[go: up one dir, main page]

JPH0318484A - Method for forming three-dimensional object and device used therein - Google Patents

Method for forming three-dimensional object and device used therein

Info

Publication number
JPH0318484A
JPH0318484A JP15223789A JP15223789A JPH0318484A JP H0318484 A JPH0318484 A JP H0318484A JP 15223789 A JP15223789 A JP 15223789A JP 15223789 A JP15223789 A JP 15223789A JP H0318484 A JPH0318484 A JP H0318484A
Authority
JP
Japan
Prior art keywords
dimensional object
work table
data
plasma
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15223789A
Other languages
Japanese (ja)
Inventor
Takeo Nakagawa
威雄 中川
Masahiro Anzai
安斎 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15223789A priority Critical patent/JPH0318484A/en
Publication of JPH0318484A publication Critical patent/JPH0318484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PURPOSE:To form the three-dimensional object directly from inorg. material powder by previously storing the build-up data of the respective parts of the three-dimensional object, supplying the inorg. material powder to a plasma torch, forming weld beads and three-dimensionally moving the plasma torch in accordance with the build-up data. CONSTITUTION:A control device 7 previously stores or computes the build-up data of the respective parts of the three-dimensional object. The inorg. material powder is then supplied to the plasma torch 3 and the weld beads are formed. Either one or both of the plasma torch 3 and a work table 1 are three- dimensionally and relatively moved in accordance with the build-up data to successively build up the weld beads by thermal spraying on the work table 1, by which the three-dimensional object is formed. The direct forming of the three-dimensional object from the inorg. material powder is, therefore, possible without using cutting tools, metallic molds or binder components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマパウダーメルティング法(Plas
ma pouder melting mej.hod
.以下、PPM法という)を利用して、無機材料の立体
物を造形する方法とその方法に用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a plasma powder melting method (Plasma powder melting method).
ma powder melting mej. hod
.. The present invention relates to a method of modeling a three-dimensional object made of an inorganic material using the PPM method (hereinafter referred to as the PPM method), and an apparatus used in the method.

(従来の技術) 例えば、金属やセラミックスから或る3次元形状の立体
物を造形する場合、従来は、これら材料の素材ブロック
を施盤等の工作機械で切削加工することが主に行なわれ
ていた.最近では、CAD/CAMシステムを用いるこ
とにより、造形すべき立体物の設計図面データをNC制
御装置に入力し、ここで前記データをプログラム変換し
て、その変換データでCAMシステムとしての工作機械
を動作せしめることにより、素祠ブロックを切削加工す
ることが行なわれている。
(Conventional technology) For example, when creating a three-dimensional object from metal or ceramics, conventionally the main method was to cut blocks of these materials using machine tools such as lathes. .. Recently, by using a CAD/CAM system, design drawing data of a three-dimensional object to be modeled is input into an NC control device, where the data is converted into a program, and the converted data is used to control a machine tool as a CAM system. By operating the mill, the mill block is cut.

また、無機材料から立体物を造形する方法としては、上
記した切削加工の外に、例えば、所定形状の鋳型に溶湯
を注湯してそれを鋳込む方法や金属射出戒形法、無機材
料の粉末をバインダとともに金型に充填してHPやHI
Pでそれを焼結する粉末冶金法などがあり、これらの方
法はそれぞれ広く行なわれている。
In addition to the above-mentioned cutting process, there are also methods for molding three-dimensional objects from inorganic materials, such as pouring molten metal into a mold of a predetermined shape and casting it, metal injection molding, and molding of inorganic materials. Powder is filled into a mold with a binder for HP and HI
There is a powder metallurgy method of sintering it with P, and each of these methods is widely used.

(発明が解決しようとするmu) しかしながら、前記した切削加工による立体物の造形の
場合、素材ブロックの切削加工時に、工作e!械や素材
ブロックに熱歪みが発生して加工精度の高い立体物の造
形が困難であり、また、工作機械には高負荷がかかるた
め、工具等の材料は剛性の大きいものであることが必要
になる。更には、加工に長時間を要し、造形すべき立体
物の形状が変わるときには、それに応した工作治具の取
付けが必要となり、その段取り時間も長く、生産性の低
下はまぬがれず、多種少量生産にとって不向きである.
しかも、素材ブロックがハステロイのような難加工性材
料である場合は、そもそもが、その切削加工は極めて困
難となる。また、CAD/CAMシステムを利用した切
削加工の場合は、更に、CADシステムで設計した図面
データの立体物を、その設計者自身が、その場で実物と
して造形することはできない。
(Mu to be solved by the invention) However, in the case of modeling a three-dimensional object by cutting as described above, when cutting a material block, the machining e! Thermal distortion occurs in machines and material blocks, making it difficult to create three-dimensional objects with high machining accuracy.Also, machine tools are subject to high loads, so materials for tools, etc. need to be highly rigid. become. Furthermore, processing takes a long time, and when the shape of the three-dimensional object to be modeled changes, it is necessary to install corresponding machining jigs, and the setup time is also long, resulting in a decrease in productivity. It is unsuitable for production.
Furthermore, if the material block is made of a difficult-to-process material such as Hastelloy, cutting the material is extremely difficult. Furthermore, in the case of cutting using a CAD/CAM system, the designer himself/herself cannot create a three-dimensional object based on drawing data designed using the CAD system as an actual object on the spot.

