温度、圧力を精度良く
測定しなければならない。特に、加熱jtQが小さいと
流体の入口出口間の温度変化が小さく、測定誤差が大き
くなる。この為、加熱量は、一定値以上が要求され、流
体への熱的外乱が増加する。On the other hand, when determining the flow rate Δ1 by the heating method, it is not necessary to provide a flow resistance in a part of the fluid flow path, but if the heating amount Q is not entirely transmitted to the fluid, the flow rate cannot be accurately determined <8 ( In addition, in order to measure the flow rate from the enthalpy change of the fluid, it is necessary to accurately measure the temperature and pressure of the fluid at the entrance and exit of the heating section.In particular, if the heating jtQ is small, the temperature change between the fluid entrance and exit is small, and the measurement error becomes large.For this reason, the amount of heating is required to be above a certain value, and thermal disturbance to the fluid increases.
そこで本発明の目的は、流体への熱的外乱、もしくは流
動抵抗を極力少なくするとともに、簡便で安価かつ交換
容易で測定誤差の少ない極低温流量計を提供することに
ある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cryogenic flowmeter that minimizes thermal disturbance or flow resistance to a fluid, is simple, inexpensive, easy to replace, and has little measurement error.
(課題を解決するための手段)
すなわち本発明の極低温流量計は、極低温流体を流す配
管に取付けられた加熱手段と、この加熱手段の下流側の
2点に取付けられた温度計あるいは圧力計とを備えた構
成とする。(Means for Solving the Problems) That is, the cryogenic flowmeter of the present invention includes a heating means attached to a pipe through which cryogenic fluid flows, and a thermometer or pressure gauge attached at two points downstream of the heating means. The configuration is equipped with a meter.
(作用)
本発明の極低温流量計においては、加熱手段によって加
熱された流体の温度変化あるいは圧力変化が下流側2点
を通過する時間差を測定して流量を求める。(Function) In the cryogenic flowmeter of the present invention, the flow rate is determined by measuring the time difference in which the temperature change or pressure change of the fluid heated by the heating means passes through two points on the downstream side.
(実施例)
以下、本発明を第1図に示す一実施例について説明する
。流体が流れる配管工の上流側、外表面に誘導加熱コイ
ル2を配置する。その下流側で間隔りの2点A、Bに熱
電対3を、また、この2点A、B間に、例えば銅のよう
な熱伝導率の高い金属で製作された温度均一ブロック4
に収納した温度計5および、導圧管6を配管1外表面」
二に取付けである。また導圧管6の端部には、図示して
いないが圧力センサーがとりつけである。これらの配管
1の周囲は、真空雰囲気7を介して熱シールド8で熱侵
入を軽減している。熱シールド8の外周側には、真空雰
囲気7を保つための外管9が配管1をおおっている。(Example) Hereinafter, an example of the present invention shown in FIG. 1 will be described. An induction heating coil 2 is placed on the outer surface of the plumber on the upstream side through which the fluid flows. On the downstream side, a thermocouple 3 is placed at two points A and B that are spaced apart, and a temperature uniformity block 4 made of a metal with high thermal conductivity such as copper is placed between these two points A and B.
The thermometer 5 housed in the pipe 1 and the impulse pipe 6
The second step is installation. Further, a pressure sensor (not shown) is attached to the end of the pressure guiding pipe 6. A heat shield 8 is provided around these pipes 1 via a vacuum atmosphere 7 to reduce heat intrusion. On the outer peripheral side of the heat shield 8, an outer tube 9 for maintaining a vacuum atmosphere 7 covers the piping 1.
次に、上記のように構成した本発明の作用について第2
図を用いて説明する。第2図(a)は、誘導加熱コイル
による流体への入熱時の、加熱コイル印加時の出力電圧
とその時間変化を示したものである。第2図(b)は、
2点A、Bでの温度差(熱起電力の差)の時間変化を示
したものである。Next, a second explanation will be given of the operation of the present invention configured as described above.
This will be explained using figures. FIG. 2(a) shows the output voltage and its time change when the heating coil is applied when heat is input to the fluid by the induction heating coil. Figure 2(b) is
It shows the change in temperature difference (difference in thermoelectromotive force) over time at two points A and B.
今、誘導加熱コイル2に図示していないパルス電源から
のパルス放電によって電流を流すと配管↓の一部が加熱
され、それによって配管1内を流れる流体の温度が上昇
する。流体は、ある流速Vを有して上流から下流へと流
れているため、その流体の温度変化が発生する時刻1.
