[go: up one dir, main page]

JPH03185047A - Thermosetting resin composition for semiconductor sealing use - Google Patents

Thermosetting resin composition for semiconductor sealing use

Info

Publication number
JPH03185047A
JPH03185047A JP32400589A JP32400589A JPH03185047A JP H03185047 A JPH03185047 A JP H03185047A JP 32400589 A JP32400589 A JP 32400589A JP 32400589 A JP32400589 A JP 32400589A JP H03185047 A JPH03185047 A JP H03185047A
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
weight
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32400589A
Other languages
Japanese (ja)
Inventor
Mikio Kitahara
北原 幹夫
Koichi Machida
町田 貢一
Takayuki Kubo
久保 隆幸
Motoyuki Torikai
基之 鳥飼
Kotaro Asahina
浩太郎 朝比奈
Junsuke Tanaka
淳介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP32400589A priority Critical patent/JPH03185047A/en
Publication of JPH03185047A publication Critical patent/JPH03185047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title composition giving high reliability for sealing surface-packaging type semiconductor devices, thus useful from an industrial standpoint by incorporating a reaction product of a specific silane compound and coupling agent in a composition comprising a thermosetting rein and inorganic filler. CONSTITUTION:The objective composition can be obtained by incorporating a composition comprising (A) 100 pts.wt. of a thermosetting resin (e.g. produced from an epoxy resin, its curing agent and a polymaleimide compound) and (B) 100-900 pts.wt. of an inorganic filler (e.g. spherical silica) with (C) 0.5-50 pts.wt. of a silane compound of the formula (R1 is 1-20C alkyl; n is 0-10) and (D) 0.5-25 pts.wt. of a coupling agent (e.g. vinyl trimethoxysilane).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体封止用の樹脂組成物に関わり、特に、表
面実装型の半導体装置のように半田耐熱性を要求される
半導体装置を封止するのに適した樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin composition for encapsulating semiconductors, particularly for encapsulating semiconductor devices that require soldering heat resistance such as surface-mounted semiconductor devices. The present invention relates to a resin composition suitable for stopping.

〔従来の技術〕[Conventional technology]

電気機器、電子部品、とりわけ半導体の分野では、高密
度実装化、多機能化の傾向にあり、これを封止する材料
には、実装工程における高温半田に対して耐熱性に優れ
た樹脂組成物の開発が強く望まれている。
In the field of electrical equipment, electronic components, and especially semiconductors, there is a trend toward higher density packaging and multifunctionality, and the sealing materials used are resin compositions that have excellent heat resistance against high-temperature soldering during the mounting process. The development of this is strongly desired.

従来、半導体封止用樹脂組成物としては、o −タレゾ
ールノボラック型エポキシ樹脂に代表されるエポキシ樹
脂、その硬化剤およびシリカを主戒分とする樹脂組成物
が成形性、信頼性の点で優れているため主流となってい
る。
Conventionally, as resin compositions for semiconductor encapsulation, resin compositions mainly containing epoxy resins such as o-talesol novolak epoxy resins, curing agents thereof, and silica have been used in terms of moldability and reliability. It has become mainstream because it is superior.

また、樹脂封止型半導体装置については、前述の高密度
実装化の流れにより、表面実装型の半導体装置に変わり
つつある。このような表面実装型の半導体装置において
は、従来の挿入型半導体装置と違って半導体装置全体が
200℃以上の半田付は温度に曝される。この点から、
樹脂強度の向上を目的として耐熱性に優れたイミド系の
樹脂を使用する研究も多くなされている。
Further, resin-sealed semiconductor devices are being replaced by surface-mounted semiconductor devices due to the above-mentioned trend toward high-density packaging. In such a surface mount type semiconductor device, unlike a conventional insertion type semiconductor device, the entire semiconductor device is exposed to temperatures of 200° C. or higher during soldering. From this point,
Many studies have been conducted on the use of imide-based resins with excellent heat resistance for the purpose of improving resin strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

表面実装型の樹脂封止型半導体装置の問題点は半田付は
工程において半導体装置全体が200°C以上の高温に
加熱されるため封止樹脂にクランクが発生し半導体装置
の信頼性を大幅に低下させることである。このメカニズ
ムとして、高温においては樹脂強度の低下が激しく、特
に、封止樹脂が吸湿した状態のまま高温に曝されると吸
湿水分の膨張による応力に抗しきれず、封止樹脂にクラ
ックが発生することが考えられる。
The problem with surface-mounted resin-sealed semiconductor devices is that the entire semiconductor device is heated to a high temperature of over 200°C during the soldering process, which causes cracks in the encapsulation resin, which greatly reduces the reliability of the semiconductor device. It is to lower the The mechanism behind this is that the strength of the resin decreases rapidly at high temperatures.In particular, if the sealing resin is exposed to high temperatures while still absorbing moisture, it will not be able to withstand the stress caused by the expansion of the absorbed moisture, and cracks will occur in the sealing resin. It is possible that

ところで、封止用481脂は樹脂と無機充填剤との複合
材料であり、樹脂と無機充填剤の界面接着が不十分であ
ると、吸湿時に水分がこの界面に進入し、封止用樹脂の
強度を低下させる。
By the way, 481 resin for sealing is a composite material of resin and inorganic filler, and if the interfacial adhesion between the resin and inorganic filler is insufficient, water will enter this interface when moisture is absorbed, and the sealing resin will deteriorate. Reduce strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は種々検討した結果、特殊なシラン化合物と
カップリング剤との反応物を使用することで、樹脂と無
機充填剤の接着力が向上し、吸湿時の強度低下が小さく
抑えられることを見出し、本発明を完成するに至った。
As a result of various studies, the present inventors have found that by using a reaction product of a special silane compound and a coupling agent, the adhesive strength between the resin and the inorganic filler can be improved, and the decrease in strength when moisture is absorbed can be suppressed. They discovered this and completed the present invention.

すなわち、本発明は熱硬化性樹脂(a)  100重量
部および無機充填剤(b)  100〜900重量部か
ら本質的になる樹脂組成物において、一般式(): (R1は炭素数1から20のアルキル基を表し、nは0
または10以下の正の整数を表す、)で表されるシラン
化合物(c)とカップリング剤(d)との反応物を含む
ことを特徴とする半導体封止用熱硬化性樹脂組成物であ
る。
That is, the present invention provides a resin composition consisting essentially of 100 parts by weight of a thermosetting resin (a) and 100 to 900 parts by weight of an inorganic filler (b) of the general formula (): (R1 is a carbon number of 1 to 20 represents an alkyl group, n is 0
or a positive integer of 10 or less. .

熱硬化性樹脂(a)とは、エポキシ樹脂(A)およびエ
ポキシ硬化剤(B)よりなるもの、また、さらに耐熱性
が要求される場合には、エポキシ樹脂(A)、エポキシ
硬化剤CB)に加えてポリマレイミド化合物(C)より
なるものである。
The thermosetting resin (a) is one consisting of an epoxy resin (A) and an epoxy curing agent (B), and if further heat resistance is required, an epoxy resin (A) and an epoxy curing agent CB). In addition to this, it also contains a polymaleimide compound (C).