また、鋳込みや粉末冶金法で立体物を造形する場合は、
まずなによりも、梢密でありそれゆえ高価な金型を製作
することが必要になる。しかも、その鋳込み時の鋳造条
件や焼結時の焼結条件を厳しく管理しなければならない
In addition, when modeling three-dimensional objects using casting or powder metallurgy,
First of all, it is necessary to produce molds that are dense and therefore expensive. Furthermore, the casting conditions during casting and the sintering conditions during sintering must be strictly controlled.

一方、有機材料の戒形分野では、最近、光造形法による
立体物の造形が注目を集めている7ゝこの方法は、造形
すべき立体物を等間隔の水平面で輪切りにして得られる
連続多層断面図形データをCADで作威し、この図形デ
ータを下端から順次取りだして、その図形データに基づ
いた走査パターンで光ビー・ムを液状の光硬化性樹脂に
順次露光していく方法である。光ビームで露光された部
分の光硬化性樹脂は固化して光ビームの走査パターンに
対応したパターンの固化層が液状の光硬化性樹脂の中に
形成される。そして、この固化層をCAD上の図形デー
タの厚みに相当する深さだけ液状の光硬化性樹脂の中に
沈め、つづけてその図形データに基づいて走査パターン
で光ビームを固化層を覆う光硬化性樹脂の上に露光する
.この操作をCADの図形データの上端に至るまで反復
することにより、CADに溝画した形状の図形データに
対応する固化層が順次vi層された集合体である硬化樹
脂立体物が造形される。
On the other hand, in the field of shaping organic materials, the creation of three-dimensional objects using stereolithography has recently been attracting attention. In this method, cross-sectional figure data is created using CAD, this figure data is taken out sequentially from the bottom end, and a liquid photocurable resin is sequentially exposed to a light beam in a scanning pattern based on the figure data. The photocurable resin in the portion exposed to the light beam is solidified, and a solidified layer with a pattern corresponding to the scanning pattern of the light beam is formed in the liquid photocurable resin. Then, this solidified layer is submerged in liquid photocurable resin to a depth corresponding to the thickness of the graphic data on the CAD, and then a light beam is applied in a scanning pattern based on the graphic data to cover the solidified layer. exposure onto the plastic resin. By repeating this operation until reaching the upper end of the CAD graphic data, a cured resin three-dimensional object is modeled, which is an aggregate of VI layers of solidified layers corresponding to the graphic data of the shape grooved on the CAD.

しかしながら、この方法は、光硬化性樹脂に対してのみ
適用できる方法であって、例えば金属や各種セラミック
スのような無機材料から威る立体物を造形するときに適
用することはできない。
However, this method can only be applied to photocurable resins, and cannot be applied to, for example, molding three-dimensional objects from inorganic materials such as metals and various ceramics.

本発明は、上記した光造形法の手法を利用し、これに、
PPM法による熔射・肉盛手法を結合させることにより
、無機材料から或る立体物を造形する方法とその造形装
置の提供を目的とする。
The present invention utilizes the above-described stereolithography method, and in addition,
The object of the present invention is to provide a method and a device for forming a three-dimensional object from an inorganic material by combining melting and overlaying techniques using the PPM method.