、1.および加熱コイル印加時の時刻t。は、第2図に
示すようになる。この場合、流体の温度変化の伝搬速度
は。Now, when a current is passed through the induction heating coil 2 by a pulse discharge from a pulse power source (not shown), a part of the pipe ↓ is heated, thereby increasing the temperature of the fluid flowing inside the pipe 1. Since the fluid is flowing from upstream to downstream with a certain flow velocity V, the temperature change of the fluid occurs at time 1.
, 1. and time t when the heating coil is applied. is as shown in FIG. In this case, the propagation speed of the temperature change in the fluid is.
2点間ABの距離りを、配管の熱伝導による長手方向の
温度上昇が黙視できる値にとることによって流速と等し
いとおくことができる。By setting the distance between two points AB to a value that allows the temperature rise in the longitudinal direction due to heat conduction of the pipe to be ignored, it can be made equal to the flow velocity.
この結果、流速すは、12−1□=Δtとおくことによ
り
で与えられることになる。流速すが測定されるとAB間
に設置された温度計5及び導圧管6の先にとりつけた圧
力センサーによって流体の温度、圧力がΔ(q定でき、
その状態での流体の物性値を知ることができる。これに
より流体の流量は各々体積流+Jt : V (m’/
5)V=A−ぴ (4)質量流量
:G(kg/5)
G=ρ ・V (5)=ρ
・A −v (eで与えら
れる。As a result, the flow velocity S is given by setting 12-1□=Δt. When the flow velocity is measured, the temperature and pressure of the fluid can be determined by Δ(q) using the thermometer 5 installed between AB and the pressure sensor attached to the tip of the impulse pipe 6.
It is possible to know the physical property values of the fluid in that state. As a result, the flow rate of the fluid is each volume flow + Jt: V (m'/
5) V=A-pi (4) Mass flow rate: G (kg/5) G=ρ ・V (5)=ρ
・A − v (given by e.
但し A:流路断面積 (1)
サ:流速 (m/S)
ρ:流体の平均密度(kg/m’)
である。ここで流量測定には、取付けの簡単で安価な熱
電対と加熱コイルを用いているのみで流動抵抗となるも
のは、−切流路中に介在させていない。However, A: Channel cross-sectional area (1) Sa: Flow velocity (m/S) ρ: Average density of fluid (kg/m'). Here, for flow rate measurement, only a thermocouple and a heating coil, which are easy to install and are inexpensive, are used, and nothing that would cause flow resistance is interposed in the -cut flow path.
本実施例の特徴は、流速を測定する手段にある。The feature of this embodiment lies in the means for measuring the flow velocity.
ヒートパルス法や加熱法による熱的な量から流量を求め
るのではなく、加熱は流体の単に温度変化を生じさせる
ための手段であり、加熱量を精度良く測定する必要は全
くない。重要なのは、流体の温度変化の伝搬速度を測定
することであり、そのための信号として、2点間の温度
変化を利用していることにある。Rather than determining the flow rate from a thermal amount using a heat pulse method or a heating method, heating is simply a means of causing a temperature change in the fluid, and there is no need to accurately measure the amount of heating. The important thing is to measure the propagation speed of the temperature change in the fluid, and the temperature change between two points is used as a signal for this purpose.
なお本実施例の説明では、伝搬速度測定用の信号として
2点間に熱電対を取付け、一端を共通にして絶対量でな
く相対量を測定した。これは加熱量が小さくて温度上昇
が微小にしか変化しなくても検出できるようにしたもの
である。然しなから、絶対量を測定しても何ら本発明の
作用に支障をきたすことはない。このため熱電対ではな
く抵抗温度計を用いてもよい。また、本実施例では、主
として温度計による伝搬速度測定について説明したが、
圧力による伝搬速度測定も可能である。前述のA82点
に温度計のかわりに導圧管および圧力センサーを設置す
る。流体が加熱されて温度が上昇すると、それに伴い流
体の圧力が変化する。この圧力の変化の伝搬速度を測定
しても同じ効果を得ることができる。また流体の平均物
性値を知るための温度、圧力測定は、従来の測定方法と
何らかわりがないが、本実施例のように配管外表面に取
付けて測定するのではなく、管内に挿入して外界囲気の
影響をなくすようにすると更に精度良く流量を求めるこ
とができる。In the description of this example, a thermocouple was attached between two points as a signal for measuring the propagation velocity, and one end was used in common to measure a relative amount rather than an absolute amount. This allows detection even if the amount of heating is small and the temperature rise changes only minutely. However, even if the absolute amount is measured, there is no problem in the operation of the present invention. For this reason, a resistance thermometer may be used instead of a thermocouple. In addition, in this example, we mainly explained propagation velocity measurement using a thermometer.