エポキシ樹脂(A)は、1分子中に少なくとも2個のエ
ポキシ基を有するものであれば全て使用可能である。こ
れらについて、以下に例示する。
Any epoxy resin (A) can be used as long as it has at least two epoxy groups in one molecule. Examples of these are shown below.

フェノール、クレゾール、レゾルシノール等のフェノー
ル類とアルデヒド類との反応生成物であるノボラック樹
脂から誘導されるノボラック型エポキシ樹脂、および上
記のフェノール類とアラルキルエーテル類との反応生成
物であるアラルキル樹脂からKitされるアラルキル型
エポキシ樹脂が耐熱性、電気特性の点から好ましい。
Kits are made from novolak-type epoxy resins derived from novolak resins, which are the reaction products of phenols such as phenol, cresol, and resorcinol, and aldehydes, and aralkyl resins, which are the reaction products of the above-mentioned phenols and aralkyl ethers. Aralkyl type epoxy resins are preferred from the viewpoint of heat resistance and electrical properties.

その他、1分子中に2個以上の活性水素を有する化合物
から誘導されるエポキシ樹脂、例えば、ビスフェノール
A、ビスフェノールF、レゾルシン、ビスヒドロキシジ
フェニルエーテル、テトラブロムビスフェノールA、)
リヒドロキシフェニルメタン、テトラヒドロキシフェニ
ルエタン、アルカンテトラキスフェノール等の多価フェ
ノール類;エチレングリコール、ネオペンチルグリコー
ル、グリセリン、トリメチロールプロパン、ペンタエリ
スリトール、ジエチレングリコール、ポリプロピレング
リコール等の多価アルコール類;エチレンジアミン、ア
ニリン、ビス(4−アミノフェニル)メタン等のアミン
類;アジピン酸、フクル酸、イソフタル酸等の多価カル
ボン酸類とエピクロルヒドリンまたは2−メチルエピク
ロルヒドリンを反応させて得られるエポキシ樹脂があり
、これらのエポキシ樹脂の111111または2種類以
上が使用される。
In addition, epoxy resins derived from compounds having two or more active hydrogens in one molecule, such as bisphenol A, bisphenol F, resorcinol, bishydroxydiphenyl ether, tetrabromobisphenol A, etc.)
Polyhydric phenols such as dihydroxyphenylmethane, tetrahydroxyphenylethane, and alkane tetrakisphenol; Polyhydric alcohols such as ethylene glycol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, diethylene glycol, and polypropylene glycol; ethylenediamine, aniline , amines such as bis(4-aminophenyl)methane; epoxy resins obtained by reacting polycarboxylic acids such as adipic acid, fucuric acid, and isophthalic acid with epichlorohydrin or 2-methylepichlorohydrin, and these epoxy resins 111111 or two or more of these are used.

また、前記エポキシ樹脂(A)として、オイル状、ゴム
状等のシリコーン化合物で変性したエポキシ樹脂を使用
することもできる0例えば、特開昭62−270617
号、特開昭62−273222号に開示された方法によ
り製造されるシリコーン変性エボキシ樹脂等がある。
Furthermore, as the epoxy resin (A), an epoxy resin modified with an oily or rubbery silicone compound can also be used.
There are silicone-modified epoxy resins produced by the method disclosed in Japanese Patent Application Laid-Open No. 62-273222.

エポキシ硬化剤(B)については、公知のものが使用で
きる。例えば、フェノール、クレゾール、レゾルシノー
ル等のフェノール類とアルデヒド類との反応生成物であ
るノボラックフェノール樹脂、上記のフェノール類とア
ラルキルエーテル類との反応生成物であるアラルキルフ
ェノール樹脂、トリヒドロキシフェニルメタン、テトラ
ヒドロキシフェニルエタン、アルカンテトラキスフェノ
ール等の多価フェノール類、その他、ア旦ン類、酸無水
物等が挙げられ、これらの1種類または2111類以上
が使用される。
As for the epoxy curing agent (B), known ones can be used. For example, novolak phenol resin, which is a reaction product of phenols such as phenol, cresol, and resorcinol, and aldehydes, aralkyl phenol resin, which is a reaction product of the above phenols and aralkyl ethers, trihydroxyphenylmethane, and tetrahydroxyphenylmethane. Examples include polyhydric phenols such as hydroxyphenylethane and alkanetetrakisphenol, as well as adamanes, acid anhydrides, etc., and one or more of these 2111 types or more are used.

ポリマレイごド化合物(C)としては、1分子中に2個
以上のマレイミド基を有する化合物ならば全て使用可能
である。
As the polymeric maleimide compound (C), any compound having two or more maleimide groups in one molecule can be used.

このようなポリマレイミド化合物(C)としては、例え
ば、N、N’−エチレンビスマレイミド、N、 N’−
ヘキサメチレンビスマレイミド、N、N’(1,3−フ
ェニレン)ビスマレイミド、N、N’(1,4−フェニ
レン)ビスマレイミド、ビス(4マレイミドフヱニル)
メタン、ビス(4−マレイミドフェニル)エーテル、ビ
ス(3−クロロ−4−マレイミドフェニル)メタン、ビ
ス(4−マレイミドフェニル)スルホン、ビス(4−マ
レイ壽ドシクロヘキシル)メタン、1.4−ビス(マレ
イミドメチル)シクロヘキサン、1.4−ビス(マレイ
ミドフェニル)シクロヘキサン、1.4−ビス(マレイ
ミドメチル)ベンゼン、ポリマレイミドフェニルメチレ
ン等があるが、本発明においては、次の2種類のポリマ
レイミド化合物が好ましく用いられる。
Examples of such a polymaleimide compound (C) include N,N'-ethylene bismaleimide, N,N'-
Hexamethylene bismaleimide, N,N'(1,3-phenylene)bismaleimide, N,N'(1,4-phenylene)bismaleimide, bis(4maleimidophenoyl)
Methane, bis(4-maleimidophenyl) ether, bis(3-chloro-4-maleimidophenyl)methane, bis(4-maleimidophenyl)sulfone, bis(4-maleimidophenyl)methane, 1,4-bis( Maleimidomethyl)cyclohexane, 1,4-bis(maleimidophenyl)cyclohexane, 1,4-bis(maleimidomethyl)benzene, polymaleimidophenylmethylene, etc. In the present invention, the following two types of polymaleimide compounds are used. Preferably used.

第1の種類としては下記一般式(■):(II) よりなる2価の基を表し、Xは直接結合、炭素数1〜1
0の2価の炭化水素基、六フッ素化されたイソプロピリ
デン、カルボニル、チオ、スルフィニル、スルホニルま
たはオキシからなる群より選ばれる基を示す、) で表されるビスマレイミド化合物である。
The first type represents a divalent group consisting of the following general formula (■): (II), where X is a direct bond and has 1 to 1 carbon atoms.
0 divalent hydrocarbon group, hexafluorinated isopropylidene, carbonyl, thio, sulfinyl, sulfonyl, or a group selected from the group consisting of oxy.