(課題を解決するための手段) 上記目的を達或するために、本発明においては、造形す
べき立体物の各部分の肉盛データを予め記憶または演算
し、ブラズ71−チに無機材料の粉末を供給して溶融と
一ドを形成し、前記プラズマトーチまたはワーク台のい
ずれか一方または双方を前記肉盛データに基づいて3次
元的に相対移動させ、前記溶融ビードを前記ワーク台の
上に順次溶射・肉盛することにより、立体物を造形する
ことを特徴とする立体物造形方法が提供され、また、ワ
ーク台;該ワーク台に対向して配置され,.かつプラズ
マ1!源装置および無機材料粉末の供給装置と接続され
て、前記無機材料の溶融ビードを前記ワーク台上に溶射
・肉盛するプラズマトーチ;前記ワーク台および前記プ
ラズマトーチの少なくとも一方または双方を互いに3次
元的に相対移動させる移動装置;ならびに、造形すべき
立体物の各部分の肉盛指令データを記憶または演算し、
前記肉盛指令データに基づいて前記移動装置を移動させ
ながら、前記プラズマトーチから前記無機材料の溶融ビ
ードを前記ワーク台に順次溶射・肉盛して、前記ワーク
台の上に前記立体物を造形する動作信号を発信する制御
装置;から成ることを特徴とする立体物造形装置が提供
される。
(Means for Solving the Problem) In order to achieve the above object, in the present invention, overlay data for each part of a three-dimensional object to be modeled is stored or calculated in advance, and inorganic material is applied to the Brass 71-chi. The powder is supplied to form a melted bead, and one or both of the plasma torch and the work table are moved relative to each other in three dimensions based on the build-up data, and the molten bead is placed on the work table. A three-dimensional object modeling method is provided, which is characterized in that a three-dimensional object is formed by sequentially thermal spraying and overlaying a three-dimensional object. And plasma 1! A plasma torch that is connected to a source device and an inorganic material powder supply device and sprays and overlays a molten bead of the inorganic material onto the work table; a plasma torch that is connected to a source device and an inorganic material powder supply device; a moving device that relatively moves the objects; and stores or calculates overlay command data for each part of the three-dimensional object to be modeled;
While moving the moving device based on the overlay command data, the plasma torch sequentially sprays and overlays the molten bead of the inorganic material onto the work table to form the three-dimensional object on the work table. A three-dimensional object modeling apparatus is provided, comprising: a control device that transmits an operation signal to perform an operation.

(作用) 本発明の装置においては、プラズマトーチによって無機
材料の溶融ビードが形戒され、この溶融ビードがワーク
台の上に溶射され肉盛されて立体物が造形されていく。
(Function) In the apparatus of the present invention, a molten bead of inorganic material is shaped by a plasma torch, and this molten bead is thermally sprayed onto a work table and overlaid to form a three-dimensional object.

このとき、プラズマトーチによる適正な幅,厚みを有す
る溶融ビードの形成、プラズマトーチとワーク台との相
対運動の指令データは、いずれも制御装置に記憶または
演算されていて、造形すべき立体物の各部分に相当する
位置,肉盛量.肉盛順序を表示する肉盛指令データに基
づいて動作する移動装置の運動に規定されるので、造形
される立体物は、制御装置に記憶または演算されている
立体物と同一形状の復元形状物になる。
At this time, the formation of a molten bead with an appropriate width and thickness by the plasma torch, and the command data for the relative movement between the plasma torch and the work table are all stored or calculated in the control device, and the three-dimensional object to be modeled is stored or calculated in the control device. Position and amount of overlay corresponding to each part. Since the movement of the moving device operates based on the build-up command data that displays the build-up order, the three-dimensional object to be modeled is a reconstructed object with the same shape as the three-dimensional object stored or calculated in the control device. become.

本発明方法は、単純な形状の立体物はいうに及ばず、内
部が空洞でしかも開口部は狭隘な形状をしている立体物
であっても極めて容易に造形することができ、更に用い
る材料が無機材料であるため、耐熱性.機械的強度の優
れた立体物を造形することができ、しかも非接触の加工
法であるため、工作機械の工具や金型等の治具が不要に
なるという点で、非常に有用な立体物の造形方法である
ということができる. (実施例) 以下に、図面に基づいて本発明の実施例装置と方法を更
に詳細に説明する。
The method of the present invention can extremely easily mold not only a three-dimensional object with a simple shape but also a three-dimensional object with a hollow interior and a narrow opening. Since it is an inorganic material, it is heat resistant. It is a very useful three-dimensional object in that it can create three-dimensional objects with excellent mechanical strength, and since it is a non-contact processing method, there is no need for jigs such as machine tools or molds. It can be said that it is a modeling method. (Example) Below, an example apparatus and method of the present invention will be explained in more detail based on the drawings.

第1図は、各横戒要素を組合わせた本発明装置の概略図
である。
FIG. 1 is a schematic diagram of the device of the present invention in which the horizontal control elements are combined.

図において、まず、ワーク台lは移動@置2に取付けら
れ、この上で目的とする立体物が造形されていく。この
移動装置2は、後述する制御装置からの肉盛指令データ
に基づく動作信号により、前後・左右・上下の直線運動
、軸回転運動およびこれらを組合わせた運動を行なって
、取付けられているワーク台工を3次元的な任意方向に
移動せしめることができるようになっている。
In the figure, first, a work table 1 is attached to a moving @ station 2, and a target three-dimensional object is modeled on this table. This moving device 2 performs linear movement in the front and back, left and right, up and down directions, axis rotation movement, and a combination of these movements in response to operation signals based on build-up command data from a control device, which will be described later. The platform can be moved in any three-dimensional direction.