Propagation velocity measurements using pressure are also possible. Install a pressure tube and a pressure sensor instead of the thermometer at the A82 point mentioned above. When a fluid is heated and its temperature increases, the pressure of the fluid changes accordingly. The same effect can be obtained by measuring the propagation speed of this pressure change. In addition, temperature and pressure measurements to determine the average physical property values of fluids are no different from conventional measurement methods, but instead of being attached to the outside surface of the pipe as in this example, they are inserted into the pipe. By eliminating the influence of the surrounding air, the flow rate can be determined with even greater precision.
さらに、流体の加熱手段は、上記実施例の誘導加熱コイ
ルのほかに、配管に巻付けられあるいは配管内に挿入さ
れた抵抗型のヒータでもよい。Further, the fluid heating means may be a resistance type heater wrapped around or inserted into the piping, in addition to the induction heating coil of the above embodiment.
以上説明したように本発明によれば、流体への熱的外乱
、もしくは流動抵抗を極力少なくするとともに、簡便で
安価かつ交換容易で測定誤差の少ない極低温流量計を得
ることができる。As explained above, according to the present invention, it is possible to obtain a cryogenic flowmeter that is simple, inexpensive, easy to replace, and has little measurement error, while minimizing thermal disturbance to the fluid or flow resistance.
第工図は本発明の実施例の極低温流量計の断面図、第2
図(a)、 (b)は本発明の詳細な説明する図である
。
工・・・配管 2・・・誘導加熱コイル3
・・・熱電対 5・・・温度計6・・・導圧
管The second construction drawing is a sectional view of a cryogenic flowmeter according to an embodiment of the present invention.
Figures (a) and (b) are diagrams explaining the present invention in detail. Engineering... Piping 2... Induction heating coil 3
... Thermocouple 5 ... Thermometer 6 ... Impulse tube
Claims (1)
の加熱手段の下流側の2点に取付けられた温度計あるい
は圧力計とを備えたことを特徴とする極低温流量計。A cryogenic flow meter characterized by comprising a heating means attached to a pipe through which cryogenic fluid flows, and a thermometer or a pressure gauge attached at two points downstream of the heating means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1326124A JPH03186717A (en) | 1989-12-18 | 1989-12-18 | Cryogenic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1326124A JPH03186717A (en) | 1989-12-18 | 1989-12-18 | Cryogenic flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03186717A true JPH03186717A (en) | 1991-08-14 |
Family
ID=18184338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1326124A Pending JPH03186717A (en) | 1989-12-18 | 1989-12-18 | Cryogenic flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03186717A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186714A (en) * | 1984-03-05 | 1985-09-24 | Toshiba Corp | Flow rate measuring instrument |
-
1989
- 1989-12-18 JP JP1326124A patent/JPH03186717A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186714A (en) * | 1984-03-05 | 1985-09-24 | Toshiba Corp | Flow rate measuring instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3559482A (en) | Fluid flow measuring apparatus | |
KR20010020975A (en) | Non-iterative method for obtaining mass flow rate | |
US5237866A (en) | Flow sensor for measuring high fluid flow rates | |
US3443434A (en) | Fluid flow measuring apparatus | |
US3680377A (en) | Fluid flow meter | |
US6732596B2 (en) | Critical gas flow measurement apparatus and method | |
US2799165A (en) | Apparatus for measuring flow | |
JPH0694490A (en) | Inline gas flow rate measuring device | |
US6962077B2 (en) | System and method of measuring convection induced impedance gradients to determine liquid flow rates | |
US3252324A (en) | Mass flowmeter | |
JPH03186717A (en) | Cryogenic flowmeter | |
US4362404A (en) | Heat measuring apparatus and method for use in a continuous fluid stream | |
JPH09101186A (en) | Pitot-tube type mass flowmeter | |
US3498126A (en) | Apparatus for measuring the enthalpy of high temperature gases | |
Buttsworth et al. | A fast-response total temperature probe for unsteady compressible flows | |
JP3398251B2 (en) | Flowmeter | |
JPH0219738Y2 (en) | ||
Rivetti et al. | Metrological performances of Venturi flowmeters in normal, supercritical and superfluid helium | |
US3369402A (en) | Hydraulically balanced bridge for measuring temperature differences | |
RU2039939C1 (en) | Device for measuring low flow rate of gas | |
El Agib | A hydraulic bridge for measuring small temperature difference | |
Giedt et al. | A dual-element transducer for measuring high gas-stream temperatures | |
JPH0560044B2 (en) | ||
JPS62232527A (en) | Method and apparatus for measuring temperature | |
JPS62235532A (en) | Measurement of temperature |