このようなビスフレイ5ド化合物は一般式(■):(R
zは一般式(II)の場合と同じ意味を示す。)で表さ
れるジアミンと無水マレイン酸を縮合・脱水反応させて
容易に製造できる。
Such bisfreido compounds have the general formula (■): (R
z has the same meaning as in general formula (II). ) can be easily produced by a condensation/dehydration reaction between the diamine represented by the formula and maleic anhydride.

上記のビスマレイミド化合物として具体的には、1.3
−ビス(3−マレイミドフェノキシ)ベンゼン、ビス(
4−(3−マレイミドフェノキシ)フェニルコメタン、
1.1−ビス(4−(3−マレイミドフェノキシ)フェ
ニル〕エタン、l、2−ビス(4−(3−マレイミドフ
ェノキシ)フェニル〕エタン、2.2−ビス(4−(3
−マレイミドフェノキシ)フェニル〕プロパン、2.2
−ビス〔4(3−マレイミドフェノキシ)フェニルコブ
タン、2.2−ビス(4−(3−マレイミドフェノキシ
)フェニル) −1,1,1,3,3,3−へキサフル
オロプロパン、4,4°−ビス(3−マレイミドフェノ
キシ)ビフェニル、ビス(4−(3−マレイミドフェノ
キシ〉フェニルコケトン、ビス(4−(3−マレイミド
フェノキシ)フェニル〕スルフィド、ビス[4−(3−
フレイ5ドフエノキシ)フェニル]スルホキシド、ビス
(4−(3τマレイミドフエノキシ)フェニル〕スルホ
ン、ビス(4−(3マレイミドフエノキシ)フェニル〕
エーテル等が挙げられる。
Specifically, the above bismaleimide compound is 1.3
-Bis(3-maleimidophenoxy)benzene, bis(
4-(3-maleimidophenoxy)phenylcomethane,
1.1-bis(4-(3-maleimidophenoxy)phenyl)ethane, l,2-bis(4-(3-maleimidophenoxy)phenyl)ethane, 2.2-bis(4-(3
-maleimidophenoxy)phenyl]propane, 2.2
-bis[4(3-maleimidophenoxy)phenylcobutane, 2.2-bis(4-(3-maleimidophenoxy)phenyl) -1,1,1,3,3,3-hexafluoropropane, 4, 4°-bis(3-maleimidophenoxy)biphenyl, bis(4-(3-maleimidophenoxy)phenylkoketone, bis(4-(3-maleimidophenoxy)phenyl)sulfide, bis[4-(3-
Frey5dophenoxy)phenyl] sulfoxide, bis(4-(3τmaleimidophenoxy)phenyl)sulfone, bis(4-(3maleimidophenoxy)phenyl)
Examples include ether.

第2の種類としては、一般式(■): (式中、 iは平均値で0〜10である。The second type is the general formula (■): (In the formula, i is an average value of 0 to 10.

) で表されるポリマレイミド化合物である。) It is a polymaleimide compound represented by

このようなポリマレイミド化合物は一般式(): (式中、lは平均値でO〜10である。)で表されるポ
リアミンと無水マレイン酸を縮合・脱水反応させて容易
に製造できる。
Such a polymaleimide compound can be easily produced by a condensation/dehydration reaction of a polyamine represented by the general formula (2): (wherein, 1 is an average value of 0 to 10) and maleic anhydride.

これらのポリマレイミド化合物は単独で用いても、2種
類以上を混合して用いてもよい。
These polymaleimide compounds may be used alone or in combination of two or more types.

熱硬化性樹脂(a)がエポキシ樹脂(A)およびエポキ
シ硬化剤(B)よりなる場合、エポキシ樹脂(A)とエ
ポキシ硬化剤(B)の割合は、エポキシ樹脂(A)に対
してエポキシ硬化剤(B)が当量比で0.1〜10の範
囲、好ましくは0.5〜2の範囲である。
When the thermosetting resin (a) consists of an epoxy resin (A) and an epoxy curing agent (B), the ratio of the epoxy resin (A) and the epoxy curing agent (B) to the epoxy resin (A) is The equivalent ratio of agent (B) is in the range of 0.1 to 10, preferably in the range of 0.5 to 2.

また、熱硬化性樹脂(a)がエポキシ樹脂(A)エポキ
シ硬化剤CB)およびポリマレイミド化合物(C)より
なる場合は、ポリマレイミド化合物(C)100重量部
に対してエポキシ樹脂(A)とエポキシ硬化剤CB)の
合計量は10〜500重量部、好ましくは25〜300
重量部である。
In addition, when the thermosetting resin (a) is composed of an epoxy resin (A), an epoxy curing agent CB), and a polymaleimide compound (C), the epoxy resin (A) is added to 100 parts by weight of the polymaleimide compound (C). The total amount of epoxy curing agent CB) is from 10 to 500 parts by weight, preferably from 25 to 300 parts by weight.
Parts by weight.

また、エポキシ樹脂(A)とエポキシ硬化剤(B)の割
合は、エポキシ樹脂(A)に対してエポキシ硬化剤CB
)が当量比で0.1〜10の範囲、好ましくは 0.5
〜2の範囲である。
In addition, the ratio of epoxy resin (A) and epoxy curing agent (B) is epoxy curing agent CB to epoxy resin (A).
) is in the range of 0.1 to 10 in equivalent ratio, preferably 0.5
It is in the range of ~2.

無機充填剤(b)としてはシリカ、アルξす、窒化ケイ
素、炭化ケイ素、タルク、ケイ酸カルシウム、炭酸カル
シウム、マイカ、クレー、チタンホワイト等の粉体;ガ
ラス繊維、カーボン繊維等の繊維体が例示される。
Examples of the inorganic filler (b) include powders such as silica, aluminum, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, and titanium white; fibers such as glass fiber and carbon fiber. Illustrated.

これらの中で熱膨張率と熱伝導率の点から、結晶性シリ
カおよび/または溶融性シリカが好ましい。さらに、樹
脂組成物の成形時の流動性を考えると、その形状は球形
、または球形と不定形の混合物が好ましい。
Among these, crystalline silica and/or fused silica are preferred from the viewpoint of thermal expansion coefficient and thermal conductivity. Furthermore, considering the fluidity of the resin composition during molding, the shape is preferably spherical or a mixture of spherical and irregular shapes.

無機充填剤(b)の配合量は、熱硬化性樹脂(a)  
100重量部に対して、100〜900重量部であるこ
とが必要であり、好ましくは200〜600重量部であ
る。
The blending amount of the inorganic filler (b) is the same as that of the thermosetting resin (a).
It needs to be 100 to 900 parts by weight, preferably 200 to 600 parts by weight, per 100 parts by weight.

本発明の目的を達成するために使用される一般式(1)
で表されるシラン化合物(C)は、四塩化ケイ素と、炭
素数1から20のアルコールとの直接反応により台底さ
れる一般式(■):S i (OR’ ) a    
 (Vl)(R1は炭素数1から20のアルキル基を表
す。)で表されるシラン化合物を加水分解することによ
り、容易に得ることができる。
General formula (1) used to achieve the object of the present invention
The silane compound (C) represented by the general formula (■): S i (OR' ) a is formed by a direct reaction between silicon tetrachloride and an alcohol having 1 to 20 carbon atoms.
It can be easily obtained by hydrolyzing a silane compound represented by (Vl) (R1 represents an alkyl group having 1 to 20 carbon atoms).