ワーク台1と移動装置2の相対移動に関しては、ワーク
台lと移動装置2のいずれか一方は静止し他方が移動で
きるようになっていてもよいし、また、双方が移動でき
るようになっていてもよい。
Regarding relative movement between the work table 1 and the moving device 2, one of the work table 1 and the moving device 2 may be stationary and the other may be movable, or both may be movable. It's okay.

このワーク台lのワーク面1aと対向してプラズマトー
チ3が配置される。プラズマトーチ3は、プラズマ溶射
法やプラズマ溶接法で従来から使用されているタイプの
ものと略同様のものであればよく、動作ガスの拘束ノズ
ル(内側ノズル)とシールドガスのガスノズル(外側ノ
ズル)との2重ノズル構造になっている。
A plasma torch 3 is placed opposite the work surface 1a of the work table 1. The plasma torch 3 only needs to be of the same type as conventionally used in plasma spraying and plasma welding, and has a restraining nozzle for operating gas (inner nozzle) and a gas nozzle for shielding gas (outer nozzle). It has a double nozzle structure.

このプラズマトーチ3には、粉末供給バイプ4aを介し
て無機材料粉末4bの供給装置4が接続され、またトー
チ内のタングステン電極はりード5を介してプラズマ電
源装置5と電気的に接続されている。
This plasma torch 3 is connected to a supply device 4 for inorganic material powder 4b via a powder supply pipe 4a, and is electrically connected to a plasma power supply device 5 via a tungsten electrode lead 5 in the torch. There is.

更にプラズマトーチ3は冷却水パイプ6aを介して冷却
水循環装置6と接続され、W1環する冷却水により拘束
ノズルが冷却されて、発生せしめるプラズマ柱の熱的ピ
ンチ効果を達戒できるようになっている。
Furthermore, the plasma torch 3 is connected to a cooling water circulation device 6 via a cooling water pipe 6a, and the restraint nozzle is cooled by the cooling water circulating in W1, so that the thermal pinching effect of the generated plasma column can be suppressed. There is.

また、プラズマ電源装置5からはり一ド5bが引出され
てワーク台lに接続され、プラズマトーチ3とワーク台
lの間でプラズマ柱が発生できるようになっている。
Further, a beam 5b is pulled out from the plasma power supply device 5 and connected to the work table l, so that a plasma column can be generated between the plasma torch 3 and the work table l.

なお、供給装置4は、図のように1基である必要はなく
、例えば、複数種の無機材料から或る溶融ビードで目的
立体物を造形する場合、この供給装置を複数基配置し、
それぞれをプラズマトーチ3と複数本の粉末供給パイプ
で接続するようにしてもよい。
Note that the number of supply devices 4 does not need to be one as shown in the figure. For example, when a target three-dimensional object is formed from a plurality of types of inorganic materials with a certain molten bead, a plurality of supply devices 4 may be arranged.
Each of them may be connected to the plasma torch 3 through a plurality of powder supply pipes.

制御装置7は、造形すべき立体物の各部分の肉盛指令デ
ータを記憶または演算し、この肉盛指令データに基づき
、回線7aを介してプラズマ電源装置5へ動作指令信号
を発信してプラズマ発生のタイミングやプラズマ電流値
の適正管理を行ない、回線7bを介して供給装置4へ動
作指令信号を発信して無機材料粉末4bの供給タイミン
グや供給量などを適正に管理し、また、回線7c,7d
を介してプラズマトーチ3へ動作指令信号を発信してプ
ラズマトーチ3のプラズマガス圧などを適正に管理し、
更に、回線7eを介して移動装置2へ動作指令信号を発
信するようになっている。
The control device 7 stores or calculates build-up command data for each part of the three-dimensional object to be modeled, and based on this build-up command data, sends an operation command signal to the plasma power supply device 5 via a line 7a to turn on the plasma. The generation timing and plasma current value are properly managed, and an operation command signal is sent to the supply device 4 via the line 7b to appropriately manage the supply timing and supply amount of the inorganic material powder 4b. ,7d
Sends an operation command signal to the plasma torch 3 via the controller to appropriately manage the plasma gas pressure of the plasma torch 3,
Further, an operation command signal is sent to the mobile device 2 via the line 7e.

ここでいう肉盛指令データとは、造形すべき立体物を微
小な任意部分が連続的に配列して威る集合体とした場合
におけるその任意部分の3次元的な位置関係,形状・寸
法,材料組戒およびその任意部分の配列順序等に関する
データであり、例えば、造形すべき立体物を所定の間隔
で水平に輪切りにしたときに得られる連続多層断面デー
タを代表例としてあげることができる。
The overlay command data referred to here refers to the three-dimensional positional relationship, shape, and dimensions of arbitrary parts when the three-dimensional object to be modeled is made into a collection of minute arbitrary parts arranged continuously. It is data related to the material composition and the arrangement order of arbitrary parts thereof, and a typical example is continuous multilayer cross-sectional data obtained when a three-dimensional object to be modeled is horizontally sliced at predetermined intervals.

このようなデータは、造形に先立って予め設計者が作戒
しておき、それを制御装置7に入力・記憶させておいて
もよいし、この制御装置7にCADシステムを内蔵せし
めて目的立体物の任意部分の図形処理の演算ができるよ
うにしておいてもよい. つぎに、この装置を用いて行なう造形方法を、造形すべ
き立体物の前記した連続多層断面データに基づいて説明
する. まず、所望の無機材料の粉末が供給装置4に収納される
.対象となる無機材料としては、目的とする立体物の構
成材料であってかつプラズマで溶融して溶融ビードを形
成するものが選定される。
Such data may be prepared by the designer in advance prior to modeling and input and stored in the control device 7, or the control device 7 may be equipped with a CAD system to create the desired three-dimensional structure. It may also be possible to perform calculations for graphical processing of arbitrary parts of objects. Next, the modeling method performed using this device will be explained based on the above-mentioned continuous multilayer cross-sectional data of the three-dimensional object to be modeled. First, powder of a desired inorganic material is stored in the supply device 4. As the target inorganic material, one is selected that is a constituent material of the target three-dimensional object and is melted by plasma to form a molten bead.

例えば、各種の金属5合金,炭化物,窒化物等のセラミ
ックスの粉末が選ばれる。
For example, ceramic powders such as various metal 5 alloys, carbides, nitrides, etc. are selected.

全体の連続多層断面データのうち、ある順番のデータ(
i番目のデータ)に関する肉盛指令データNoiに基づ
いて、制御装置7はプラズマ電源装置5に回線7aを介
して動作指令信号を発信する.この指令データNoiに
よりプラズマ電源装置は動作して、所定値のプラズマ電
流をプラズマトーチ3に供給して、プラズマトーチ3の
タングステン電極とワーク台1の間でトランスファード
アークを発生させる。同時に、冷却水循環装置6からは
冷却水パイプ6aを介して冷却水がプラズマトーチ3に
導入され、拘束ノズル,動作ガス(例えばAr)を強制
冷却することにより、収縮・拘束されたプラズマ柱がプ
ラズマトーチ3とワーク台のワーク面1aの間に形成さ
れる。
Of the entire continuous multilayer cross-sectional data, data in a certain order (
Based on the overlay command data Noi regarding the i-th data), the control device 7 transmits an operation command signal to the plasma power supply device 5 via the line 7a. The plasma power supply device operates according to the command data Noi, supplies a predetermined value of plasma current to the plasma torch 3, and generates a transferred arc between the tungsten electrode of the plasma torch 3 and the work table 1. At the same time, cooling water is introduced from the cooling water circulation device 6 to the plasma torch 3 via the cooling water pipe 6a, and by forcibly cooling the restraint nozzle and the operating gas (for example, Ar), the contracted and restrained plasma column is turned into a plasma. It is formed between the torch 3 and the work surface 1a of the work stand.

この動作と平行して、制御装置7からは回線7bを介し
て供給装W4にその動作指令信号が発信され、無機材料
粉末4bの所定量が供給パイプ4aを介してプラズマト
ーチ3のプラズマ柱の中に所定の角度で投入される。
In parallel with this operation, the control device 7 transmits an operation command signal to the supply device W4 via the line 7b, and a predetermined amount of the inorganic material powder 4b is supplied to the plasma column of the plasma torch 3 via the supply pipe 4a. It is inserted into the container at a predetermined angle.

投入された無機材料粉末4bは、ワーク台1に向かって
落下する過程で溶融し、所定の幅と厚みを有する溶融ビ
ードになる。
The charged inorganic material powder 4b melts while falling toward the work table 1, and becomes a molten bead having a predetermined width and thickness.

また、指令データNoiにより、制11l装置7は回線
マeを介して移動装置2に動作指令信号を発信する。移
動装置2はその動作指令信号に基づき、所定の運動を行
ない、その結果、ワーク台lは指令データNoiと同し
パターンを描く運動をする。
Further, based on the command data Noi, the controller 11l device 7 transmits an operation command signal to the mobile device 2 via the line MAe. The moving device 2 performs a predetermined movement based on the operation command signal, and as a result, the work table 1 moves in the same pattern as the command data Noi.