−In式(1)で表されるシラン化合物は、R1が炭素
数1から20のアルキル基を有するものを使用できるが
、粘度等の点から好ましくは、メチル、エチル、プロピ
ルおよびブチルのごとき炭素数1から4のアルキル基を
有するものが用いられる。 また、nについては、0か
ら10のシラン化合物が用いられるが、同様の理由から
1から6のシラン化合物が好ましい。
The silane compound represented by the -In formula (1) can be one in which R1 has an alkyl group having 1 to 20 carbon atoms, but from the viewpoint of viscosity etc., carbon atoms such as methyl, ethyl, propyl and butyl are preferable. Those having 1 to 4 alkyl groups are used. Regarding n, silane compounds of 0 to 10 are used, but silane compounds of 1 to 6 are preferred for the same reason.

シラン化合物(C)と反応させて使用するカップリング
剤(d)としては、シラン系、チクネート系、アルミネ
ート系およびジルコアル亙ネート系等のカップリング剤
が使用できる。
As the coupling agent (d) used in reaction with the silane compound (C), silane-based, thicnate-based, aluminate-based, and zircoalnate-based coupling agents can be used.

その中でもシラン系カップリング剤が好ましく、特に、
熱硬化性樹脂と反応する官能基を有するシラン系カップ
リング剤が最も好ましい。
Among them, silane coupling agents are preferable, and in particular,
A silane coupling agent having a functional group that reacts with a thermosetting resin is most preferred.

かかるシラン系カップリング剤(d)の例としては、ビ
ニルトリメトキシシラン、ビニルトリエトキシシラン、
N−(2−アミノエチル)3−アミノプロピルメチルジ
メトキシシラン、N−(2−アミノエチル)3−アごノ
プロピルトリメトキシシラン、3−アミノプロピルトリ
エトキシシラン、3−アニリノプロピルトリメトキシシ
ラン、3−グリシドキシプロビルトリメトキシシラン、
3−グリシドキシプロビルメチルジメトキシシラン、2
−(3,4−エポキシシクロヘキシル)エチルトリメト
キシシラン、3−メタクリロキシプロピルトリメトキシ
シラン、3−メルカプトプロピルトリメトキシシラン等
を挙げることができ、これらの1種類または2種類以上
が使用される。
Examples of such silane coupling agents (d) include vinyltrimethoxysilane, vinyltriethoxysilane,
N-(2-aminoethyl)3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)3-agonopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-anilinopropyltrimethoxysilane , 3-glycidoxypropyltrimethoxysilane,
3-glycidoxypropylmethyldimethoxysilane, 2
Examples include -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-mercaptopropyltrimethoxysilane, and one or more of these may be used.

以上のシラン化合物(C)とカップリング剤(d)との
反応物を用いると樹脂と無機充填剤(b)との接着性が
向上し、吸湿時の強度低下を小さくする効果がある。
When the reaction product of the silane compound (C) and the coupling agent (d) is used, the adhesiveness between the resin and the inorganic filler (b) is improved, and there is an effect of reducing the decrease in strength upon absorption of moisture.

前記シラン化合物(C)とカップリング剤(d)の配合
量は、熱硬化性樹脂(a)  100重量部に対して各
々、0.5〜50重量部、0.5〜25重量部、好まし
くは1.5〜35重量部、1.5〜15重量部である。
The blending amounts of the silane compound (C) and the coupling agent (d) are preferably 0.5 to 50 parts by weight and 0.5 to 25 parts by weight, respectively, based on 100 parts by weight of the thermosetting resin (a). is 1.5 to 35 parts by weight, and 1.5 to 15 parts by weight.

前記シラン化合物(C)とカップリング剤(d)とを反
応させる方法としては、撹拌機、温度計、冷却器を装着
した反応容器に、シラン化合物(C)、カップリング剤
(d)、純水および溶媒を装入し、30〜100°Cで
30分間〜2時間反応させる。 ここで、純水はシラン
化合物(C)およびカップリング剤(d)のアルコキシ
基を加水分解するために添加するもので、その添加量は
シラン化合物(c)およびカップリング剤(d)の合計
量に対して0.1〜5重量%が好ましい、 使用する溶
媒は、反応後、溶媒を除去せずにそのまま使用するため
、沸点の低いメタノール、エタノール等が好ましい、 
また、反応に際しては触媒を使用することもできる。触
媒としては酸性触媒、塩基性触媒が使用できるが、酢酸
、蟻酸、乳酸、シュウ酸、塩酸等の酸性触媒が好ましい
As a method for reacting the silane compound (C) and the coupling agent (d), the silane compound (C), the coupling agent (d), and pure Water and a solvent are charged and reacted at 30 to 100°C for 30 minutes to 2 hours. Here, pure water is added to hydrolyze the alkoxy groups of the silane compound (C) and the coupling agent (d), and the amount added is the total amount of the silane compound (c) and the coupling agent (d). It is preferably 0.1 to 5% by weight based on the amount. The solvent used is preferably methanol, ethanol, etc. with a low boiling point, since the solvent is used as it is without removing it after the reaction.
Moreover, a catalyst can also be used during the reaction. As the catalyst, acidic catalysts and basic catalysts can be used, and acidic catalysts such as acetic acid, formic acid, lactic acid, oxalic acid, and hydrochloric acid are preferred.

前記シラン化合物(c)とカップリング剤(d)との反
応物の樹脂&II戒物酸物導入方法は、配合時に他の原
料と共に配合する方法、予め熱硬化性樹脂(a)の一部
または全部に溶解・混合する方法、無機充填剤(b)の
表面に予め化学反応ないしは吸着により固定させる方法
等がある。
The method of introducing the reaction product of the silane compound (c) and the coupling agent (d) into the resin & II compound acid includes a method of blending it with other raw materials at the time of blending, a method of blending it with other raw materials at the time of blending, a method of introducing a part of the thermosetting resin (a) or There are methods such as a method of dissolving and mixing the filler in the whole, and a method of fixing it on the surface of the inorganic filler (b) by chemical reaction or adsorption in advance.

この中で特に、無機充填剤(b)の表面に予め固定させ
る方法が好ましい。
Among these, a method in which the filler is preliminarily fixed on the surface of the inorganic filler (b) is particularly preferred.

固定する方法はシラン化合物(C)とカップリング剤(
d)との反応物を、無機充填剤(b)と共に高速ミキサ
ー等により15〜60分間混ぜ合わせた後、50〜15
0℃で1〜3時間、加熱乾燥する方法が一般的である。
The fixing method is to use a silane compound (C) and a coupling agent (
After mixing the reaction product with d) with the inorganic filler (b) for 15 to 60 minutes using a high-speed mixer,
A common method is heating and drying at 0° C. for 1 to 3 hours.

本発明において樹脂ma物を硬化するにあたっては、硬
化促進剤を使用することが望ましい。
In the present invention, when curing the resin material, it is desirable to use a curing accelerator.

かかる硬化促進剤としては、2−メチルイミダゾール、
2−メチル−4−エチルイごダゾール等のイミダゾール
類;トリエタノールアミン、トリエチレンジアミン、N
−メチルモルホリン等のアミン類;トリブチルホスフィ
ン、トリフェニルホスフィン、トリトリルホスフィン等
の有機ホスフィン類;テトラフェニルホスホニウムテト
ラフェニルボレート、トリエチルアンモニウムテトラフ
ェニルボレート等のテトラフェニルポロン塩類;1.8
−ジアザ−ビシクロ(5,4,0)ウンデセン−7およ
びその誘導体がある。
Such curing accelerators include 2-methylimidazole,
Imidazoles such as 2-methyl-4-ethyligodazole; triethanolamine, triethylenediamine, N
- Amines such as methylmorpholine; organic phosphines such as tributylphosphine, triphenylphosphine, tritolylphosphine; tetraphenylporone salts such as tetraphenylphosphonium tetraphenylborate, triethylammonium tetraphenylborate; 1.8
-diaza-bicyclo(5,4,0)undecene-7 and its derivatives.

上記硬化促進剤は単独で用いても2種類以上を併用して
もよく、また、熱硬化性樹脂(a)がポリマレイミド化
合物(C)を含む場合には、有機過酸化物やアゾ化合物
等のラジカル開始剤を併用することもできる。 これら
硬化促進剤の使用量は熱硬化性樹脂(a)loo重量部
に対して0.01〜lO重量部の範囲で用いられる。
The above-mentioned curing accelerator may be used alone or in combination of two or more types, and when the thermosetting resin (a) contains a polymaleimide compound (C), an organic peroxide, an azo compound, etc. A radical initiator can also be used in combination. The amount of these curing accelerators used is in the range of 0.01 to 10 parts by weight based on 10 parts by weight of the thermosetting resin (a).

該樹脂m酸物には、上記各収骨の他、必要に応じて脂肪
酸、脂肪酸塩、ワックス等の離型剤、ブロム化合物、ア
ンチモン、リン等の難燃剤、カーボンブラック等の着色
剤、各種シリコーンオイル等を配合し、混合・混練し、
成形材料とすることができる。
In addition to the above-mentioned bones, the resin m-acid may contain fatty acids, fatty acid salts, mold release agents such as wax, flame retardants such as bromine compounds, antimony, and phosphorus, colorants such as carbon black, and various other substances as necessary. Blend silicone oil etc., mix and knead,
It can be used as a molding material.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例により具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

(1)、熱硬化性樹脂(a)がエポキシ樹脂(A)およ
びエポキシ硬化剤(B)よりなる場合 合成例1(処理シリカ(1)、(2) )物を製造し、
この反応物を無機充填剤(b)の表面へ固定化させる。
(1) In the case where the thermosetting resin (a) consists of an epoxy resin (A) and an epoxy curing agent (B), Synthesis Example 1 (treated silica (1), (2)) is produced,
This reactant is immobilized on the surface of the inorganic filler (b).

撹拌機、温度計、冷却器を装着した反応容器に、一般式
(I)においてR1がエチル基、nが4のシラン化合物
(エチルシリケート40、コルコート■M) 100g
、 3−グリシドキシプロビルトリメトキシシラン(A
−187、日本ユニカー味製)50g、純水4gおよび
メタノール20gを投入し、50℃で1時間撹拌しなが
ら反応させ、反応物(1)を得た。
In a reaction vessel equipped with a stirrer, a thermometer, and a cooler, add 100 g of a silane compound (ethyl silicate 40, Colcoat ■M) in which R1 is an ethyl group and n is 4 in the general formula (I).
, 3-glycidoxypropyltrimethoxysilane (A
-187, manufactured by Nippon Unicar Aji), 4 g of pure water, and 20 g of methanol were added, and the mixture was reacted with stirring at 50° C. for 1 hour to obtain a reaction product (1).

平均粒径20μの溶融シリカ(ハリミック5−CO1■
マイクロン製)  100!1部に対して上記反応物(
1)を3重量部加え、ヘンシェルミキサーにより20分
間間部した0次いで、この混合物をステンレス製のバッ
トに広げ、110°Cで2時間乾燥し、処理シリカ(1
)を得た。
Fused silica with an average particle size of 20μ (Harimic 5-CO1■
(manufactured by Micron) to 100!1 part of the above reactant (
1) was added thereto and mixed for 20 minutes using a Henschel mixer.Then, this mixture was spread on a stainless steel vat, dried at 110°C for 2 hours, and treated silica (1)
) was obtained.

反応物(+)の3重量部を3−グリシドキシプロビルト
リメトキシシランの1重量部に代えて同様な処理を行な
い、処理シリカ(2)を得た。
A similar treatment was carried out except that 3 parts by weight of the reactant (+) was replaced with 1 part by weight of 3-glycidoxypropyltrimethoxysilane to obtain treated silica (2).

これら処理シリカ(1)、(2)の配合物を第1表にま
とめる。
The formulations of these treated silicas (1) and (2) are summarized in Table 1.

実施例1 エポキシ樹脂(0−タレゾールノボラック型エポキシi
  EOCN−1027、日本化薬■製)16重量部、
エポキシ硬化剤(フェノールノボラック樹脂;PN−8
0、日本化薬σ勾製)9重量部、処理シリカ(1)の7
5重量部、硬化促進剤としてトリフェニルホスフィン、
トリエチルアンモニウムテトラフェニルボレートを各々
0.1重量部、0.3重量部、その他、カルナバワック
ス0.45重量部、カーボンブラック0.3重量部、酸
化アンチモン1重量部をヘンシェルミキサーで混合し、
さらに、80〜110°Cの熱ロールにて3分間溶融・
混練した。この混合物を冷却、粉砕し、打錠して成形用
樹脂&Il酸物を得た。
Example 1 Epoxy resin (0-talesol novolac type epoxy i
EOCN-1027, manufactured by Nippon Kayaku ■) 16 parts by weight,
Epoxy curing agent (phenol novolak resin; PN-8
0, Nippon Kayaku σ) 9 parts by weight, treated silica (1) 7
5 parts by weight, triphenylphosphine as a curing accelerator,
0.1 part by weight and 0.3 part by weight of triethylammonium tetraphenylborate, 0.45 part by weight of carnauba wax, 0.3 part by weight of carbon black, and 1 part by weight of antimony oxide were mixed in a Henschel mixer,
Furthermore, melt it for 3 minutes with a hot roll at 80-110°C.
Kneaded. This mixture was cooled, pulverized, and tableted to obtain a molding resin and Il acid.

比較例1 実施例1において処理シリカ(1)を処理シリカ(2)
に代えた以外は、同様にして、成形用樹脂組成物を得た
Comparative Example 1 Treated silica (1) in Example 1 was replaced with treated silica (2)
A molding resin composition was obtained in the same manner except that .