その結果、前記した溶融ビードは、このワーク台1のワ
ーク面1aに指令データNoiのパターンで積層され肉
盛りされて、制御装置7が記憶または演算した連続多層
断面データのうちi番目のデータに相当する部分が復元
される。
As a result, the above-mentioned molten bead is laminated and built up on the work surface 1a of the work table 1 in the pattern of the command data Noi, and becomes the i-th data among the continuous multilayer cross-sectional data stored or calculated by the control device 7. The corresponding part will be restored.

その後、i1)番目のデータに関しても、同様の動作が
行なわれ、その結果、ワーク台1の上には、順次,溶融
ビードが所定のパターンで肉盛されていき、目的とする
立体物、すなわち制御装置に記憶または演算されていた
立体物がワーク台lの上に復元され、それが造形される
Thereafter, the same operation is performed for the i1)-th data, and as a result, molten beads are successively deposited on the work table 1 in a predetermined pattern to form the target three-dimensional object, i.e. The three-dimensional object stored or calculated in the control device is restored on the work table l, and it is modeled.

この場合、溶融ビードの幅,厚みは、供給される無機材
料粉末の種類と供給量.プラズマ電流プラズマガス圧,
マイクロトーチとワーク台の間の相対移動速度などによ
って変化する。例えば、プラズマ電流を高くすると溶融
ビードの幅は広く、厚みは薄くなり、濡れ性は向上する
し、また粉末供給量を増加すると溶融ビードの幅itみ
はいずれも広く・厚くなる.このようなことから、造形
すべき立体物の形状・寸法に応して、上記各因子を適正
に設定することが必要である。その情報もまた制御装置
7に入力しておき、立体物の造形時には、必要に応して
、その情報を引出して各回線を介して、他の装置に必要
な動作指令を発するようにする。
In this case, the width and thickness of the molten bead depend on the type and amount of inorganic material powder supplied. plasma current plasma gas pressure,
It changes depending on the relative movement speed between the microtorch and the workbench. For example, increasing the plasma current will make the molten bead wider and thinner, improving wettability, and increasing the amount of powder supplied will make the molten bead wider and thicker. For this reason, it is necessary to appropriately set each of the above factors according to the shape and dimensions of the three-dimensional object to be modeled. This information is also input to the control device 7, and when a three-dimensional object is to be manufactured, the information is extracted as necessary and necessary operation commands are issued to other devices via each line.

例えば、無機材料の粉末としてCo合金とCrlC1の
混合粉末を選び、プラズマ電流を50〜70Aに設定し
、制御装置7からは、有底円筒を水平に輪切りして得ら
れた円環状多層断面データをその下端から引出して、そ
のデータに基づいて移動装置2を移動させて造形処理を
行なったところ、制御装置7に記憶させていた前記有底
円筒を復元することかできた. (発明の効果) 以上の説明で明らかなように、本発明の装置および方法
は、何らの切削工具,金型またはバインダ戒分を用いる
ことなく、無機材料の粉末から、直接、目的とする形状
の立体物を造形することができる。
For example, a mixed powder of Co alloy and CrlC1 is selected as the inorganic material powder, the plasma current is set to 50 to 70 A, and the control device 7 outputs annular multilayer cross-sectional data obtained by horizontally slicing a bottomed cylinder. When the cylinder was pulled out from its lower end and the moving device 2 was moved based on the data to perform the modeling process, it was possible to restore the bottomed cylinder that had been stored in the control device 7. (Effects of the Invention) As is clear from the above explanation, the apparatus and method of the present invention can directly form a desired shape from an inorganic material powder without using any cutting tool, mold, or binder. It is possible to create three-dimensional objects.

また、複雑形状の立体物であっても、その断面形状等の
部分形状を解析し、その解析データに基づいて、目的立
体物を復元・造形できるので、各種金型や精密部品の製
造にとって有効である。
In addition, even if a three-dimensional object has a complex shape, the partial shape such as its cross-sectional shape can be analyzed and the desired three-dimensional object can be reconstructed and molded based on the analysis data, which is effective for manufacturing various molds and precision parts. It is.