実施例1および比較例1で得られた樹脂組成物を用いて
トランスファー底形(180°C,30kg/c1.3
分間)により、物性測定用の試験片を底形した。
Using the resin compositions obtained in Example 1 and Comparative Example 1, a transfer bottom shape (180°C, 30kg/c1.3
A test piece for measuring physical properties was shaped using the following steps.

また、ブラントパッケージ型半導体装置用リードフレー
ムの素子搭載部に、10mm X 101mm角の試験
用素子を搭載し、トランスファー底形(180°C13
0kg/cm”、3分間)により試験用の半導体装置を
得た。
In addition, a 10 mm x 101 mm square test element was mounted on the element mounting part of a lead frame for a blunt package type semiconductor device, and a transfer bottom type (180°C13
0 kg/cm'' for 3 minutes) to obtain a semiconductor device for testing.

これらの試験用成形物は各試験を行なう前に、180℃
で6時間、後硬化を行なった。
These test moldings were heated to 180°C before each test.
Post-curing was carried out for 6 hours.

試験結果を第2表に示す。The test results are shown in Table 2.

なお、試験方法は次の通りである。The test method is as follows.

・ガラス転移温度n  TMA法 ・曲げ強度   :  JIS K−6911・吸湿時
曲げ強度: 曲げ強度測定用の試験片を121°C12
気圧のプレッシャークツカーテスターに24時間放置し
た後、吸湿状態のまま曲げ試験を行なった。吸湿前の強
度に対する保持率で表示する。
・Glass transition temperature n TMA method ・Bending strength: JIS K-6911 ・Bending strength upon moisture absorption: Test piece for bending strength measurement at 121°C 12
After being left in a pressure shoe tester at atmospheric pressure for 24 hours, a bending test was conducted while the sample was in a moisture-absorbing state. It is expressed as the retention rate relative to the strength before moisture absorption.

・v、p、s、テスト:試験用の半導体装置を121℃
、2気圧のプレッシャークツカーテスターに24時間放
置した後、直ちに215℃のフロリナート液(住友スリ
ーエム0@製、FC−70)に投入し、パッケージ樹脂
にクランクの発生した半導体装置の数を数えた。 試験
値を分数で示し、分子はクランクの発生した半導体装置
の数、分母は試験に供した半導体装置の総数である。
・V, p, s, test: test semiconductor device at 121°C
The semiconductor devices were left in a 2-atm pressure pressure tester for 24 hours, and then immediately placed in Fluorinert liquid (manufactured by Sumitomo 3M 0@, FC-70) at 215°C, and the number of semiconductor devices with cracks in the package resin was counted. . The test value is expressed as a fraction, where the numerator is the number of semiconductor devices in which cranking occurred, and the denominator is the total number of semiconductor devices subjected to the test.

第2表 (2)、熱硬化性樹脂(a)がエポキシ樹脂(A)、エ
ポキシ硬化剤CB)およびポリマレイミド化合物(C)
よりなる場合 合成例2(処理シリカ(3)、(4) )シラン化合物
(c)とカップリング剤(d)の反応物を製造し、この
反応物を無機充填剤(b)の表面へ固定化させる。
Table 2 (2), thermosetting resin (a) is epoxy resin (A), epoxy curing agent CB) and polymaleimide compound (C)
Synthesis Example 2 (treated silica (3), (4)) A reaction product of the silane compound (c) and the coupling agent (d) is produced, and this reaction product is fixed on the surface of the inorganic filler (b). to become

攪拌機、温度計、冷却器を装着した反応容器に、一般式
(1)においてR1がエチル基、nが4のシラン化合物
(エチルシリケート40、コルコート■製) 100g
、3−アミノプロピルトリエトキシシラン(A−110
0、日本ユニカー−製) 50g 、純水4gおよびメ
タノール20gを投入し、50″Cで1時間攪拌しなが
ら反応させ、反応物(2)を得た。
In a reaction vessel equipped with a stirrer, a thermometer, and a cooler, add 100 g of a silane compound (ethyl silicate 40, manufactured by Colcoat ■) in which R1 is an ethyl group and n is 4 in the general formula (1).
, 3-aminopropyltriethoxysilane (A-110
0, manufactured by Nippon Unicar Co., Ltd.), 4 g of pure water, and 20 g of methanol were added, and the mixture was reacted with stirring at 50''C for 1 hour to obtain a reaction product (2).

平均粒径20μの溶融シリカ(ハリミック5−CO。Fused silica (Harimic 5-CO) with an average particle size of 20μ.

■マイクロン製)100重量部に対して上記反応物(2
)を3重量部加え、ヘンシェル〔キサ−により20分間
間部した0次いで、この混合物をステンレス製のバット
に広げ、110°Cで2時間乾燥し、処理シリカ(3)
を得た。
■ Micron) to 100 parts by weight of the above reactant (2 parts by weight)
3 parts by weight of the treated silica (3) were added, and treated with a Henschel [xa] for 20 minutes.Then, the mixture was spread on a stainless steel vat and dried at 110°C for 2 hours.
I got it.

反応物(2)の3重量部を3−アミノプロピルトリエト
キシシランの1重量部に代えて同様な処理を行ない、処
理シリカ(4)を得た。
A similar treatment was carried out except that 3 parts by weight of reactant (2) was replaced with 1 part by weight of 3-aminopropyltriethoxysilane to obtain treated silica (4).

これら処理シリカ(3)、(4)の配合物を第1表にま
とめる。
The formulations of these treated silicas (3) and (4) are summarized in Table 1.

合成例3(ポリマレイミド化合物(1))攪拌機、温度
計を装着した反応容器に、無水マレイン酸43.2g 
 (0,44モル)とアセトン130gを投入し、溶解
する。これに4,4゛−ビス(3−アミノフエノキシ)
ビフェニル73.6g  (0,2モル)をアセトン5
15gに熔解した溶液を室温で滴下し、さらに、23〜
27℃で3時間撹拌する。 反応終了後、乾燥してビス
マレアミド酸を黄色結晶として得た。 このビスマレア
ミド酸112gをアセトン300gに恕濁させ、トリエ
チルアミン9.6gを添加し、室温で30分間攪拌する
Synthesis Example 3 (Polymaleimide Compound (1)) 43.2 g of maleic anhydride was placed in a reaction vessel equipped with a stirrer and a thermometer.
(0.44 mol) and 130 g of acetone were added and dissolved. In this, 4,4゛-bis(3-aminophenoxy)
73.6 g (0.2 mol) of biphenyl was added to 5 ml of acetone.
A solution dissolved in 15g was added dropwise at room temperature, and then 23~
Stir at 27°C for 3 hours. After the reaction was completed, it was dried to obtain bismaleamic acid as yellow crystals. 112 g of this bismaleamic acid was suspended in 300 g of acetone, 9.6 g of triethylamine was added, and the mixture was stirred at room temperature for 30 minutes.

酸化マグネシウム(u )0.4g、酢酸コバルト(I
I)  ・41h00.04gを添加後、無水酢酸52
gを25℃で30分間かけて滴下し、さらに3時間攪拌
する。 反応終了後、生成した結晶を濾過、洗浄後、乾
燥してポリマレイミド化合物(1)を得た。
Magnesium oxide (U) 0.4g, cobalt acetate (I)
I) After adding 41h00.04g, acetic anhydride 52
g was added dropwise over 30 minutes at 25°C, and the mixture was further stirred for 3 hours. After the reaction was completed, the generated crystals were filtered, washed, and dried to obtain a polymaleimide compound (1).

収量は84.5g 、理論収量に対する割合は80z、
融点は207〜209°Cであった。
The yield is 84.5g, the ratio to the theoretical yield is 80z,
The melting point was 207-209°C.

合成例4(ポリマレイミド化合物(2))攪拌機、温度
計を装着した反応容器にアニリン111.6g (1,
2モル)とα、α“−ジクロロ−P−キシレン70.0
g  (0,4モル)を装入し、窒素ガスを通しながら
昇温した。内温30°C位から発熱が認められたがその
まま昇温し、85〜100℃で3時間一定に保った。こ
の後、引き続き昇温して190〜200°Cで20時間
反応させた0次いで、冷却して内温を95℃に下げ、こ
れに15%苛性ソーダ水溶液230gを加え、撹拌中和
を行なった。静置後、下層の水層を分液除去し、飽和食
塩水300gを加え、洗浄分液を行なった0次に、窒素
気流下で加熱脱水を行なった後、加圧濾過して無機塩等
を除いた。
Synthesis Example 4 (Polymaleimide Compound (2)) 111.6 g of aniline (1,
2 mol) and α,α“-dichloro-P-xylene 70.0
g (0.4 mol) was charged, and the temperature was raised while passing nitrogen gas. Although heat generation was observed from an internal temperature of about 30°C, the temperature was raised and kept constant at 85 to 100°C for 3 hours. Thereafter, the temperature was raised and the reaction was carried out at 190 to 200°C for 20 hours.Then, the mixture was cooled to lower the internal temperature to 95°C, and 230g of a 15% aqueous sodium hydroxide solution was added thereto for stirring and neutralization. After standing still, the lower aqueous layer was separated and removed, 300 g of saturated saline was added, and washing and separation were performed.Next, heat dehydration was performed under a nitrogen stream, followed by pressure filtration to remove inorganic salts, etc. was excluded.

これを2〜3 Torrの真空下で真空濃縮して未反応
のアニリンを回収した。
This was vacuum concentrated under a vacuum of 2 to 3 Torr to recover unreacted aniline.

次に、攪拌機、温度計を装着した反応容器に無水マレイ
ン酸35.8g  (0,358モル)とアセトン40
gを装入し、溶解した。上記アニリン樹脂50gをアセ
トン50gに溶解した溶液を滴下すると結晶が析出し、
25°Cで3時間攪拌した。その後、トリエチルアミン
8.5gを添加後、25°Cで30分間攪拌した。
Next, 35.8 g (0,358 mol) of maleic anhydride and 40 g of acetone were placed in a reaction vessel equipped with a stirrer and a thermometer.
g was charged and dissolved. When a solution of 50 g of the above aniline resin dissolved in 50 g of acetone is dropped, crystals precipitate.
The mixture was stirred at 25°C for 3 hours. Thereafter, 8.5 g of triethylamine was added, and the mixture was stirred at 25°C for 30 minutes.

酸化マグネシウム(n ) 0.35g 、酢酸コバル
ト(n)  ・4HJ 0.035gを添加後、無水酢
酸45.5gを装入し、50〜55°Cで3時間撹拌し
、25°Cに冷却後、反応液を水ll中に攪拌しながら
滴下し、生成した結晶を濾過、水洗後、乾燥して褐色結
晶のポリマレイごド化合物(2)を得た。
After adding 0.35 g of magnesium oxide (n) and 0.035 g of cobalt acetate (n) 4HJ, 45.5 g of acetic anhydride was charged, stirred at 50 to 55 °C for 3 hours, and cooled to 25 °C. The reaction solution was added dropwise into 1 liter of water with stirring, and the resulting crystals were filtered, washed with water, and dried to obtain brown crystals of Polymaleigodo Compound (2).

このポリマレイミド化合物(2)を高速液体クロマトグ
ラフィーにより組成分析した結果、一般式%式% 収量は74.2g 、理論収量に対する割合は98.1
%、融点は115〜130°Cであった。
As a result of compositional analysis of this polymaleimide compound (2) by high performance liquid chromatography, the yield was 74.2 g, and the ratio to the theoretical yield was 98.1.
%, and the melting point was 115-130°C.

実施例2 合成例3により得られたポリマレイミド化合物(1)の
15重量部、エポキシ樹脂(0−タレゾールノボラック
型エポキシ; EOCN−1027、日本化薬■製)7
重量部、エポキシ硬化剤(フェノールノボラック樹脂、
 PN−80、日本化薬■製)3重量部、処理シリカ(
3)の75重量部、硬化促進剤としてトリフェニルホス
フィン、トリエチルアンモニウムテトラフェニルボレー
トを各々0.1重量部、0.3重量部、その他、カルナ
バワックス0.45重量部、カーボンブラック0.3重
量部、酸化アンチモン1重量部をヘンシェル逅キサ−で
混合し、さらに100〜130°Cの熱ロールにて3分
間溶融・混練した。
Example 2 15 parts by weight of the polymaleimide compound (1) obtained in Synthesis Example 3, epoxy resin (0-talesol novolac type epoxy; EOCN-1027, manufactured by Nippon Kayaku ■) 7
Parts by weight, epoxy curing agent (phenol novolac resin,
PN-80, manufactured by Nippon Kayaku ■) 3 parts by weight, treated silica (
75 parts by weight of 3), 0.1 parts by weight and 0.3 parts by weight of triphenylphosphine and triethylammonium tetraphenylborate as curing accelerators, respectively, 0.45 parts by weight of carnauba wax, and 0.3 parts by weight of carbon black. 1 part by weight of antimony oxide were mixed in a Henschel mixer, and further melted and kneaded for 3 minutes with heated rolls at 100 to 130°C.

この混合物を冷却、粉砕し、打錠して成形用樹脂組成物
を得た。
This mixture was cooled, pulverized, and tableted to obtain a molding resin composition.

実施例3 実施例2において合成例3により得られたポリマレイく
ド化合物(1)に代えて合成例4により得られたポリマ
レイミド化合物(2)を使った以外は、同様にして、成
形用樹脂組成物を得た。
Example 3 A molding resin was produced in the same manner as in Example 2, except that the polymaleimide compound (2) obtained in Synthesis Example 4 was used in place of the polymeramide compound (1) obtained in Synthesis Example 3. A composition was obtained.

比較例2 実施例2において処理シリカ(3)を処理シリカ(4)
に代えた以外は、同様にして、成形用樹脂組成物を得た
Comparative Example 2 Treated silica (3) in Example 2 was replaced with treated silica (4)
A molding resin composition was obtained in the same manner except that .