更に、材料はプラズマアークで溶融できるものであれば
何に対しても適用可能であるため、材料選択の幅が広く
、例えば、従来は切削加工が困難であったハステロイ等
の材料で所定形状の立体物を造形することができる。
Furthermore, since it can be applied to any material that can be melted with a plasma arc, there is a wide range of material selection. Can create three-dimensional objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置を示す構成図である. FIG. 1 is a configuration diagram showing an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)造形すべき立体物の各部分の肉盛データを予め記
憶または演算し、プラズマトーチに無機材料の粉末を供
給して溶融ビードを形成し、前記プラズマトーチまたは
ワーク台のいずれか一方または双方を前記肉盛データに
基づいて3次元的に相対移動させ、前記溶融ビードを前
記ワーク台の上に順次溶射・肉盛することにより、立体
物を造形することを特徴とする立体物造形方法。
(1) Store or calculate the build-up data for each part of the three-dimensional object to be modeled in advance, supply powder of inorganic material to a plasma torch to form a molten bead, and apply it to either the plasma torch or the work table or A three-dimensional object manufacturing method, characterized in that a three-dimensional object is formed by moving both parts relative to each other in three dimensions based on the overlay data, and sequentially spraying and overlaying the molten bead onto the work table. .
(2)ワーク台;該ワーク台に対向して配置され、かつ
プラズマ電源装置および無機材料粉末の供給装置と接続
されて、前記無機材料の溶融ビードを前記ワーク台上に
溶射・肉盛するプラズマトーチ;前記ワーク台および前
記プラズマトーチの少なくとも一方または双方を互いに
3次元的に相対移動させる移動装置;ならびに、造形す
べき立体物の各部分の肉盛指令データを記憶または演算
し、前記肉盛指令データに基づいて前記移動装置を移動
させながら、前記プラズマトーチから前記無機材料の溶
融ビードを前記ワーク台に順次溶射・肉盛して、前記ワ
ーク台の上に前記立体物を造形する動作信号を発信する
制御装置;から成ることを特徴とする立体物造形装置。
(2) Work table: Plasma that is arranged opposite to the work table and connected to a plasma power supply device and an inorganic material powder supply device to thermally spray and overlay the molten bead of the inorganic material onto the work table. torch; a moving device that moves at least one or both of the work table and the plasma torch three-dimensionally relative to each other; An operation signal for sequentially spraying and overlaying the molten bead of the inorganic material from the plasma torch onto the work table while moving the moving device based on command data to form the three-dimensional object on the work table. A three-dimensional object modeling device comprising: a control device that transmits a signal.
JP15223789A 1989-06-16 1989-06-16 Method for forming three-dimensional object and device used therein Pending JPH0318484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15223789A JPH0318484A (en) 1989-06-16 1989-06-16 Method for forming three-dimensional object and device used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15223789A JPH0318484A (en) 1989-06-16 1989-06-16 Method for forming three-dimensional object and device used therein

Publications (1)

Publication Number Publication Date
JPH0318484A true JPH0318484A (en) 1991-01-28

Family

ID=15536085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15223789A Pending JPH0318484A (en) 1989-06-16 1989-06-16 Method for forming three-dimensional object and device used therein

Country Status (1)

Country Link
JP (1) JPH0318484A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2836621A1 (en) * 2002-02-28 2003-08-29 Snecma Services Instrument to control a thermal projection torch in real time by measuring the jet characteristics by a combined camera and pyrometer and computer analysis to determine the required feed parameter
FR2836618A1 (en) * 2002-02-28 2003-08-29 Snecma Services Thermal projection surface coating equipment includes camera and pyrometer monitoring coating jet and deposit temperature
FR2836619A1 (en) * 2002-02-28 2003-08-29 Snecma Services Instrument to control a thermal projection torch in real time by measuring the jet characteristics by a combined camera and pyrometer and computer analysis to determine the required feed parameter
JP2009066646A (en) * 2007-09-18 2009-04-02 Kimura Chuzosho:Kk Manufacturing method of micro parts
JP2013006269A (en) * 2011-06-23 2013-01-10 Raytheon Bbn Technologies Corp Robot processing equipment
JP2014516841A (en) * 2011-06-16 2014-07-17 アールブルク ゲーエムベーハー ウント コー.カーゲー Apparatus and method for manufacturing a three-dimensional object
JP2015145327A (en) * 2014-02-03 2015-08-13 伊藤 幸男 Melt-laminate molding method for solid molding, melt-laminate molding apparatus for solid molding, and the solid molding
JP2015208669A (en) * 2014-04-30 2015-11-24 伊藤 幸男 Bone reinforcement body tool and melting lamination molding method and melting lamination molding device thereof
US20180117848A1 (en) * 2015-05-01 2018-05-03 Jay Lee System and method for additive manufacturing using spherical coordinates

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323061B2 (en) 2002-02-28 2008-01-29 Snecma Services Thermal spraying instrument
WO2003072292A3 (en) * 2002-02-28 2004-03-04 Snecma Services Thermal spraying instrument
FR2836620A1 (en) * 2002-02-28 2003-08-29 Snecma Services Instrument to control a thermal projection torch in real time by measuring the jet characteristics by a combined camera and pyrometer and computer analysis to determine the required feed parameter
FR2836619A1 (en) * 2002-02-28 2003-08-29 Snecma Services Instrument to control a thermal projection torch in real time by measuring the jet characteristics by a combined camera and pyrometer and computer analysis to determine the required feed parameter
EP1340579A3 (en) * 2002-02-28 2003-12-17 Snecma Services Thermal spraying apparatus
EP1340578A3 (en) * 2002-02-28 2004-03-03 Snecma Services Thermal spraying apparatus
EP1340577A3 (en) * 2002-02-28 2004-05-12 Snecma Services Thermal spraying apparatus
WO2003072291A3 (en) * 2002-02-28 2004-03-04 Snecma Services Thermal projection device
WO2003073804A3 (en) * 2002-02-28 2004-03-04 Snecma Services Thermal spraying instrument
EP1340580A3 (en) * 2002-02-28 2004-03-10 Snecma Services Thermal projecting device
FR2836618A1 (en) * 2002-02-28 2003-08-29 Snecma Services Thermal projection surface coating equipment includes camera and pyrometer monitoring coating jet and deposit temperature
WO2003072290A3 (en) * 2002-02-28 2004-05-06 Snecma Services Thermal projection device
FR2836621A1 (en) * 2002-02-28 2003-08-29 Snecma Services Instrument to control a thermal projection torch in real time by measuring the jet characteristics by a combined camera and pyrometer and computer analysis to determine the required feed parameter
US7323062B2 (en) 2002-02-28 2008-01-29 Snecma Services Thermal projection device
US7332036B2 (en) 2002-02-28 2008-02-19 Snecma Services Thermal projection device
US7404860B2 (en) 2002-02-28 2008-07-29 Snecma Services Thermal spraying instrument
JP2009066646A (en) * 2007-09-18 2009-04-02 Kimura Chuzosho:Kk Manufacturing method of micro parts
JP2014516841A (en) * 2011-06-16 2014-07-17 アールブルク ゲーエムベーハー ウント コー.カーゲー Apparatus and method for manufacturing a three-dimensional object
JP2013006269A (en) * 2011-06-23 2013-01-10 Raytheon Bbn Technologies Corp Robot processing equipment
JP2015145327A (en) * 2014-02-03 2015-08-13 伊藤 幸男 Melt-laminate molding method for solid molding, melt-laminate molding apparatus for solid molding, and the solid molding
JP2015208669A (en) * 2014-04-30 2015-11-24 伊藤 幸男 Bone reinforcement body tool and melting lamination molding method and melting lamination molding device thereof
US20180117848A1 (en) * 2015-05-01 2018-05-03 Jay Lee System and method for additive manufacturing using spherical coordinates
US10875246B2 (en) * 2015-05-01 2020-12-29 Jay Lee System and method for additive manufacturing using spherical coordinates
US11478984B2 (en) * 2015-05-01 2022-10-25 Jay Lee System and method for additive manufacturing using spherical coordinates

Similar Documents

Publication Publication Date Title
Duda et al. 3D metal printing technology
Grzesik Hybrid additive and subtractive manufacturing processes and systems: A review
US6144008A (en) Rapid manufacturing system for metal, metal matrix composite materials and ceramics
Akula et al. Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process
EP0722386B1 (en) Three-dimensional rapid prototyping
Jeng et al. Mold fabrication and modification using hybrid processes of selective laser cladding and milling
US10688581B2 (en) 3D metal printing device and process
KR100291953B1 (en) Variable deposition manufacturing method and apparatus
Lewis et al. Practical considerations and capabilities for laser assisted direct metal deposition
US20050173380A1 (en) Directed energy net shape method and apparatus
CA2717834C (en) Method to apply multiple materials with selective laser melting on a 3d article
EP1549454B1 (en) Multi-layer dmd process with part-geometry independant real time closed loop weld pool temperature control system
JP6943512B2 (en) Equipment and methods for construction surface mapping
CN105945281A (en) Deposition forming manufacturing method of parts and molds
CN101817121A (en) Fusion deposition forming composite manufacturing method and auxiliary device for parts and molds
JP6626788B2 (en) Control data generation method, information processing device, machine tool, and program
RU2674588C2 (en) Method for additive welding and melting manufacture of three-dimensional products and installation for its implementation
US20170297323A1 (en) Method for generating control data, data processing device, machine tool, and program
AU2023233198A1 (en) Systems and methods for non-continuous deposition of a component
Kerschbaumer et al. Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding
Butt et al. Additive, subtractive, and hybrid manufacturing processes
JPH0318484A (en) Method for forming three-dimensional object and device used therein
CN105665702A (en) Mold plasma 3D printing device and 3D printing method
Ugla et al. Deposition-path generation of SS308 components manufactured by TIG welding-based shaped metal deposition process
CA2913288C (en) 3d metal printing device and process