比較例3 実施例3において処理シリカ(3)を処理シリカ(4)
に代えた以外は、同様にして、成形用樹脂組成物を得た
Comparative Example 3 Treated silica (3) in Example 3 was replaced with treated silica (4)
A molding resin composition was obtained in the same manner except that .

実施例2.3および比較例2.3で得られた樹脂組成物
を用いて、実施例1および比較例1と同様のトランスフ
ァー成形により、物性測定用の試験片および試験用の半
導体装置を得た。
Using the resin compositions obtained in Example 2.3 and Comparative Example 2.3, a test piece for measuring physical properties and a semiconductor device for testing were obtained by transfer molding in the same manner as in Example 1 and Comparative Example 1. Ta.

これらの試験用成形物は、各試験を行なう前に180°
Cで6時間、後硬化を行なった。
These test moldings were rotated 180° before each test.
Post-curing was carried out at C for 6 hours.

試験結果を第3表に示す。The test results are shown in Table 3.

なお、試験方法は次に示したv、p、s、テスト以外は
、実施例1および比較例1の時と同じである。
The test method was the same as in Example 1 and Comparative Example 1 except for v, p, s, and the tests shown below.

・v、p、s、テスト:試験用の半導体装置を121″
C12気圧のプレッシャークンカーテスターに24時間
放置した後、直ちに260℃の溶融半田浴に投入し、パ
ッケージ樹脂にクランクの発生した半導体装置の数を数
えた。試験値を分数で示し、分子はクラックの発生した
半導体装置の数、分母は試験に供した半導体装置の総数
である。
・v, p, s, test: test semiconductor device at 121″
After being left in a pressure gunker tester at C12 atmospheres for 24 hours, the semiconductor devices were immediately placed in a molten solder bath at 260° C., and the number of semiconductor devices with cranks in the package resin was counted. The test value is expressed as a fraction, where the numerator is the number of semiconductor devices in which cracks have occurred, and the denominator is the total number of semiconductor devices subjected to the test.

〔発明の効果〕〔Effect of the invention〕

実施例および比較例にて説明したごとく、本発明による
半導体封止用樹脂U酸物は吸湿時の強度低下が小さい樹
脂組成物で、特に、リフローおよびフロー半田付は方法
が適用される表面実装型の半導体装置の封正に用いた場
合、優れた信頼性を得ることができ、工業的に有益な発
明である。
As explained in the Examples and Comparative Examples, the semiconductor encapsulation resin U acid according to the present invention is a resin composition that exhibits a small decrease in strength upon absorption of moisture, and is particularly suitable for surface mounting in which reflow and flow soldering methods are applied. When used to encapsulate a type of semiconductor device, excellent reliability can be obtained, and the invention is industrially useful.

Claims (4)

【特許請求の範囲】[Claims] (1)、熱硬化性樹脂(a)100重量部および無機充
填剤(b)100〜900重量部から本質的になる樹脂
組成物において、一般式( I ): ▲数式、化学式、表等があります▼(I) (R^1は炭素数1から20のアルキル基を表し、nは
0または10以下の正の整数を表す。)で表されるシラ
ン化合物(c)とカップリング剤(d)との反応物を含
むことを特徴とする半導体封止用熱硬化性樹脂組成物。
(1) In a resin composition consisting essentially of 100 parts by weight of a thermosetting resin (a) and 100 to 900 parts by weight of an inorganic filler (b), the general formula (I): ▲ Numerical formula, chemical formula, table, etc. ▼(I) (R^1 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0 or a positive integer of 10 or less.) A silane compound (c) and a coupling agent (d 1. A thermosetting resin composition for semiconductor encapsulation, comprising a reactant with ).
(2)、熱硬化性樹脂(a)がエポキシ樹脂(A)およ
びエポキシ硬化剤(B)よりなる請求項1記載の半導体
封止用熱硬化性樹脂組成物。
(2) The thermosetting resin composition for semiconductor encapsulation according to claim 1, wherein the thermosetting resin (a) comprises an epoxy resin (A) and an epoxy curing agent (B).
(3)、熱硬化性樹脂(a)がエポキシ樹脂(A)、エ
ポキシ硬化剤(B)およびポリマレイミド化合物(C)
よりなる請求項1記載の半導体封止用熱硬化性樹脂組成
物。
(3) The thermosetting resin (a) is an epoxy resin (A), an epoxy curing agent (B) and a polymaleimide compound (C)
2. The thermosetting resin composition for semiconductor encapsulation according to claim 1.
(4)、無機充填剤(b)が球形シリカ、または球形シ
リカと不定形シリカの混合物である請求項1記載の半導
体封止用熱硬化性樹脂組成物。
(4) The thermosetting resin composition for semiconductor encapsulation according to claim 1, wherein the inorganic filler (b) is spherical silica or a mixture of spherical silica and amorphous silica.
JP32400589A 1989-12-15 1989-12-15 Thermosetting resin composition for semiconductor sealing use Pending JPH03185047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32400589A JPH03185047A (en) 1989-12-15 1989-12-15 Thermosetting resin composition for semiconductor sealing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32400589A JPH03185047A (en) 1989-12-15 1989-12-15 Thermosetting resin composition for semiconductor sealing use

Publications (1)

Publication Number Publication Date
JPH03185047A true JPH03185047A (en) 1991-08-13

Family

ID=18161065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32400589A Pending JPH03185047A (en) 1989-12-15 1989-12-15 Thermosetting resin composition for semiconductor sealing use

Country Status (1)

Country Link
JP (1) JPH03185047A (en)

Similar Documents

Publication Publication Date Title
EP0559338B1 (en) Thermosetting resin compositions
US5134204A (en) Resin composition for sealing semiconductors
JP2870903B2 (en) Resin composition for semiconductor encapsulation
JP3137295B2 (en) Epoxy resin curing agent and epoxy resin composition
JPH093167A (en) Resin composition and resin-sealed semiconductor device made by using the same
JPH03185047A (en) Thermosetting resin composition for semiconductor sealing use
JPH04337316A (en) Epoxy resin composition
JP2912470B2 (en) Resin composition
JP2825572B2 (en) Resin composition for semiconductor encapsulation
JPH03134051A (en) Epoxy resin composition for sealing semiconductor
JP2912467B2 (en) Resin composition
JP2912468B2 (en) Resin composition
JPH03134014A (en) Thermosetting resin composition for semiconductor sealing
JPH03185048A (en) Thermosetting resin composition for semiconductor sealing use
JPH0388827A (en) Resin composition for sealing of semiconductor
JPH04224859A (en) Resin composition
JPH02302424A (en) Resin composition for semiconductor sealing
JPH03185046A (en) Thermosetting resin composition for semiconductor sealing use
JPH03258830A (en) Epoxy resin composition for sealing semiconductor
JPH04226559A (en) Resin composition
JPH0931160A (en) Epoxy resin composition and resin-sealed semiconductor device
JPH03134013A (en) Resin composition for semiconductor sealing
JP3681082B2 (en) Imido ring-containing epoxy resin and epoxy resin composition
JPH05255574A (en) Resin composition
JP2947644B2 (en) Resin composition